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Abstract. Let T be a bounded linear operator on a complex Hilbert space H . We obtain various
lower and upper bounds for the numerical radius of T by developing the Euclidean operator
radius bounds of a pair of operators, which are stronger than the existing ones. In particular, we
develop an inequality that improves on the inequality

w(T ) � 1
2
‖T‖+

1
4

∣∣∣∣‖Re(T )‖− 1
2
‖T‖

∣∣∣∣+ 1
4

∣∣∣∣‖Im(T )‖− 1
2
‖T‖

∣∣∣∣.
Various equality conditions of the existing numerical radius inequalities are also provided. Fur-
ther, we study the numerical radius inequalities of 2× 2 off-diagonal operator matrices. Ap-
plying the numerical radius bounds of operator matrices, we develop upper bounds of w(T ) by
using t -Aluthge transform. In particular, we improve the well known inequality

w(T ) � 1
2
‖T‖+

1
2
w(T̃ ),

where T̃ = |T |1/2U |T |1/2 is the Aluthge transform of T and T = U |T | is the polar decompo-
sition of T .

1. Introduction

Let B(H ) denote the C∗ -algebra of all bounded linear operators on a complex

Hilbert (H ,〈., .〉) . For T ∈ B(H ), T ∗ denotes the adjoint of T and |T | = (T ∗T )
1
2 .

The Cartesian decomposition of T is T = Re(T )+ iIm(T ), where Re(T ) = 1
2 (T +T ∗)

and Im(T ) = 1
2i (T −T ∗) . For 0 � t � 1, the t -Aluthge transform of T ∈ B(H ) is

defined as T̃t = |T |tU |T |1−t , where T = U |T | is the polar decomposition of T and U
is the partial isometry. In particular, for t = 1

2 , T̃ = T̃1
2

= |T |1/2U |T |1/2 is the Aluthge

transform of T. The numerical radius of T , denoted by w(T ) , is defined as w(T ) =
sup{|〈Tx,x〉| : x ∈ H ,‖x‖ = 1} . The numerical radius w(·) is a norm on B(H ) and
satisfies

1
2
‖T‖ � w(T ) � ‖T‖. (1.1)
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For further information on the numerical radius and related inequalities improving (1.1),
we refer to [1, 2, 5, 6, 8, 9, 12, 20, 22, 26]. Based on the importance of the concept
of numerical radius, various generalizations have been studied for the last few years.
Such a generalization is the Euclidean operator radius, see [24]. For B,C ∈ B(H ) , the
Euclidean operator radius of B and C , denoted by we(B,C), is defined as

we(B,C) = sup

{√
|〈Bx,x〉|2 + |〈Cx,x〉|2 : x ∈ H ,‖x‖ = 1

}
.

The Euclidean operator radius we(., .) , defines a norm on B
2(H )(= B(H )×B(H )),

which satisfies the inequality (see [24])

1
8
‖B∗B+C∗C‖ � w2

e(B,C) � ‖B∗B+C∗C‖. (1.2)

Here the constants 1
8 and 1 are best possible. In [13, Th. 1], Dragomir proved that

1
2
w
(
B2 +C2)� w2

e(B,C) (1.3)

and the constant 1
2 is best possible. See [16, 21, 25] for more generalizations on the

Euclidean operator radius and related results.
In [16], authors studied improvements of the inequalities (1.2) and (1.3). In this

article we continue the study in that direction. We obtain lower and upper bounds for
the Euclidean operator radius of a pair of bounded linear operators B and C , which
improve on the earlier related bounds. From the Euclidean operator radius bounds
we develop various lower and upper bounds for the numerical radius of a bounded
linear operator T , which improve (1.1) and the inequality 1

4‖T ∗T +TT ∗‖ � w2(T ) �
1
2‖T ∗T +TT ∗‖ , given in [19]. We study equality conditions of the existing numerical
radius inequalities of a bounded linear operator T . Further, we obtain numerical radius
bounds for the 2× 2 off-diagonal operator matrices, which generalize and improve
on the existing ones. Applying the numerical radius bounds of 2× 2 off-diagonal
operator matrices, we obtain an upper bound for the numerical radius of a bounded
linear operator T by using t -Aluthge transform, which improves and generalizes the
bound w(T ) � 1

2‖T‖+ 1
2w(T̃ ), given in [27].

2. Main results

We begin with the following proposition that gives lower bounds for the Euclidean
operator radius we(B,C).

PROPOSITION 2.1. Let B,C ∈ B(H ) . Then the following inequalities hold:
(i) we(B,C) � max{w(B),w(C)}.
(ii) we(B,C) � 1√

2
w
(
B+ eiC

)
for all  ∈ R .

(iii) we(B,C) �
√

1
2w(B2 + eiC2)+ 1

2 |w2(B)−w2(C)| for all  ∈ R .

(iv) we(B,C) �
√

1
2w(BC+CB).



EUCLIDEAN OPERATOR RADIUS AND NUMERICAL RADIUS INEQUALITIES 927

Proof. (i) Follows trivially from the definition.
(ii) We have

we(B,C) = sup
‖x‖=1

√
|〈Bx,x〉|2 + |〈Cx,x〉|2

� sup
‖x‖=1

√
1
2

(|〈Bx,x〉|+ |〈Cx,x〉|)2

� sup
‖x‖=1

√
1
2

(|〈Bx,x〉+ ei 〈Cx,x〉|)2

=
1√
2
w
(
B+ eiC

)
.

(iii) From (i), we have

w2
e(B,C) � max

{
w2(B),w2(C)

}
=

1
2
(w2(B)+w2(C))+

1
2
|w2(B)−w2(C)|

� 1
2

(
w(B2)+w(C2)

)
+

1
2
|w2(B)−w2(C)|

� 1
2
w(B2 + eiC2)+

1
2
|w2(B)−w2(C)|.

(iv) From (ii), we have we(B,C) � 1√
2
w(B+C) and we(B,C) � 1√

2
w(B−C) .

Thus,

2w2
e(B,C) � 1

2
w2 (B+C)+

1
2
w2 (B−C)

� 1
2
w
(
(B+C)2)+ 1

2
w
(
(B−C)2)

� 1
2
w
(
(B+C)2− (B−C)2)

= w(BC+CB) .

This completes the proof. �
Proposition 2.1 (iii) generalizes and improves the inequality

we(B,C) �
√

1
2
w(B2 +C2),

proved in [13, Th. 1]. Now, by using Proposition 2.1 we prove the following theorem.

THEOREM 2.2. Let B,C ∈ B(H ) . Then√
1
4
w(B2 +C2)+

1
4

(w2(B)+w2(C))+
1
2
|w2(B)−w2(C)| � we(B,C).
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Proof. Take t1 = max
{
w2(B), 1

2w
(
B2 +C2

)}
, t2 = max

{
w2(C), 1

2w
(
B2 +C2

)}
,

m1 =
∣∣w2(B)− 1

2w
(
B2 +C2

)∣∣ and m2 =
∣∣w2(C)− 1

2w
(
B2 +C2

)∣∣ . From the inequali-
ties (i) and (iii) of Proposition 2.1, we have

w2
e(B,C) � max{t1,t2}

=
1
2
(t1 + t2)+

1
2

∣∣t1 − t2
∣∣

=
1
4

(
w2(B)+w2(C)

)
+

1
4
w(B2 +C2)+

1
4
(m1 +m2)+

1
2

∣∣t1 − t2
∣∣

� 1
4

(
w(B2)+w(C2)

)
+

1
4
w(B2 +C2)+

1
4
(m1 +m2)+

1
2

∣∣t1 − t2
∣∣

� 1
4
w(B2 +C2)+

1
4
w(B2 +C2)+

1
4
(m1 +m2)+

1
2

∣∣t1 − t2
∣∣

=
1
2
w(B2 +C2)+

1
4
(m1 +m2)+

1
2

∣∣t1 − t2
∣∣

=
1
4
w(B2 +C2)+

1
4

(
w2(B)+w2(C)

)
+

1
2

∣∣w2(B)−w2(C)
∣∣ ,

as desired. �

REMARK 2.3. (i) The inequality obtained in Theorem 2.2 is a refinement of the

inequality
√

1
2w(B2 +C2) � we(B,C) , given in [13, Th. 1].

(ii) If we(B,C) =
√

1
2w(B2 +C2) , then from Theorem 2.2 it follows that w(B) =

w(C) =
√

1
2w(B2 +C2) . However, the converse, in general, may not hold. As for

example, considering a non-zero normal operator B = C, we get w(B) = w(C) =√
1
2w(B2 +C2) , but we(B,C) =

√
2w(B) �= w(B) =

√
1
2w(B2 +C2).

(iii) If we(B,C) =
√

1
2w(B2 +C2)+ 1

2 |w2(B)−w2(C)| then from Theorem 2.2

it follows that w
(
B2 +C2

)
= w2(B)+w2(C) and we(B,C) = max{w(B),w(C)}. The

converse of the result is also valid.

As an immediate consequence of Theorem 2.2 we have the following result.

COROLLARY 2.4. Let B,C ∈ B(H ) be normal, then

we(B,C) �
√

1
4
‖B2 +C2‖+

1
4

(‖B‖2 +‖C‖2)+
1
2
|‖B‖2−‖C‖2|

=

√
1
2
‖B2 +C2‖+

1
4
(p1 + p2)+

1
2

∣∣s1− s2
∣∣,

where s1 = max
{‖B‖2, 1

2‖B2 +C2‖} , s2 = max
{‖C‖2, 1

2‖B2 +C2‖} , p1 =
∣∣‖B‖2 −

1
2‖B2 +C2‖∣∣ and p2 =

∣∣‖C‖2− 1
2‖B2 +C2‖∣∣.
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Corollary 2.4 is better than the first inequality in (1.2) when B and C are self-
adjoint operators. From Corollary 2.4 we obtain the following numerical radius bound
for a bounded linear operator T .

COROLLARY 2.5. Let T ∈ B(H ) . Then√
1
8
‖T ∗T +TT ∗‖+

1
4

(‖Re(T )‖2 +‖Im(T)‖2)+
1
2
|‖Re(T )‖2−‖Im(T )‖2| � w(T ),

Proof. Considering B = Re(T ) and C = Im(T ) in Corollary 2.4 we obtain that

w(T ) �
√

1
8
‖T ∗T +TT ∗‖+

1
4

(‖Re(T )‖2 +‖Im(T )‖2)+
1
2
|‖Re(T )‖2−‖Im(T)‖2|

=

√
1
4
‖T ∗T +TT ∗‖+

1
4
( + )+

1
2

∣∣− 
∣∣,

where  =
∣∣‖Re(T )‖2 − 1

4‖T ∗T + TT ∗‖∣∣,  =
∣∣‖Im(T )‖2 − 1

4‖T ∗T + TT ∗‖∣∣,  =
max

{‖Re(T )‖2, 1
4‖TT ∗ +T ∗T‖} and  = max

{‖Im(T )‖2, 1
4‖TT ∗ +T∗T‖} . �

REMARK 2.6. (i) Clearly, the bound obtained in Corollary 2.5 is stronger than the
bound √

1
4
‖T ∗T +TT ∗‖+

1
2

∣∣‖Re(T )‖2−‖Im(T )‖2
∣∣� w(T ), (2.1)

obtained in [7, Th. 2.9].
(ii) From Corollary 2.5 it follows that, if√

1
4
‖T ∗T +TT ∗‖+

1
2

∣∣‖Re(T )‖2−‖Im(T )‖2
∣∣= w(T ),

then 1
2‖T ∗T +TT ∗‖ = ‖Re(T )‖2 +‖Im(T )‖2 and w(T ) = max{‖Re(T )‖,‖Im(T )‖} .

The converse also holds.

Using Corollary 2.4 we also obtain the following lower bound for the numerical
radius.

COROLLARY 2.7. Let T ∈ B(H ) , then√
1
8
‖T ∗T +TT ∗‖+

1
8

(‖Re(T )+ Im(T )‖2 +‖Re(T)− Im(T )‖2)+

4

� w(T ),

where  =
∣∣‖Re(T )+ Im(T)‖2−‖Re(T)− Im(T )‖2

∣∣.
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Proof. Considering B = Re(T)+Im(T )√
2

and C = Re(T)−Im(T )√
2

in Corollary 2.4, we
have

w(T ) �
√

1
8
‖T ∗T +TT ∗‖+

1
8

(‖Re(T )+ Im(T)‖2 +‖Re(T)− Im(T )‖2)+

4

=

√
1
4
‖T ∗T +TT ∗‖+

1
4
( +  )+

1
2

∣∣ −
∣∣,

where

 =
∣∣∣∣‖Re(T )+ Im(T )‖2

2
− 1

4
‖T ∗T +TT ∗‖

∣∣∣∣ ,
 =

∣∣∣∣‖Re(T )− Im(T )‖2

2
− 1

4
‖T ∗T +TT ∗‖

∣∣∣∣ ,
 = max

{‖Re(T )+ Im(T)‖2

2
,
1
4
‖TT ∗ +T ∗T‖

}
,

 = max

{‖Re(T )− Im(T)‖2

2
,
1
4
‖TT ∗ +T ∗T‖

}
. �

REMARK 2.8. (i) In [10, Th. 2.3] the authors obtained the inequality√
1
4
‖T ∗T +TT ∗‖+

1
4
|‖Re(T )+ Im(T)‖2−‖Re(T)− Im(T )‖2| � w(T ).

It is easy to conclude that the inequality obtained in Corollary 2.7 is a refinement of the
above inequalty.

(ii) From the inequality in Corollary 2.7, it follows that if√
1
4
‖T ∗T +TT ∗‖+

1
4
|‖Re(T )+ Im(T)‖2 −‖Re(T)− Im(T)‖2| = w(T )

then ‖T ∗T +TT ∗‖ = ‖Re(T )+ Im(T )‖2 +‖Re(T)− Im(T )‖2 and

w(T ) = max

{‖Re(T )+ Im(T)‖√
2

,
‖Re(T )− Im(T)‖√

2

}
.

The converse also holds.

Next, we obtain an upper bound for the Euclidean operator radius we(B,C).

THEOREM 2.9. If B,C ∈ B(H ) then for all t ∈ [0,1],

we(B,C)

�
∥∥t2B∗B+(1− t)2C∗C

∥∥ 1
2 +

1√
2

{
w2((1− t)B+ tC)+w2((1− t)B− tC)

}1
2 .

In particular, for t = 1
2

we(B,C) � 1
2
‖B∗B+C∗C‖ 1

2 +
1

2
√

2

{
w2(B+C)+w2(B−C)

} 1
2 . (2.2)
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Proof. Take x ∈ H with ‖x‖ = 1. We have(|〈Bx,x〉|2 + |〈Cx,x〉|2) 1
2

=
(|t〈Bx,x〉+(1− t)〈Bx,x〉|2 + |(1− t)〈Cx,x〉+ t〈Cx,x〉|2) 1

2

�
(
t2|〈Bx,x〉|2 +(1− t)2|〈Cx,x〉|2) 1

2 +
(
(1− t)2|〈Bx,x〉|2 + t2|〈Cx,x〉|2) 1

2

(by Minkowski inequality)

�
(
t2‖Bx‖2 +(1− t)2‖Cx‖2) 1

2

+
(

1
2
|〈((1− t)B+ tC)x,x〉|2 +

1
2
|〈((1− t)B− tC)x,x〉|2

) 1
2

�
∥∥t2B∗B+(1− t)2C∗C

∥∥ 1
2 +
{

1
2
w2((1− t)B+ tC)+

1
2
w2((1− t)B− tC)

}1
2

.

Taking supremum over all x ∈ H with ‖x‖ = 1, we get the first inequality. In particu-
lar, considering t = 1

2 we get the second inequality. �
Our next result reads as follows.

THEOREM 2.10. Let T ∈ B(H ), then the following inequalities hold:

(i)

√
1
4
‖T ∗T +TT ∗‖+ � w(T ) �

√
1
4
‖T ∗T +TT ∗‖+ ,

where  = 1
2

∣∣‖Re(T )‖2−‖Im(T)‖2
∣∣,  = 1

2

(‖Re(T )‖2 +‖Im(T)‖2
)
.

(ii)

√
1
4
‖T ∗T +TT ∗‖+  � w(T ) �

√
1
4
‖T ∗T +TT ∗‖+  ,

where

 =
1
4

∣∣‖Re(T )+ Im(T)‖2−‖Re(T)− Im(T )‖2
∣∣ ,

 =
1
4

(‖Re(T )+ Im(T )‖2 +‖Re(T)− Im(T)‖2) .
Proof. (i) First inequality follows from [7, Th. 2.9] and the second inequality

follows from the inequality (2.2) by considering B = T and C = T ∗.
(ii) First inequality follows from [10, Th. 2.3] and the second inequality follows

from the inequality (2.2) by considering B = Re(T ) and C = Im(T ). �
To present our next result we need the following Hermite-Hadamard inequality,

see [23, p. 137]. For a convex function f : J → R and a,b ∈ J , we have

f

(
a+b

2

)
�
∫ 1

0
f (ta+(1− t)b)dt � f (a)+ f (b)

2
. (2.3)

Also, we need the following lemmas.
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LEMMA 2.11. [3, (4.24)] Let A∈B(H ) be self-adjoint with spectrum contained
in the interval J and let x ∈ H with ‖x‖ = 1 . If f is a convex function on J , then

f (〈Ax,x〉) � 〈 f (A)x,x〉.

LEMMA 2.12. [17] (GeneralizedCauchy-Schwarz inequality) If A∈B(H ) , then

|〈Ax,y〉|2 � 〈|A|2x,x〉〈|A∗|2(1−)y,y〉,
for all x,y ∈ H and for all  ∈ [0,1] .

Now we are in a position to prove our result.

THEOREM 2.13. Let B,C ∈ B(H ) . If f : [0,) → [0,) is an increasing oper-
ator convex function, then

f
(
w2

e(B,C)
)

�
∥∥∥∥∫ 1

0
f (t(B∗B+C∗C)+ (1− t)(BB∗+CC∗))dt

∥∥∥∥
� 1

2
‖ f (B∗B+C∗C)+ f (BB∗+CC∗)‖ .

Proof. Take x ∈ H with ‖x‖ = 1. We have

f (|〈Bx,x〉|2 + |〈Cx,x〉|2)
� f (〈|B|x,x〉〈|B∗|x,x〉+ 〈|C|x,x〉〈|C∗|x,x〉) (by Lemma 2.12)

� f
(
{〈|B|x,x〉2 + 〈|C|x,x〉2} 1

2 {〈|B∗|x,x〉2 + 〈|C∗|x,x〉2} 1
2

)
� f

(
1
2
〈(B∗B+C∗C)x,x〉+ 1

2
〈(BB∗ +CC∗)x,x〉

)
�
∫ 1

0
f
(〈(

t(B∗B+C∗C)+ (1− t)(BB∗+CC∗)
)
x,x
〉)

dt (by (2.3)).

Now,

f
(〈(

t(B∗B+C∗C)+ (1− t)(BB∗+CC∗)
)
x,x
〉)

�
〈
f
(
t(B∗B+C∗C)+ (1− t)(BB∗+CC∗)

)
x,x
〉

(by Lemma 2.11)
� t〈 f (B∗B+C∗C)x,x〉+(1− t)〈 f (BB∗+CC∗)x,x〉,

where the last inequality follows form operator convexity of f . Therefore,∫ 1

0
f
(〈(

t(B∗B+C∗C)+ (1− t)(BB∗+CC∗)
)
x,x
〉)

dt

� 〈
∫ 1

0
f
(
t(B∗B+C∗C)+ (1− t)(BB∗+CC∗)

)
dt x,x〉

� 1
2

(〈 f (B∗B+C∗C)x,x〉+ 〈 f (BB∗ +CC∗)x,x〉).
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Taking the supremum over x ∈ H with ‖x‖ = 1, we get

f
(
w2

e(B,C)
)

�
∥∥∥∥∫ 1

0
f
(
t(B∗B+C∗C)+ (1− t)(BB∗+CC∗)

)
dt

∥∥∥∥
� 1

2
‖ f (B∗B+C∗C)+ f (BB∗ +CC∗)‖ .

Thus, we complete the proof. �
Since for 1 � r � 2 the function f (x) = xr , x � 0 is an increasing operator convex

function, we have

w2r
e (B,C) �

∥∥∥∥∫ 1

0
(t(B∗B+C∗C)+ (1− t)(BB∗+CC∗))r dt

∥∥∥∥ (2.4)

� 1
2
‖(B∗B+C∗C)r +(BB∗+CC∗)r‖. (2.5)

In particular, for r = 1,

w2
e(B,C) �

∥∥∥∥∫ 1

0
(t(B∗B+C∗C)+ (1− t)(BB∗+CC∗))dt

∥∥∥∥
� 1

2
‖(B∗B+C∗C)+ (BB∗+CC∗)‖. (2.6)

The above inequality can also be derived from

w2
e(B,C) �

∥∥(|B|2 + |C|2)+ (1−)(|B∗|2 + |C∗|2)∥∥ , 0 �  � 1,

proved by Moslehian et al. [21, Prop. 3.9]. Now, if we take B = C = T in (2.4) we
obtain the following numerical radius inequality.

COROLLARY 2.14. Let T ∈ B(H ) , then

w2(T ) �
∥∥∥∥∫ 1

0

(
tT ∗T +(1− t)TT ∗)rdt

∥∥∥∥1/r

�
∥∥∥∥ (T ∗T )r +(TT ∗)r

2

∥∥∥∥1/r

,

for 1 � r � 2.

Next, in the following theorem we develop a lower bound for the numerical radius
of a bounded linear operator T .

THEOREM 2.15. Let T ∈ B(H ), then

1
4
‖T‖+

1
4

(‖Re(T )‖+‖Im(T)‖)+
1
2
|‖Re(T )‖−‖Im(T)‖| � w(T ).

Proof. From the Cartesian decomposition of T , it is easy to verify that ‖Re(T )‖
� w(T ), ‖Im(T )‖ � w(T ) and 1

2‖T‖ � w(T ). Take r1 =
∣∣‖Re(T )‖− 1

2‖T‖
∣∣ , r2 =
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2‖T‖

∣∣, q1 = max
{‖Re(T )‖, 1

2‖T‖
}

and q2 =max
{‖Im(T )‖, 1

2‖T‖
}

. We
have

w(T ) � max{q1,q2}
=

1
2
(q1 +q2)+

1
2

∣∣q1−q2
∣∣

=
1
4
‖T‖+

1
4
(‖Re(T )‖+‖Im(T)‖)+

1
4
(r1 + r2)+

1
2

∣∣q1−q2
∣∣

� 1
4
‖T‖+

1
4
‖Re(T )+ iIm(T)‖+

1
4
(r1 + r2)+

1
2

∣∣q1−q2
∣∣

=
1
2
‖T‖+

1
4
(r1 + r2)+

1
2

∣∣q1−q2
∣∣

=
1
2
‖T‖+

1
4

∣∣∣∣‖Re(T )‖− 1
2
‖T‖

∣∣∣∣+ 1
4

∣∣∣∣‖Im(T )‖− 1
2
‖T‖

∣∣∣∣+ 1
2

∣∣q1−q2
∣∣

=
1
4
‖T‖+

1
4

(‖Re(T )‖+‖Im(T)‖)+
1
2
|‖Re(T )‖−‖Im(T)‖| ,

as desired. �

REMARK 2.16. (i) It follows from [15] that

1
2
‖T‖+

1
4

∣∣∣∣‖Re(T )‖− 1
2
‖T‖

∣∣∣∣+ 1
4

∣∣∣∣‖Im(T )‖− 1
2
‖T‖

∣∣∣∣� w(T ). (2.7)

Clearly, the inequality in Theorem 2.15 refines the inequality (2.7).

(ii) It follows from Theorem 2.15 that if

1
2
‖T‖+

1
4

∣∣∣∣‖Re(T )‖− 1
2
‖T‖

∣∣∣∣+ 1
4

∣∣∣∣‖Im(T )‖− 1
2
‖T‖

∣∣∣∣= w(T )

then max
{‖Re(T )‖, 1

2‖T‖
}

= max
{‖Im(T )‖, 1

2‖T‖
}

. However, the converse may not
be true.

(iii) For T ∈ B(H ), Bhunia and Paul [7, Th. 2.1] proved that

1
2
‖T‖+

1
2

∣∣‖(T )‖−‖(T)‖∣∣� w(T ). (2.8)

Clearly, the inequality in Theorem 2.15 refines (2.8).

(iv) It follows from Theorem 2.15 that if w(T ) = 1
2‖T‖+ 1

2

∣∣‖(T )‖−‖(T)‖∣∣ ,
then ‖T‖ = ‖Re(T )‖+‖Im(T )‖ and w(T ) = max{‖Re(T )‖,‖Im(T )‖}. The converse
is also true.



EUCLIDEAN OPERATOR RADIUS AND NUMERICAL RADIUS INEQUALITIES 935

3. Numerical radius bounds of 2×2 operator matrices

Using the numerical radius inequalities obtained in Section 2, here we develop the
numerical radius bounds of 2× 2 off-diagonal operator matrices. Suppose H ⊕H

is the direct sum of two copies of H , and

(
B X
Y C

)
∈ B(H ⊕H ) is a 2×2 operator

matrix, defined by

(
B X
Y C

)(
x
y

)
=
(

Bx+Xy
Yx+Cy

)
, ∀
(

x
y

)
∈ H ⊕H . Considering T =(

0 X
Y 0

)
∈ B(H ⊕H ) in Theorem 2.15, Corollary 2.5, Corollary 2.7 and Theorem

2.10 respectively, we get the following bounds for the numerical radius of the 2× 2

off-diagonal operator matrix

(
0 X
Y 0

)
.

THEOREM 3.1. Let T =
(

0 X
Y 0

)
∈ B(H ⊕H ) , then the following inequalities

hold:

(i) w(T ) � max

{‖X‖
4

,
‖Y‖
4

}
+

1
4

(‖X +Y∗‖
2

+
‖X −Y∗‖

2

)
+

1
2

∣∣∣∣‖X +Y ∗‖
2

− ‖X −Y ∗‖
2

∣∣∣∣ .
(ii) w2 (T ) � max

{‖X∗X +YY ∗‖
8

,
‖XX∗+Y ∗Y‖

8

}
+

1
4

(‖X +Y∗‖2

4
+

‖X −Y∗‖2

4

)
+

1
2

∣∣∣∣‖X +Y ∗‖2

4
− ‖X −Y∗‖2

4

∣∣∣∣ .
(iii) w2(T ) � max

{‖X∗X +YY ∗‖
8

,
‖XX∗+Y ∗Y‖

8

}
+

1
8

(‖(1− i)X +(1+ i)Y∗‖2

4
+

‖(1+ i)X − (1− i)Y∗‖2

4

)
+

1
4

∣∣∣∣‖(1− i)X +(1+ i)Y∗‖2

4
− ‖(1+ i)X − (1− i)Y∗‖2

4

∣∣∣∣ .
(iv) w2(T ) � max

{‖X∗X +YY ∗‖
4

,
‖XX∗+Y ∗Y‖

4

}
+

1
2

∣∣∣∣‖X +Y ∗‖2

4
+

‖X −Y ∗‖2

4

∣∣∣∣ .
(v) w2(T ) � max

{‖X∗X +YY ∗‖
4

,
‖XX∗+Y ∗Y‖

4

}
+

1
4

∣∣∣∣‖(1− i)X +(1+ i)Y∗‖2

4
+

‖(1+ i)X − (1− i)Y∗‖2

4

∣∣∣∣ .
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REMARK 3.2. (i) We remark that the bound in Theorem 3.1 (i) is stronger than
the bound in [4, Th. 2.7], namely,

w(T ) � max

{‖X‖
2

,
‖Y‖
2

}
+

1
2

∣∣∣∣‖X +Y ∗‖
2

− ‖X −Y ∗‖
2

∣∣∣∣ .
(ii) It is easy to verify that the bound in Theorem 3.1 (ii) is stronger than the bound

in [4, Th. 2.12], namely,

w2 (T ) � max

{‖X∗X +YY ∗‖
4

,
‖XX∗+Y∗Y‖

4

}
+

1
2

∣∣∣∣‖X +Y ∗‖2

4
− ‖X −Y ∗‖2

4

∣∣∣∣ .
Now, by applying the operator matrix technique we develop upper bounds for the

numerical radius of a bounded linear operator T by using the t -Aluthge transform.

First we give the following upper bound for the numerical radius w

(
0 X
Y 0

)
, where

X ,Y ∈ B(H ).

THEOREM 3.3. [11, Th. 2.5 and Cor. 2.6] Let X ,Y ∈ B(H ) and T =
(

0 X
Y 0

)
∈

B(H ⊕H ) . If S = |X |2 + |Y ∗|2 and P = |X∗|2 + |Y |2 , then

w2
(

0 X
Y 0

)
= w2(T ) �

√
min{ ,},

where

 =
1
16

‖S‖2 +
1
4
w2(YX)+

1
8
w(YXS+SYX),

 =
1
16

‖P‖2 +
1
4
w2(XY )+

1
8
w(XYP+PXY).

For X ,Y ∈ B(H ) , we have the following inequalities:

w(XY ) � w

(
XY 0
0 YX

)
= w

((
0 X
Y 0

)2
)

� w2
(

0 X
Y 0

)
. (3.1)

Now, by using (3.1) and Theorem 3.3, we prove the following result.

COROLLARY 3.4. Let T ∈ B(H ) . If Pt = |T |2(1−t) + |T |2t , 0 � t � 1, then

w(T ) �
√

1
16

‖Pt‖2 +
1
4
w2(T̃t)+

1
8
w(T̃tPt +PtT̃t) (3.2)

� 1
4

∥∥∥|T |2(1−t) + |T |2t
∥∥∥+

1
2
w(T̃t).
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In particular, for t = 1
2

w(T ) �
√

1
4
‖T‖2 +

1
4
w2(T̃ )+

1
4
w(T̃ |T |+ |T |T̃ ) (3.3)

� 1
2
‖T‖+

1
2
w(T̃ ).

Proof. Taking X = U |T |1−t and Y = |T |t in Theorem 3.3 (in the expression  )
we obtain the inequality (3.2), and the next inequality follows from the inequality (see
[14]) w(XY +Y ∗X) � 2‖Y‖w(X) for all X ,Y ∈ B(H ) . The rest of the inequalitie
follows by considering t = 1

2 . �

REMARK 3.5. (i) Let T ∈ B(H ) . Then, clearly the inequality (3.2) refines the
bound

w(T ) � 1
4

∥∥∥|T |2(1−t) + |T |2t
∥∥∥+

1
2
w(T̃t),

obtained by Kittaneh et al. [18, Cor. 2.2].
(ii) We would like to remark that the inequality (3.3) is stronger than the inequality

w(T ) � 1
2
‖T‖+

1
2
w(T̃ )

(
� 1

2
‖T‖+

1
2

∥∥T 2
∥∥1/2

)
,

proved by Yamazaki [27, Th. 2.1].

Note that the inequality (3.3) is already proved in [10, Th. 2.6] but the approach
here is different and simple.

Finally, we prove the following result.

COROLLARY 3.6. Let T ∈ B(H ) . If Qt = |T ∗|2(1−t) + |T |2t , 0 � t � 1, then

w(T ) �
√

1
16

‖Qt‖2 +
1
4
w2(T )+

1
8
w(TQt +QtT ) (3.4)

� 1
4
‖|T ∗|2(1−t) + |T |2t‖+

1
2
w(T )

� 1
2

∥∥∥|T ∗|2(1−t) + |T |2t
∥∥∥ .

Proof. Taking X = U |T |1−t , Y = |T |t in Theorem 3.3 we obtain the inequality
(3.4). The second inequality follows from w(XY +Y ∗X) � 2‖Y‖w(X) for all X ,Y ∈
B(H ) (see [14]). The last inequality follows trivially. �

REMARK 3.7. Note that the bound in (3.4) is sharper than the bound

w(T ) � 1
4

∥∥∥|T ∗|2(1−t) + |T |2t
∥∥∥+

1
2
w(T ),

proved by Kittaneh et al. [18].
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