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Abstract. For a connected graph G of order n and an interval I , denote by mDL (G)I the number
of distance Laplacian eigenvalues of G in I . In this paper, applying two different methods, we
prove that mDL (G)[n,n+1) � (G) , where (G) is the vertex connectivity of G . Moreover, it
is shown that this upper bound is sharp. Finally, based on the dominating induced matching of a
graph G , we give the distance Laplacian eigenvalue distribution of the graph G .

1. Introduction

All graphs considered in this paper are undirected, finite and simple. Let G =(
V (G),E(G)

)
be a graph with vertex set V (G) , edge set E(G) and |V (G)| = n ,

|E(G)| = m . For v ∈ V (G) , the neighbour set of vertex v is defined as NG(v) = {u ∈
V (G) | uv ∈ E(G)} and the number d(v) = dG(v) = |NG(v)| is the degree of vertex v
in graph G . If every vertex in V (G) has the same degree r , then G is called r -regular.
The adjacency matrix of G , denoted by A(G) , is a (0,1)-square matrix of order n ,
whose (i, j)-th entry is 1, if viv j ∈ E(G) and 0, otherwise. For the vertex degrees di-
agonal matrix Deg(G) , the real symmetric matrix L(G) = Deg(G)−A(G) is said to be
the Laplacian matrix of G , respectively. The complement of G , denoted by G , is the
simple graph with the vertex set V (G) such that two distinct vertices of G are adjacent
if and only if they are not adjacent in G .

The union G∪H of two graphs G and H is the graph with the vertex set V (G)∪
V (H) and the edge set E(G)∪ E(H) . Given two vertex disjoint graphs G and H ,
the join of G and H is the graph G∨H such that V (G∨H) = V (G)∪V (H) and
E(G∨H) = E(G)∪E(H)∪{uv | u ∈V (G),v ∈V (H)} . As usual, we denote by Pn the
path of order n , by Cn the cycle with n vertices, by Kn the complete graph of order n .
In particular, the complete bipartite graph with part sizes p and q denoted by Kp,q and
the star of order n is denoted by K1,n−1 . For a graph G , an independent set S(G) of G
is a subset of vertices of G if no two of its vertices are adjacent, the vertex connectivity
(G) is the minimum number of vertices whose removal gives rise to a disconnected
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or trivial graph. A clique is a complete subgraph of a given graph G . The cardinality
of the maximum clique is called the clique number of G and is denoted by (G) .

A matching of G is a set of mutually nonadjacent edges of G . An induced match-
ing (IM) is a matching having no two edges joined by an edge. In other words, M
is an induced matching of G if the subgraph of G induced by V (M) is 1-regular. A
maximum induced matching is an induced matching of maximum cardinality. A subset
S ⊂ E(G) is a dominating edge set if every edge e ∈ E(G)\ S shares an endpoint with
some edge e′ ∈ S . A dominating induced matching (DIM) of G is an induced matching
that dominates every edge of G , which is also a dominating edge set. All DIMs of a
graph G have the same size which is the size of a maximum IM. Observe that if X is
a DIM of G , then there is a partition of V (G) , which divide V (G) into two disjoint
subsets V (X) and V (Y ) , where V (Y ) is an independent set. Noting that every edge of
P4 is an IM. But only the internal edge is a DIM. Clearly, not every graph has DIM. For
example, a connected graph having a DIM is illustrated in Fig. 1(a), and a connected
graph having no a DIM can be illustrated in Fig. 1(b).

Now, we consider a connected graph G of order n with a DIM X ⊂E(G) such that
|X | = s , where V (G) = V1(G)∪V2(G) , V1(G) = V (X) and V2(G) = V (G) \V1(G) is
an independent set. Obviously, the property of having a DIM does not change whether
we add edges linking the vertices of V1(G) with the vertices of V2(G) . The extremal
graph G′ , obtained from G adding

(
2s(n− 2s) + 2s

)− |E(G)| edges (which is the
maximum as possible) between V1(G) and V2(G) , that is, such that E(G′) = X∪{e1e2 :
e1 ∈ V1(G),e2 ∈ V2(G)} . Particularly, if G ∼= G′ , then the DIM is called a complete
dominating induced matching of G , say a CDIM.

� � � � �

�

� � � � �

�
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u6

v1 v2 v3 v4 v5

v6

(a) (b)

Figure 1: (a) A connected graph with a DIM {u1u2,u4u5} . (b) A connected graph with no DIM.

For a graph G , let V (G) = {v1,v2, . . . ,vn} . For vi,v j ∈ V (G) , the distance be-
tween vi and v j , denoted by dG(vi,v j) , is the length of a shortest path from vi to v j

in G . In particular, dG(vi,vi) = 0 for any vertex vi ∈ V (G) . The vertex transmission
TrG(vi) of a vertex vi is defined as the sum of the distances from vi to all other vertices
in G , that is, TrG(vi) = v j∈V (G) dG(vi,v j) .

The distance matrix of G is denoted by D(G) and is defined as D(G) =(
dG(vi,v j)

)
vi ,v j∈V (G) . Obviously, the transmission TrG(vi) of a vertex vi is the sum of

all coordinates of the row vector of D(G) indexed by vi . Let Tr(G) = diag
(
TrG(v1),

TrG(v2), . . . ,TrG(vn)
)

be the diagonal matrix of vertex transmissions of G . Aouch-
iche and Hansen [1] introduced the distance Laplacian matrix of a connected graph
as DL (G) = Tr(G)−D(G) . Note that DL (G) is a positive semidefinite matrix.
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We denote by (G,x) the characteristic polynomial of DL (G) , that is (G,x) =
det

(
xIn −DL (G)

)
. For a square matrix N , the collection of its eigenvalues together

with their multiplicities is called the spectrum of N . Let {L
1 (G),L

2 (G), . . . ,L
n (G)}

denote the spectrum of DL (G) , we call it the distance Laplacian spectrum of the
graph G and we assume that the distance Laplacian eigenvalues are labeled such that
L

1 (G) � L
2 (G) � · · · � L

n (G) = 0. In particular, let L
1 (G) > L

2 (G) > · · · >
L

k (G) be all distinct eigenvalues of DL (G) with multiplicity m1,m2, . . . ,mk . Then
the spectrum of DL (G) are denoted by

(
L

1 (G) L
2 (G) · · · L

k (G)
m1 m2 · · · mk

)
.

Given a real interval I , mDL (G)I denotes the number of distance Laplacian eigenvalues
of G in I .

In recent years, the distribution of Laplacian eigenvalues of a graph G in relation to
various graph parameters of G has been studied extensively. Similarly, distance Lapla-
cian spectrum of graphs have attracted a lot of attention, see [1, 2, 3, 4, 5, 6, 7, 8, 11].
Aouchiche and Hansen [1] gave the distance Laplacian characteristic polynomials of
some special graphs, and proved that the distance Laplacian eigenvalues do not de-
crease on deletion of edges. In [2], the authors investigated some particular distance
Laplacian eigenvalues. Among other results, they showed that the complete graph is
the unique graph with only two distinct distance Laplacian eigenvalues. Pirzada and
Saleem Khan [9] gave the distribution of the distance Laplacian eigenvalues of G in
terms of the chromatic number (G) . In fact, we find that there are few results on the
distribution of distance Laplacian eigenvalues.

Therefore, the main purpose of this article is to understand how the eigenvalues
of the matrix DL (G) are distributed and how this distribution is related to classical
parameters of graphs. The paper is organized as follows. In Section 2, we give a
list of some previously known results. In Section 3, we adapt two methods to study
the relationship between vertex connectivity and the distribution of distance Laplacian
eigenvalues. In Section 4, we obtain the distribution of distance Laplacian eigenvalues
for a connected graph G in terms of the size of DIM.

2. Preliminaries

Here we mention some preliminary results that will be needed for proving our
main results in the next two sections.

LEMMA 2.1. [2] For a connected graph G, we have L
n (G) = 0 with multiplic-

ity 1.

LEMMA 2.2. [1] Let G be a connected graph on n vertices. Then L
n−1(G) � n

with equality holding if and only if G is disconnected. Furthermore, the multiplicity of
n as an eigenvalue of DL (G) is one less than the number of components of G.
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The following lemma is about how the distance Laplacian eigenvalues change un-
der the deletion of an edge.

LEMMA 2.3. [1] Let G be a connected graph on n vertices and m � n edges.
Consider the connected graph G∗ obtained from G by the deletion of an edge. Let
L

1 (G) � L
2 (G) � · · · � L

n (G) and L
1 (G∗) � L

2 (G∗) � · · · � L
n (G∗) be the

distance Laplacian eigenvalues of G and G∗ , respectively. Then L
i (G∗) � L

i (G)
for all i = 1, . . . ,n.

Next, we give the distance Laplacian characteristic polynomial of the join of two
graphs.

LEMMA 2.4. [10] Let G1 and G2 be graphs of order n1 and n2 , respectively. Let
1(G1) � 2(G1) � · · · � n1(G1) = 0 and 1(G2) � 2(G2) � · · · � n2(G2) = 0 be
the Laplacian eigenvalues of G1 and G2 . Then the distance Laplacian characteristic
polynomial (x) of G1 ∨G2 is given by

(G1∨G2,x) = x(x−n1−n2)
i=1

(x−2n1−n2 +i(G1))
j=1

(x−n1−2n2 + j(G2)),

where i(G1) (1 � i � n1 − 1) and  j(G2) ( j = 1,2, . . . ,n2 − 1) are the non-zero
Laplacian eigenvalues of G1 and G2 respectively.

For some graphs, a local regularity is enough to know some eigenvalue of a graph.
The following lemma gives the distance Laplacian eigenvalues of a graph if it contains
a clique whose all vertices share the same neighborhood.

LEMMA 2.5. [2] Let G be a graph on n vertices. If K = {v1,v2, . . . ,vk} is a
clique of G such that N(vi)−K = N(v j)−K for all i, j ∈ {1,2, . . . ,k} . Then  =
TrG(vi) = TrG(v j) for all i, j ∈ {1,2, . . . ,k} and  + 1 is an eigenvalue of DL (G)
with multiplicity at least k−1 .

3. Distribution of distance Laplacian eigenvalues and vertex-connectivity

In this section, we devote to investigate the distribution of distance Laplacian
eigenvalues of a graph G in the interval [n,n+1) with respect to the vertex-connectivity
(G) . First, we apply vector method to give their relationships.

THEOREM 3.1. Let G be a connected graph with n vertices having vertex-con-
nectivity (G) . Then

mDL (G)[n,n+1) � (G). (1)

Proof I. Assume that S ⊂ V (G) is a vertex cut of G with |S| = (G) such that
the subgraph induced by V (G)\S is disconnected. Then let G−S =U1∪U2∪·· ·∪Ut ,
where Ui is the connected components of G−S , for i = 1,2, . . . ,t .
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Let G′ be a graph obtained from G by adding edges between all nonadjacent
vertices within each Ui , and then adding edges between vertices of Ui and vertices of
S such that the vertices of Ui and S are all adjacent. Thus we have

G′ −S = U ′
1∪U ′

2∪·· ·∪U ′
t ,

where each U ′
i is complete subgraph for i = 1,2, . . . ,t .

By using Lemmas 2.1 and 2.2, we know that L
n (G) = 0 and L

n−1(G) � n for any
connected graph. In addition, from Lemma 2.3, we get that deletion of an edge from a
graph does not decrease the corresponding distance Laplacian eigenvalues. Therefore,
we can obtain

mDL (G)[n,n+1) � mDL (G′)[n,n+1).

To complete the proof of (1), we only need to show that the graph G′ satisfies the
following inequality

mDL (G′)[n,n+1) � |S|.
Suppose that the number of vertices in each U ′

i is ni , where i = 1,2, . . . ,t . Then

t


i=1

ni + |S|= |V (G′)| = n.

Now, we label the vertices in U ′
i as V (U ′

i ) = {ui,1,ui,2, . . . ,ui,ni} . Based on the
structure of G′ , we can acquire that the distance Laplacian matrix of G′ is⎛

⎜⎜⎜⎜⎜⎝

(2n−n1 −|S|)In1×n1 − Jn1×n1 −2Jn1×n2 · · · −2Jn1×nt −Jn1×|S|
−2Jn2×n1 (2n−n2 −|S|)In2×n2 − Jn2×n2 · · · −2Jn2×nt −Jn2×|S|

.

.

.
.
.
.

. . .
.
.
.

.

.

.

−2Jnt×n1 −2Jnt×n2 · · · (2n−nt −|S|)Int×nt − Jnt×nt −Jnt×|S|

−J|S|×n1
−J|S|×n2

· · · −J|S|×nt R|S|×|S|

⎞
⎟⎟⎟⎟⎟⎠

,

where Ii×i is the identity matrix of i× i , Jp×q is the matrix with each entry 1 and
R|S|×|S| is a matrix with order |S|× |S| .

Let i, j (i = 1,2, . . . ,t; j = 2,3, . . . ,ni) be a column vector in Rn with respect to
U ′

i such that

(i, j)v =

⎧⎪⎨
⎪⎩

1, if v = ui,1;

−1, if v = ui, j;

0, otherwise,

where (i, j)v denotes the entry of the vector i, j indexed by v . Then we can easily
find that all i, j (i = 1,2, . . . ,t; j = 2,3, . . . ,ni) are linearly independent eigenvectors
of DL (G′) corresponding to eigenvalue 2n−ni−|S| .

Moreover, for i = 2,3, . . . ,t , let i be the vector in Rn with respect to a pair of
(U ′

1,U
′
i ) such that

(i)v =

⎧⎪⎨
⎪⎩

1, if v ∈V (U ′
1);

− n1
ni

, if v ∈V (U ′
i );

0, otherwise.
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By a simple calculation, we get 2,3, . . . ,t are linearly independent eigenvectors of
DL (G′) corresponding to eigenvalue 2n−|S| .

Next, suppose that W is the set of all the eigenvectors we just mentioned,

W = {i, j : 1 � i � t,2 � j � ni}
⋃
{i : 2 � i � t}.

Apparently, all of the eigenvectors in W are also linearly independent and

|W | = (
t


i=1

ni− t)+ (t−1) = n−|S|−1. (2)

It is observed that 0 < |S| < ni + |S|� n−1, then we have

n+1 � 2n−ni−|S|< 2n−|S|< 2n. (3)

Combining (2) and (3), we attain

mDL (G′)[n+1,2n) � n−|S|−1.

On the other hand, according to Lemmas 2.1 and 2.2, we can also obtain

mDL (G′)[0,n+1) � |S|+1,

which implies that the number of distance Laplacian eigenvalues of G′ over the interval
[n,n+1) is at most |S| . This completes the proof. �

In what follows, we will use another method to prove the Theorem 3.1. Noting
that the Laplacian spectrum of the complete graph Kn is {nn−1,0} .

Proof II. The assumption here is the same as above, S ⊂ V (G) is still a set of
vertices that |S| = (G) , the subgraph induced by V (G) \ S is disconnected, G− S =
U1∪U2∪·· · ∪Ut , where Ui is a component of G−S , for i = 1,2, . . . ,t and |Ui| = ni .
However, the structure of G′ is different from the above, and G′ is obtained by the
following way.

For each Ui (i = 1,2, . . . ,t) , we add edges between non-adjacent vertices of Ui

and join all vertices of Ui to vertices of S and add edges between all non-adjacent
vertices of S . The resulting graph is G′ , that is to say, G′ = K(G) ∨ (Kn1 ∪Kn2 ∪·· · ∪
Knt ) . By Lemma 2.4, we observe that the distance Laplacian characteristic polynomial
of G′ is

(G′,x) = x(x−n)(G)(x−2n+(G))t−1(x−2n+(G)+n1)n1−1

· · · (x−2n+(G)+nt)nt−1.

Therefore, the distance Laplacian spectrum of G′ is(
2n−(G) 2n−(G)−n1 2n−(G)−n2 · · · · · · 2n−(G)−nt n 0

t−1 n1−1 n2−1 · · · · · · nt −1 (G) 1

)
.

Since ni + (G) � n− 1, we have 2n− (G)− ni � n + 1 and mDL (G′)[n,n +
1) = (G) . Consequently, according to Lemma 2.3, mDL (G)[n,n+ 1) � (G) . This
completes the proof. �
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REMARK 1. Among the above two proof methods, we can find that the Proof II
is relatively simple, but it applies the technique of characteristic polynomial method
of graph operations. Hence, this method can only be used to prove when the extremal
graph is special and has a fixed structure. However, Proof I is more universal. Since
the vector method mentioned in it is widely used in the proof of other problems, this
approach is enlightening and consistent. Meanwhile, it is also a very effective tool in
the theory of graph spectra.

In fact, by the proof II of Theorem 3.1, it is not difficult to verify that if G is an
spanning subgraph of K(G)∨(Kn1 ∪Kn2 ∪·· ·∪Knt ) , then mDL (G)[n,n+1) � (G) is
always true. Now, we give some examples to show that for many graphs G , the bounds
of mDL (G)[n,n+1) are sharp.

EXAMPLE 1. The distance Laplacian spectrum of the star K1,n−1 is

(
2n−1 n 0
n−2 1 1

)
.

It is not difficult to find that mDL (K1,n−1)[n,n+1) = 1 = (K1,n−1) .

EXAMPLE 2. The complete split graph CS(n,s) , is a graph on n vertices consist-
ing of a clique on n− s vertices and an independent set on the remaining s vertices in
which each vertex of the clique is adjacent to each vertex of the independent set. That
is to say, CS(n,s) = Kn−s ∨Ks . Then by Lemma 2.4, we have

(CS(n,s),x) = x(x−n)n−s(x−n− s)s−1,

and its distance Laplacian spectrum is

(
n+ s n 0
s−1 n− s 1

)
.

This shows that mDL (CS(n,s))[n,n+1) = n− s = (CS(n,s)) .

EXAMPLE 3. Let PAn,p denote the pineapple graph, obtained from a clique Kn−p

by attaching p > 0 pending edges to a vertex from the clique. Then we have the distance
Laplacian spectrum of PAn,p as

(
2n−1 n+ p n 0

p n− p−2 1 1

)
.

Hence, there is one distance Laplacian eigenvalue which fall in the interval [n,n+ 1)
and equal to (PAn,p) .
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4. Distribution of distance Laplacian eigenvalues with a DIM

In this section, we mainly focus our attention on the distribution of distance Lapla-
cian eigenvalues of connected graphs with DIM. So the main results of this section are
as follows.

THEOREM 4.1. Let G be a connected graph of order n with a DIM M(G) ⊂
E(G) such that |M(G)| = s. Then

{
mDL (G)[n,n+2s) � s+1, if n � 4s,
mDL (G)[n,n+2s) � n− s, if 2s � n < 4s.

(4)

Proof. Assume that G has a DIM M(G) ⊂ E(G) such that |M(G)| = s . Thus
V (G) can be partitioned into two disjoint vertex subsets V (M) and V (S) , where V (S)
is an independent set. It is known that all DIMs have the same size which is the size of
a maximum IM, so the size of the DIM does not change whether we add edges linking
the vertices of V (M) with the vertices of V (S) . By adding s(2(n−2s)+1)−E(G)
edges between V (M) and V (S) , we obtain G′ , and G′ contains a CDIM.

Therefore, G′ = sK2 ∨ (n− 2s)K1 . According to Lemma 2.4, we acquire the dis-
tance Laplacian spectrum of G′ is

(
2(n− s) n+2s n+2s−2 n 0

n−2s−1 s−1 s 1 1

)
.

Using Lemma 2.3, we have mDL (G)[n,n+2s) � mDL (G′)[n,n+2s) . In order to com-
plete the proof of (4), we just need to prove that

{
mDL (G′)[n,n+2s) � s+1, if n � 4s,
mDL (G′)[n,n+2s) � n− s, if 2s � n < 4s.

According to the distance Laplace spectrum of G′ , we consider the following three
cases.

Case 1. If 2(n− s) � n+2s , that is n � 4s , the distance Laplacian spectrum of G′
is given as follows (

2(n− s) n+2s n+2s−2 n 0
n−2s−1 s−1 s 1 1

)
.

We can easily obtain that mDL (G′)[n,n+2s) = s+1.

Case 2. If n + 2s− 2 � 2(n− s) < n + 2s , that is 4s− 2 � n < 4s , the distance
Laplace spectrum of G′ can also be written as

(
n+2s 2(n− s) n+2s−2 n 0
s−1 n−2s−1 s 1 1

)
.

It is easy to verify that mDL (G′)[n,n+2s) = n− s .



DISTANCE LAPLACIAN EIGENVALUE DISTRIBUTION OF A GRAPH 975

Case 3. If n � 2(n− s) < n+2s−2, that is 2s � n < 4s−2, the distance Laplace
spectrum of G′ is given by

(
n+2s n+2s−2 2(n− s) n 0
s−1 s n−2s−1 1 1

)
.

In this case, we see that mDL (G′)[n,n+2s) = n− s .
From the above analysis, it can be seen that if 2s � n < 4s , mDL (G′)[n,n+2s) =

n− s always holds, which proves the required inequality. �
Netx, we find the distribution of distance Laplacian eigenvalues in the interval

(n,L
1 (G)] with respect to the specific structure of the graph.

THEOREM 4.2. Let G be a connected graph with n vertices. If nd(G) =| {v ∈
V (G) : dG(v) = n−1} | , where 1 � nd(G) � n−1 , then

mDL (G)(n,L
1 (G)] � n−nd(G)−1. (5)

Proof. Since G has nd(G) vertices with degree n− 1, G has at least nd(G)+ 1
components. By Lemma 2.2, we know that n is a distance Laplacian eigenvalue of G
with multiplicity at least nd(G) . It is known that 0 is an eigenvalue with multiplicity
one. Thus,

mDL (G)(n,L
1 (G)] � n−nd(G)−1,

which completes the proof of Theorem 4.2. �

THEOREM 4.3. Let G be a connected graph of order n having clique number
(G) � n−1 . If only one vertex of the corresponding maximum clique is adjacent to
the vertices outside of the clique, then

mDL (G)[n,2n−(G)) � n−(G)+1.

Proof. Assume that S(G) = {v1,v2, . . . ,v(G)}⊆V (G) be the set of vertices of the
maximum clique such that v(G) is the only vertex having neighbours outside of S(G) .
It’s easy to see that the set of vertices C(G) = {v1,v2, . . . ,v(G)−1} also form a clique
such that every vertex of C(G) is adjacent to v(G) only outside of C(G) . Clearly,
all the vertices belonging to C(G) have the same transmission. For any vi ∈ C(G) ,
i = 1,2, . . . ,(G)−1, we have

 = TrG(vi) � (G)−1+2(n−(G))= 2n−(G)−1.

By Lemma 2.5, we observe that  + 1 is a distance Laplacian eigenvalue of G
of multiplicity at least (G)− 2. So there are at least (G)− 2 distance Laplacian
eigenvalues of G which are greater than or equal to 2n−(G) . In other words, we
have

mDL (G)[2n−(G),L
1 (G)] � (G)−2.
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Therefore, by the above observation and Lemma 2.1, we obtain that

mDL (G)[n,2n−(G)) � n−(G)+1.

Thus the result is established. �
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