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SHARP GENERALIZED UNCERTAINTY

PRINCIPLES VIA FACTORIZATIONS

STEVEN KENDELL, NGUYEN LAM, DYLAN SMITH,
AUSTIN WHITE AND PARKER WISEMAN

(Communicated by G. Teschl)

Abstract. Using the factorizations of suitable operators, we establish several identities that give
simple and direct understandings as well as provide the remainders and optimizers of the sharp
generalized uncertainty principles.

1. Introduction

In quantum mechanics, the well-known Heisenberg-Pauli-Weyl Uncertainty Prin-
ciple (henceforth, HUP for short) can be mathematically stated as the following in-
equality

∫
RN

|u|2dx
∫

RN
|x|2|u|2dx � N2

4

(∫
RN

|u|2dx

)2

, u ∈C
0 (RN). (1.1)

It can also be extended to functions u in appropriate Sobolev spaces via standard den-
sity arguments. See, e.g., [26, 30].

The physical meaning of (1.1) is that if u is a wave function, i.e. ‖u‖2 = 1, then
since p = −i denotes the momentum operator, we have that the position ‖xu‖2 and
the momentum ‖u‖2 = ‖pu‖2 cannot be small enough simultaneously because of the
estimate ‖pu‖2 ‖xu‖2 � N

2 . Therefore, the HUP asserts that the more precisely the
position of a particle is given, the less precisely can one say what its momentum is, and
vice versa. Actually, the HUP is one of the fundamental differences between quantum
and classical mechanics.

It is well-known that the constant N2

4 is optimal (see, e.g., [17]). Moreover, equal-

ity in (1.1) can be attained by the Gaussian profiles of the form u(x) = e− |x|2 ,  > 0.
We note that these optimizers are not in the space C

0 (RN) , but in a larger space which
is the Schwartz space S (RN) .
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It is also worth mentioning the Hydrogen Uncertainty Principle (HyUP) that can
be stated as follows: for any u ∈C

0 (RN) , there holds

∫
RN

|u|2dx
∫

RN
|u|2dx � (N−1)2

4

(∫
RN

|u|2
|x| dx

)2

. (1.2)

HyUP is an uncertainty principle in the sense that localization in u at the origin (i.e., in-
creasing the probability that the electron’s position is close to the nucleus) together with
the Coulomb potential |x|−1 imply its momentum ‖u‖2 must be large. Therefore, one
can immediately deduce that the quantum mechanical energy of the hydrogenic atom is
finite (e.g., see [19, 26]).

The constant (N−1)2

4 in (1.2) is also sharp and the optimizers are of the form u(x) =
e− |x| ,  > 0 (see, e.g. [18]). Notice that in this case the extremal functions are not
in S (RN) but in a Sobolev space, namely, for our purpose, W 1,2(RN) .

Related to the HUP and HyUP is the classical Hardy inequality (HI): for any u ∈
C

0 (RN) , there holds

∫
RN

|u|2dx �
(

N−2
2

)2 ∫
RN

|u|2
|x|2 dx. (1.3)

It is worthy to mention that the HI is one of the most used inequalities in analysis, and is
studied intensively and extensively in the literature. We refer the interested reader to the
celebrated paper [1] for some pioneering improvements of (1.3) and their applications.

Uncertainty principles such as HUP, HyUP and HI have several mathematical
and physical applications. For instance, in mathematics, uncertainty principles may
be used to study variable-coefficient differential operators (e.g., [15]) such as certain
Schrödinger operators, and so on. In physics, uncertainty principles may be used for
establishing stability of matter. In particular, in [25], stronger uncertainty principles
have been established and used for studying stability for more general systems (e.g., a
many-electron atom or many fermion systems).

The HUP, HyUP and HI belong to a more general family of inequalities known as
the Caffarelli-Kohn-Nirenberg inequalities:(∫

RN

|u|2
|x|2b dx

) 1
2
(∫

RN

|u|2
|x|2a dx

) 1
2

� C(N,a,b)
∫

RN

|u|2
|x|a+b+1 dx, u ∈C

0 (RN \ {0}),
(1.4)

where a,b ∈ R are given constants. The sharp constant C(N,a,b) in (1.4), which can
naturally be defined by

C(N,a,b) := inf
u∈C

0 (RN\{0})

(∫
RN

|u|2
|x|2b dx

) 1
2
(∫

RN
|u|2
|x|2a dx

) 1
2

∫
RN

|u|2
|x|a+b+1 dx

,

has first been investigated in [4, 9] using some technical tools such as the Emden-Fowler
transformation, the spherical harmonics decomposition and the Kelvin-type transform.
Recently, the authors in [7] provided a very simple way to compute the optimal constant
C(N,a,b) . More precisely, the main results in [4, 7, 9] can be read as follows:
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THEOREM 1.1. We have

C(N,a,b) = max

{ |N− (a+b+1)|
2

,
|N− (3b−a+3)|

2

}
.

More precisely, according to the location of the points (a,b) in the plane, we have that

1. If (a,b)∈A , then the best constant is C(N,a,b)= |N−(a+b+1)|
2 and it is achieved

by the functions u(x) = Dexp( t|x|b+1−a

b+1−a ) , with t < 0 in A1 and t > 0 in A2 , and
D a nonzero constant.

2. If (a,b)∈B , then the best constant is C(N,a,b)= |N−(3b−a+3)|
2 and it is achieved

by the functions u(x) = D|x|2(b+1)−N exp( t|x|b+1−a

b+1−a ) , with t > 0 in B1 and t < 0
in B2 .

3. In addition, the only values of the parameters where the best constant is not
achieved are those on the line a = b+1 , where C(N,b+1,b) = |N−2(b+1)|

2 .

Here ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A1 := {(a,b) | b+1−a > 0, b � (N−2)/2},
A2 := {(a,b) | b+1−a < 0, b � (N−2)/2},
A := A1∪A2,

B1 := {(a,b) | b+1−a < 0, b � (N−2)/2},
B2 := {(a,b) | b+1−a > 0, b � (N−2)/2},
B := B1 ∪B2.

We also refer the interested reader to [2, 3, 5, 6, 11, 12, 14, 16, 27, 28, 29], to name
just a few, for related results.

Our main motivation of this article is the approach in [20] in which Gesztesy and
Littlejohn showed how factorizations of singular, even-order partial differential oper-
ators give simple proofs for several Hardy-Rellich type inequalities. We also mention
here that factorizing differential equations was used in the setting of the classical Hardy
inequality and its improvements. See, for instance, [13, 21, 22, 23, 24]. Moreover, as
noted in [20], the method of factorization is not only elementary, but also quite flexible
when it comes to studying remainder terms and higher-order operators.

The principal purpose of this note is to employ the factorization method to inves-
tigate the optimal constant C(N,a,b) and the optimizers of the generalized uncertainty
principles (1.4). Our goal is to get some estimates on the remainder of (1.4). Our strat-
egy is as follows: First, by working with suitable differential linear operators, we obtain
the following results:
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THEOREM 1.2. For all u ∈C
0 (RN \ {0}) , there holds

1. If (a,b) ∈ A1 , then

∫
RN

|u|2
|x|2b

dx+
∫

RN

|u|2
|x|2a dx− (N−1−a−b)

∫
RN

|u|2
|x|a+b+1 dx

=
∫

RN

1
|x|2b

∣∣∣∣
(

u.e
|x|b+1−a

b+1−a

)∣∣∣∣
2

e−
2|x|b+1−a

b+1−a dx.

2. If (a,b) ∈ A2 , then

∫
RN

|u|2
|x|2b dx+

∫
RN

|u|2
|x|2a dx− (a+b+1−N)

∫
RN

|u|2
|x|a+b+1 dx

=
∫

RN

1
|x|2b

∣∣∣∣
(

u.e−
|x|b+1−a

b+1−a

)∣∣∣∣
2

e
2|x|b+1−a

b+1−a dx.

3. If (a,b) ∈ B1 , then

∫
RN

|u|2
|x|2b dx+

∫
RN

|u|2
|x|2a dx− (N−3b+a−3)

∫
RN

|u|2
|x|a+b+1 dx

=
∫

RN

1
|x|2N−2b−4

∣∣∣∣
(

u|x|N−2b−2e−
|x|b+1−a

b+1−a

)∣∣∣∣
2

e
2|x|b+1−a

b+1−a dx.

4. If (a,b) ∈ B2 , then

∫
RN

|u|2
|x|2b dx+

∫
RN

|u|2
|x|2a dx− (3b−a+3−N)

∫
RN

|u|2
|x|a+b+1 dx

=
∫

RN

1
|x|2N−2b−4

∣∣∣∣
(

u|x|N−2b−2e
|x|b+1−a

b+1−a

)∣∣∣∣
2

e−
2|x|b+1−a

b+1−a dx.

We note that the four identities in Theorem 1.2 have also been established in [8, 10]
by a different method. Also, each of them holds for any (a,b) ∈ A ∪B . Hence, for all
u ∈C

0 (RN \ {0})
∫

RN

|u|2
|x|2b

dx+
∫

RN

|u|2
|x|2a dx−2C(N,a,b)

∫
RN

|u|2
|x|a+b+1 dx � 0

with C(N,a,b) = max
{ |N−(a+b+1)|

2 ,
|N−(3b−a+3)|

2

}
. Moreover, on A1,A2,B1,B2 , the

optimal constant 2C(N,a,b is (N−1−a−b), (a+b+1−N), (N−3b+a−3), and
(N−3b+a−3) respectively.

Next, by using the standard scaling-invariant method, we deduce from Theorem
1.2 that
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THEOREM 1.3. (Theorem 1.1) Let (a,b) ∈ A ∪B . Then for all u ∈ C
0 (RN \

{0}) , there holds

(∫
RN

|u|2
|x|2b dx

) 1
2
(∫

RN

|u|2
|x|2a dx

) 1
2

� C(N,a,b)
∫

RN

|u|2
|x|a+b+1 dx. (1.5)

Here

C(N,a,b) = max

{ |N− (a+b+1)|
2

,
|N− (3b−a+3)|

2

}
.

Moreover,

1. If (a,b) ∈ A , then the best constant is C(N,a,b) = |N−(a+b+1)|
2 and all the non-

trivial optimizers are u(x) = Dexp( t|x|b+1−a

b+1−a ) , with t < 0 in A1 and t > 0 in A2 ,
and D a nonzero constant.

2. If (a,b) ∈ B , then the best constant is C(N,a,b) = |N−(3b−a+3)|
2 and all the

nontrivial optimizers are u(x) = D|x|2(b+1)−N exp( t|x|b+1−a

b+1−a ) , with t > 0 in B1

and t < 0 in B2 .

2. Proofs of main results

Proof of Theorem 1.2. Assume that our functions are in C
0 (RN \{0})\{0} through-

out this proof. Let us consider the differential operator T= |x|−b+(|x|−a−1+|x|−b−2)x .
Then

〈Tu,v〉 =
∫

RN
|x|−bu ·v+(|x|−a−1 + |x|−b−2)ux ·vdx

=
∫

RN
−u · (|x|−bv)+

(
|x|−a−1 + |x|−b−2

)
ux ·vdx

=
∫

RN
−u
[
(|x|−b) ·v+ |x|−b ·v

]
+
(
|x|−a−1 + |x|−b−2

)
ux ·vdx

=
∫

RN
u
[
b|x|−b−2x ·v−|x|−b ·v+(|x|−a−1 + |x|−b−2)x ·v

]
dx

=
∫

RN
u
[
((b+ )|x|−b−2 + |x|−a−1)x ·v−|x|−b ·v

]
dx.

Hence, its formal adjoint operator is T ∗ = ((b + )|x|−b−2 + |x|−a−1)x · −|x|−b· .
Therefore,

T ∗Tu =
[
((b+ )|x|−b−2 + |x|−a−1)x−|x|−b

]
·
[
|x|−bu+(|x|−a−1 + |x|−b−2)ux

]
= ((b+ )|x|−b−2 + |x|−a−1)x · |x|−bu

+((b+ )|x|−b−2 + |x|−a−1)x · (|x|−a−1 + |x|−b−2)ux

−|x|−b · (|x|−bu)

−|x|−b · (|x|−a−1 + |x|−b−2)ux
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= x ·u((b+ )|x|−2b−2 + |x|−a−b−1)

+u[(b+2)|x|−a−b−1+ (b+ )|x|−2b−2)+ |x|−2a]

+b|x|−2b−2x ·u−|x|−2bu

−u[(N−a−1)|x|−a−b−1+ (N−b−2)|x|−2b−2]

− [(|x|−a−b−1 + |x|−2b−2)x ·u].

As a consequence, we have

〈u,T ∗Tu〉 =
∫

RN
x ·uu[(b+ )|x|−2b−2 + |x|−a−b−1]

+ |u|2[(b+2)|x|−a−b−1 + (b+ )|x|−2b−2)+ |x|−2a]

+b|x|−2b−2x ·uu−|x|−2buu

−|u|2[(N−a−1)|x|−a−b−1+ (N−b−2)|x|−2b−2]

−u[(|x|−a−b−1 + |x|−2b−2)x ·u]dx

=
∫

RN
|u|2[(b− (N−a−1)+2)|x|−a−b−1

+(2 +b− (N−b−2))|x|−2b−2 + |x|−2a]

+ |u|2|x|−2bdx

=
∫

RN
|u|2|x|−2b + |u|2|x|−2a

− ((N−a−b−1)−2)|u|2|x|−a−b−1

+ |u|2[2− (N−2b−2)]|x|−2b−2dx.

Now, if we choose  = 0, then by noting that 〈u,T ∗Tu〉 = ‖Tu‖2
2 , we get

∫
RN

|u|2|x|−2b + |u|2|x|−2adx− (N−a−b−1)
∫

RN
|u|2|x|−a−b−1dx

=
∫

RN

∣∣∣|x|−bu+ |x|−a−1xu
∣∣∣2 dx

=
∫

RN

1
|x|2b

∣∣∣∣
(

u.e
|x|b+1−a

b+1−a

)∣∣∣∣
2

e−
2|x|b+1−a

b+1−a dx.

Similarly, choosing  = (N−2b−2) yields

∫
RN

|u|2|x|−2b + |u|2|x|−2adx+(N +a−3b−3)
∫
RN

|u|2|x|−a−b−1dx

=
∫

RN

∣∣∣|x|−bu+(|x|−a−1 +(N−2b−2)|x|−b−2)xu
∣∣∣2 dx

=
∫

RN

1
|x|2N−2b−4

∣∣∣∣
(

u|x|N−2b−2e
|x|b+1−a

b+1−a

)∣∣∣∣
2

e−
2|x|b+1−a

b+1−a dx.
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Now, let us define Su = |x|−bu− [|x|−a−1 + |x|−b−2]ux . Then

〈Su,v〉 =
∫

RN

[
|x|−bu− (|x|−a−1 + |x|−b−2)ux

]
·vdx

=
∫

RN
u · |x|−bv− (|x|−a−1 + |x|−b−2)ux ·vdx

=
∫

RN
−u ·

(
|x|−bv

)
−
[
|x|−a−1 + |x|−b−2

]
ux ·vdx

=
∫

RN
−u[

(
|x|−b

)
·v+ |x|−b ·v]− [|x|−a−1 + |x|−b−2]ux ·vdx

=
∫

RN
u
[
((b− )|x|−b−2−|x|−a−1)x−|x|−b

]
·vdx.

Hence, its formal adjoint operator is S∗ = [(b−)|x|−b−2−|x|−a−1]x ·−|x|−b· . There-
fore,

S∗Su =
[
[(b− )|x|−b−2−|x|−a−1]x−|x|−b

]
·
[
|x|−bu− [|x|−a−1 + |x|−b−2]ux

]
= ((b− )|x|−b−2−|x|−a−1)x · |x|−bu

+((b− )|x|−b−2−|x|−a−1)x · (−xu(|x|−a−1 + |x|−b−2))

+ (−|x|−b) · (|x|−bu)

+ (−|x|−b) · (−xu(|x|−a−1 + |x|−b−2))

= x ·u((b− )|x|−2b−2−|x|−a−b−1)

+u((2−b)|x|−a−b−1− (b− )|x|−2b−2 + |x|−2a)

+b|x|−2a−2x ·u−|x|−2bu

+u((N−a−1)|x|−a−b−1

+ (N−b−2)|x|−2b−2)+u · x(|x|−a−b−1 + |x|−2b−2).

This implies that

〈u,S∗Su〉 =
∫

RN
u
[
(x ·u((b− )|x|−2b−2−|x|−a−b−1)

+u((2−b)|x|−a−b−1− (b− )|x|−2b−2 + |x|−2a)

+b|x|−2a−2x ·u−|x|−2bu

+u((N −a−1)|x|−a−b−1+ (N−b−2)|x|−2b−2)

+u · x(|x|−a−b−1 + |x|−2b−2)
]
dx

=
∫

RN
|u|2|x|−2b + |u|2|x|−2a +(N−a−b−1+2)|u|2|x|−a−b−1

+ |u|2|x|−2b−2(2 + (N−2b−2))dx.
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Now, if we choose  = 0, then by noting that 〈u,S∗Su〉 = ‖Su‖2
2 , we get∫

RN
|u|2|x|−2b + |u|2|x|−2adx− (1+a+b−N)

∫
RN

|u|2|x|−a−b−1dx

=
∫

RN

∣∣∣|x|−bu−|x|−a−1xu
∣∣∣2 dx

=
∫

RN

1
|x|2b

∣∣∣∣
(

u.e−
|x|b+1−a

b+1−a

)∣∣∣∣
2

e
2|x|b+1−a

b+1−a dx.

Similarly, choosing  = −(N−2b−2) yields∫
RN

|u|2|x|−2b + |u|2|x|−2adx− (N +a−3b−3)
∫
RN

|u|2|x|−a−b−1dx

=
∫

RN

∣∣∣|x|−bu− (|x|−a−1− (N−2b−2)|x|−b−2)xu
∣∣∣2 dx

=
∫

RN

1
|x|2N−2b−4

∣∣∣∣
(

u|x|N−2b−2e−
|x|b+1−a

b+1−a

)∣∣∣∣
2

e
2|x|b+1−a

b+1−a dx. �

Proof of Theorem 1.3 (Alternative proof of Theorem 1.1). Let u ∈C
0 (RN \{0})\

{0} and  =

( ∫
RN

|u|2
|x|2a dx

∫
RN

|u|2
|x|2b dx

) 1
2(b+1−a)

. Assume that (a,b)∈A1 . Recall that since (a,b)∈

A1 , for all v ∈C
0 (RN \ {0})\ {0} , we have

∫
RN

|v|2
|x|2b

dx+
∫

RN

|v|2
|x|2a dx− (N−1−a−b)

∫
RN

|v|2
|x|a+b+1 dx

=
∫

RN

1
|x|2b

∣∣∣∣
(

v.e
|x|b+1−a

b+1−a

)∣∣∣∣
2

e−
2|x|b+1−a

b+1−a dx. (2.1)

Now, if we choose v(x) = u(x) , then v(x) =  (u)(x) . Therefore, by making
change of variables, we obtain that∫

RN

|v|2
|x|2b dx =  (2+2b−N)

∫
RN

|(u)(x)|2
|x|2b d(x) =  (2+2b−N)

∫
RN

|u|2
|x|2b dx,

∫
RN

|v|2
|x|2a dx =  (2a−N)

∫
RN

|u|2
|x|2a dx,

∫
RN

|v|2
|x|a+b+1 dx =  (a+b+1−N)

∫
RN

|u|2
|x|a+b+1 dx,

and ∫
RN

1
|x|2b

∣∣∣∣
(

v.e
|x|b+1−a

b+1−a

)∣∣∣∣
2

e−
2|x|b+1−a

b+1−a dx

=  2+2b−N
∫

RN

1
|x|2b

∣∣∣∣∣
(

ue
|x|b+1−a

(b+1−a)b−a+1

)∣∣∣∣∣
2

e
− 2|x|b+1−a

(b+1−a)b−a+1 dx.
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Therefore, (2.1) becomes

 b−a+1
∫

RN

|u|2
|x|2b dx+ a−b−1

∫
RN

|u|2
|x|2a dx− (N−1−a−b)

∫
RN

|u|2
|x|a+b+1 dx

=  b−a+1
∫

RN

1
|x|2b

∣∣∣∣∣
(

ue
|x|b+1−a

(b+1−a)b−a+1

)∣∣∣∣∣
2

e
− 2|x|b+1−a

(b+1−a)b−a+1 dx. (2.2)

By choosing  =

( ∫
RN

|u|2
|x|2a dx

∫
RN

|u|2
|x|2b dx

) 1
2(b+1−a)

, we obtain

(∫
RN

|u|2
|x|2b dx

) 1
2
(∫

RN

|u|2
|x|2a dx

) 1
2

−
∣∣∣∣N−a−b−1

2

∣∣∣∣
∫

RN

|u|2
|x|a+b+1 dx

=
1
2
 b−a+1

∫
RN

1
|x|2b

∣∣∣∣∣
(

ue
|x|b+1−a

(b+1−a)b−a+1

)∣∣∣∣∣
2

e
− 2|x|b+1−a

(b+1−a)b−a+1 dx.

Similarly, if (a,b) ∈ A2 , then

(∫
RN

|u|2
|x|2b dx

) 1
2
(∫

RN

|u|2
|x|2a dx

) 1
2

−
∣∣∣∣a+b+1−N

2

∣∣∣∣
(∫

RN

|u|2
|x|a+b+1 dx

)

=
1
2
 b−a+1

∫
RN

1
|x|2b

∣∣∣∣∣
(

ue
− |x|b+1−a

(b+1−a)b−a+1

)∣∣∣∣∣
2

e
2|x|b+1−a

(b+1−a)b−a+1 dx.

If (a,b) ∈ B1 , then

(∫
RN

|u|2
|x|2b

dx

) 1
2
(∫

RN

|u|2
|x|2a dx

) 1
2

−
∣∣∣∣N−3b+a−3

2

∣∣∣∣
(∫

RN

|u|2
|x|a+b+1 dx

)

=
1
2
 b−a+1

∫
RN

1
|x|2N−2b−4

∣∣∣∣∣
(

u|x|N−2b−2e
− |x|b+1−a

(b+1−a)b−a+1

)∣∣∣∣∣
2

e
2|x|b+1−a

(b+1−a)b−a+1 dx.

If (a,b) ∈ B2 , then

(∫
RN

|u|2
|x|2b dx

) 1
2
(∫

RN

|u|2
|x|2a dx

) 1
2

−
∣∣∣∣3b−a+3−N

2

∣∣∣∣
(∫

RN

|u|2
|x|a+b+1 dx

)

=
1
2
 b−a+1

∫
RN

1
|x|2N−2b−4

∣∣∣∣∣
(

u|x|N−2b−2e
|x|b+1−a

(b+1−a)b−a+1

)∣∣∣∣∣
2

e
− 2|x|b+1−a

(b+1−a)b−a+1 dx.

From the above identities, it is easy to deduce that if (a,b) ∈ A , then the best

constant is C(N,a,b) = |N−(a+b+1)|
2 and it is achieved only by the functions u(x) =

Dexp( t|x|b+1−a

b+1−a ) , with t < 0 in A1 and t > 0 in A2 . Also, if (a,b) ∈ B , then the best



10 S. KENDELL, N. LAM, D. SMITH, A. WHITE AND P. WISEMAN

constant is C(N,a,b) = |N−(3b−a+3)|
2 and it is achieved only by the functions u(x) =

D|x|2(b+1)−N exp( t|x|b+1−a

b+1−a ) , with t > 0 in B1 and t < 0 in B2 . It is also worthy to note
that these optimizers are not in C

0 (RN \ {0}) . However, we refer the interested reader
to [7] for the arguments that they belong to the suitable Sobolev spaces, and therefore
are truly the optimizers of the L2 -Caffarelli-Kohn-Nirenberg inequality (1.5). �

Acknowledgement. The authors wish to thank the anonymous referee for his/her
many useful comments and suggestions which have helped its exposition of the paper.
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