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NOTE ON BOUNDS FOR SECOND EXTREME

EIGENVALUES OF HERMITIAN MATRICES

R. SHARMA, M. PAL ∗ AND V. SHARMA

(Communicated by Y. Nakatsukasa)

Abstract. We obtain some bounds for the second smallest and second largest eigenvalues of
a Hermitian matrix. Some additional bounds for the second extreme eigenvalues of positive
definite matrices are also discussed here.

1. Introduction

The bounds for the eigenvalues of a matrix have been studied extensively in liter-
ature. There are many inequalities which provide bounds for the extreme eigenvalues
of a matrix when all its eigenvalues are real as in case of Hermitian matrices. For some
recent results related to the extreme eigenvalues of the Hermitian and nonnegative ma-
trices, see [18, 25]. The second smallest and the second largest eigenvalues are also
important in some contexts, for instance, these eigenvalues have been studied in detail
in spectral graph theory. See [1, 2, 11, 12, 17, 19, 21, 22, 23, 26, 28]. We here consider
more general case and discuss some bounds for the second extreme eigenvalues of a
Hermitian matrix. We use the Cauchy interlacing theorem and the lower bounds of the
spread of a matrix to derive our main results.

Let M(n) denote the algebra of all complex n× n matrices. The eigenvalues of
a Hermitian element A ∈ M(n) are all real and we assume that they are arranged in
ascending order as

1 (A) � 2 (A) � · · · � n−1 (A) � n (A) . (1.1)

So, 2 (A) is the second smallest and n−1 (A) is the second largest eigenvalue of A .
The diagonal entries of a Hermitian matrix A = (ai j) ∈ M(n) are all real and we enu-
merate them as

a1 � a2 � · · · � an. (1.2)

Wolkowicz and Styan [27] have discussed various bounds for the eigenvalues using
traces. In particular, it is shown that if the eigenvalues of A ∈ M(n) are all real,

trA
n

−
√

n−2
2

S � 2 (A) � trA
n

+

√
1

n−1
S (1.3)
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and
trA
n

−
√

1
n−1

S � n−1 (A) � trA
n

+

√
n−2

2
S (1.4)

where trA denotes the trace of A and

S2 =
trA2

n
−
(

trA
n

)2

. (1.5)

Sharma and Pal [24] have shown that for a positive definite matrix A = (ai j) ∈ M(n) ,

1
4

(
1 (2)−

√
1 (2)

)
� 2 (A) � 1

2(n−1)

(
1 (n−1)+

√
1 (n−1)

)
(1.6)

and

1
2(n−1)

(
1 (n−1)−

√
1 (n−1)

)
� n−1 (A) � 1

4

(
1 (2)+

√
1 (2)

)
(1.7)

where

1 (r) = trA− n(n−2r)
trA−1 and 1 (r) = 2

1 (r)−4r2 trA
trA−1 .

Some simple bounds involving fewer matrix entries are also given in [24].
A real symmetric matrix is a special case of a Hermitian matrix. Further, A =

(ai j) ∈ M(n) is nonnegative if ai j � 0 for all i, j . The second smallest eigenvalue of a
nonnegative symmetric matrix is less than or equals its third smallest diagonal entry,

2 (A) � a3. (1.8)

See [3, 9, 10].
If A is Hermitian and its off-diagonal entries are all purely imaginary, then in

addition to (1.8), we also have, [9],

n−1 (A) � an−2.

A matrix A = (ai j) ∈ M(n) with ai j > 0 is called a positive matrix. For a positive
matrix a result due to Hopf [13] says that for any eigenvalue  of A

| | � b−a
b+a

n (A) (1.9)

where a = mini, j ai j and b = maxi, j ai j. One can easily see from (1.9) that if A∈ M(n)
is both positive and positive definite, then

n−1 (A) � b−a
b+a

n (A) .

We derive an upper bound for the k th smallest eigenvalue of a positive semidefinite
matrix in terms of its diagonal entries, (Theorem 2.1). An upper bound for 2 (A)
and a lower bound for n−1 (A) are given in terms of expressions involving any two
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diagonal entries and the corresponding off-diagonal entries of the principal submatrix
containing these two diagonal entries, (Theorem 2.2). Some more bounds for 2 (A)
and n−1 (A) are obtained for Hermitian and positive definite matrices by using the
Cauchy interlacing principle and positive linear functionals, (Theorem 3.1–3.8). We
show that the bounds for the spreads of Hermitian matrices also provide bounds for the
second extreme eigenvalues. In particular, we use lower bounds for the spreads and
derive lower (upper) bounds for 2 (A) (n−1 (A)) , (Theorem 4.1–4.4).

2. Bounds using eigenvalues of 2×2 submatrices

We use the Cauchy interlacing theorem of Hermitian matrices to derive the bounds
for the second extreme eigenvalues of Hermitian matrices. Let Ar be any r×r principal
submatrix of A and let the eigenvalues of A and Ar be arranged as in (1.1). The Cauchy
interlacing principle says that for any Hermitian element A ∈ M(n) , we have,

i (A) � i (Ar) � i+n−r (A) . (2.1)

For more details see [4, 14].
Note that there are

(n
r

)
principal submatrices of order r, we denote them by Ari ,

calculate trAri for i = 1,2, . . . ,
(n

r

)
and denote the smallest one by mini trAri . If A is

positive semidefinite and its diagonal entries are arranged as in (1.2), we have

min
i

trAri = a1 +a2 + · · ·+ar. (2.2)

The simplest bound for the extreme eigenvalues using traces says that 1 (A) � 1
n trA �

n (A) . There is no analogous bound for 2 (A) or n−1 (A) . We show in the following
theorem that the bounds for the eigenvalues of a positive semidefinite matrix can be
obtained in terms of its diagonal entries only.

THEOREM 2.1. Let A∈ M(n) be positive semidefinite and let its eigenvalues and
diagonal entries be enumerated as in (1.1) and (1.2), respectively . Then, for k � r,

k (A) � a1 +a2 + · · ·+ar

r− k+1
. (2.3)

Proof. A principal submatrix of a positive semidefinite matrix is positive semidef-
inite. Let Ari be a principal submatrix of A of order r. Then,  j (Ari) � 0, and
r

j=1 j (Ari) = trAri . Therefore, for k � r,

(r− k+1)k (Ari) � k (Ari)+ · · ·+r (Ari) � trAri . (2.4)

The inequality (2.4) holds for all i = 1,2, . . . ,
(n

r

)
. Therefore, from (2.4), we get that

k (Ari) � 1
r− k+1

min
i

tr(Ari) . (2.5)
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From (2.2) and (2.5), we have

k (Ari) � 1
r− k+1

(a1 +a2 + · · ·+ar) . (2.6)

By using (2.1), we have k (A) � k (Ari) . So, (2.6) implies (2.3). �

From (2.3), we have for r = 2,3, . . . ,n,

2 (A) � a1 +a2 + · · ·+ar

r−1
� r

r−1
ar.

For r = 3, this yields 2 (A) � 3
2a3. In case, A is nonnegative and symmetric, the

inequality (1.8) provides a stronger bound, 2 (A) � a3.
The eigenvalues of a 2× 2 matrix can be expressed in terms of its trace and de-

terminant. By using (2.1) for any 2× 2 principal submatrix of A, we find an upper
(lower) bound for 2 (A) (n−1 (A)) .

THEOREM 2.2. Let A = (ai j) ∈ M(n) be Hermitian and let its eigenvalues be
arranged as in (1.1). Then

2 (A) � 1
2
min
r �=s

(
rs +

√
rs

)
and n−1 (A) � 1

2
max
r �=s

(
rs−

√
rs

)
(2.7)

where rs = arr +ass and rs = (arr −ass)
2 +4 |ars|2 .

Proof. For i = r = 2, (2.1) gives 2 (A) � 2 (A2) and for i = 1, r = 2, n−1 (A)�
1 (A2) . The assertions of the theorem then follow by using the fact that for A2 =[

arr ars

ars ass

]
, we have

1 (A2) =
1
2

(
rs−

√
rs

)
and 2 (A2) =

1
2

(
rs +

√
rs

)
. �

We note that if ars = 0 for some r �= s , then from (2.7),

2 (A) � max{arr,ass} and n−1 (A) � min{arr,ass} . (2.8)

It may be noted that (2.8) can be extended to the case when the off-diagonal entries of
any principal submatrix are all zero.

THEOREM 2.3. Let A = (ai j) ∈ M(n) be Hermitian. Let Ak = Dk + Nk be any
k× k principal submatrix of A whose diagonal part is Dk. If Nk = O, then

 j (A) � n j (Dk) � n−k+ j (A)

where n j (Dk) is the j th smallest diagonal entry of Dk, j = 1,2, . . . ,k.
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Proof. If Nk = O, then  j (Ak) = n j (Dk) , j = 1,2, . . . ,k. So by (2.1),  j (A) �
 j (Ak) = n j (Dk) � n−k+ j (A) . �

EXAMPLE 2.1. (Example 4, [27]) Let

A =

⎡⎢⎢⎣
4 0 2 3
0 5 0 1
2 0 6 0
3 1 0 7

⎤⎥⎥⎦ .

Then, a12 = 0 and a34 = 0, therefore (2.7) gives 2 (A) � 5 and 3 (A) � 6. The
matrix A is nonnegative therefore from (1.8), 2 (A) � 6. The estimates of Wolkowicz
and Styan [27] give 2 (A) � 7.158 and 3 (A) � 3.842.

3. Bounds using positive linear functionals

In the above Theorem 2.2, we have derived the bounds for the second extreme
eigenvalues in terms of the eigenvalues of 2×2 principal submatrices which are easily
calculable. It is natural to extend this for 3× 3 principal submatrices. In case, if the
exact value of 2 (A3) is easily calculable, we can use the inequality 2 (A)� 2 (A3) to
find the upper bound for 2 (A) and likewise the lower bound for n−1 (A) . But it is not
always easy to calculate the eigenvalues of 3×3 matrices. So, to obtain some further
simple estimates, we here first derive the bounds for the second smallest eigenvalue of a
3×3 matrix using positive linear functionals and determinant, and then use interlacing
inequalities (2.1) to derive the bounds for 2 (A) and n−1 (A) .

We need the following basic results in the proofs of the subsequent theorems.

1. A linear map  : M(n) −→ M(k) is said to be positive if (A) is positive
semidefinite whenever A is positive semidefinite. It is unital if (In) = Ik. In the
special case when k = 1 such a map is called linear functional and it is customary
to denote it by  , see Bhatia [5].

2. Kadison’s inequality [16] says that if  : M(n) −→ M(k) is a positive unital
linear map and A is any Hermitian element of M(n) , then


(
A2)� (A)2 . (3.1)

3. The inequality complementary to (3.1) due to Bhatia and Davis [6] says that
if  : M(n) −→ M(k) is a positive unital linear map and A is any Hermitian
element of M(n) whose spectrum is contained in the interval [m,M] , then


(
A2)−(A)2 � (MIk −(A))((A)−mIk) . (3.2)

For A ∈ M(3) , det(A− cI3) = (1 (A)− c)(2 (A)− c)(3 (A)− c) = 0 if and
only if i (A) = c for some i = 1,2,3 where detA denotes the determinant of A. We
exclude this trivial case and assume in the following discussion that det(A− cI3) �= 0.
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THEOREM 3.1. Let A ∈ M(3) and let its eigenvalues be all real and arranged as
in (1.1). Let c be a real number such that 1 (A) < c < 3 (A) . Let B = A− cI3. If
detB > 0, then

2 (A) � c−2
detB
trB2 � c+2

detB
trB2 � 3 (A) . (3.3)

If detB < 0, then

1 (A) � c+2
detB
trB2 � c−2

detB
trB2 � 2 (A) . (3.4)

Proof. Let X ∈ M(n) . Then, i
(
X2
)

= i (X)2 and i (X + cIn) = i (X)+ c. It

follows that eigenvalues of B2 are ( j (A)− c)2 . Also,  j (A) and c are real numbers
and ( j (A)− c)2 > 0 for j = 1,2,3, therefore, we have

trB2 =
3


j=1

( j (A)− c)2 � (c−1 (A))2 +(3 (A)− c)2 . (3.5)

For 1 (A) < c < 3 (A) , x = c− 1 (A) > 0 and y = 3 (A)− c > 0. By arithmetic
mean-geometric mean inequality x2 +y2 � 2xy . Using this fact, we find from (3.5) that

trB2 � 2(c−1 (A)) (3 (A)− c) . (3.6)

We also have,
detB = (1 (A)− c)(2 (A)− c)(3 (A)− c) . (3.7)

From (3.6) and (3.7), we get

trB2 � 2
detB

c−2 (A)
. (3.8)

For 1 (A) < c < 3 (A) , (1 (A)− c)(3 (A)− c) < 0. So, from (3.7), if detB > 0,
then 2 (A) < c. In this case (3.8) implies the first inequality (3.3).

Likewise for 2 (A) < c, we have

trB2 � (c−1 (A))2 +(c−2 (A))2 � 2(c−1 (A)) (c−2 (A)) =
2detB

3 (A)− c
. (3.9)

We have 3 (A) > c. Then, (3.9) implies the third inequality (3.3). The second inequal-
ity (3.3) is evident.

In case, detB < 0, we have 2 (A) > c and (3.8) implies the third inequality (3.4).
For 2 (A) > c, we also have

trB2 � (2 (A)− c)2 +(3 (A)− c)2 � 2(2 (A)− c)(3 (A)− c) =
2detB

1 (A)− c
. (3.10)

We have 1 (A) < c, therefore (3.10) gives the first inequality (3.4). The second in-
equality (3.4) is immediate. �
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THEOREM 3.2. Let A ∈ M(n) be Hermitian and let its eigenvalues be arranged
as in (1.1). Let A3 be any 3×3 principal submatrix of A and B3 = A3 − cI3 where c
is a real number in the interval (1 (B3) ,3 (B3)) . If detB3 > 0, then

2 (A) � c−2
detB3

trB2
3

� c+2
detB3

trB2
3

� n (A) . (3.11)

If detB3 < 0, then

1 (A) � c+2
detB3

trB2
3

� c−2
detB3

trB2
3

� n−1 (A) . (3.12)

Proof. Any principal submatrix of a Hermitian matrix is Hermitian. So, eigenval-
ues  j (A3) of A3 are all real and let they be arranged as in (1.1). From (2.1) for i = 2,
r = 3, 2 (A) � 2 (A3) and for i = 3, r = 3, 3 (A3) � n (A) . We therefore have

2 (A) � 2 (A3) � 3 (A3) � n (A) . (3.13)

By applying (3.3) to B3 and using (3.13), we immediately get (3.11).
Likewise, from (2.1) we have

1 (A) � 1 (A3) � 2 (A3) � n−1 (A) . (3.14)

Then, (3.12) follows by applying (3.4) to B3 and using (3.14). �

COROLLARY 3.3. Let H ∈ M(3) be a principal submatrix of a Hermitian el-
ement A ∈ M(n) . Let  : M(3) −→ C be a positive unital linear functional. If
det(H− (H) I3) > 0, then

2 (A) �  (H)−2
det(H − (H) I3)
tr(H− (H) I3)

2 �  (H)+2
det(H− (H) I3)
tr(H− (H) I3)

2 � n (A) . (3.15)

If det(H − (H) I3) < 0, then

1 (A) �  (H)+2
det(H − (H) I3)

tr(H− (H) I3)
2 �  (H)−2

det(H− (H) I3)

tr(H− (H) I3)
2 � n−1 (A) .

(3.16)

Proof. It is clear that H is Hermitian and let its eigenvalues be arranged as 1 (H)�
2 (H) � 3 (H) . So, 1 (H) � x∗Hx � 3 (H) for all unit vectors x ∈ C3. So, H −
1 (H) I3 � O and 3 (H) I3 −H � O. The functional  is positive, therefore we have
 (H−1 (H) I3) � 0 and  (3 (H) I3−H) � 0. By using linearity and the fact that 
is unital we have 1 (H) �  (H) � 3 (H) . The cases 1 (H) =  (H) and 3 (H) =
 (H) are obvious. So, let 1 (H) <  (H) < 3 (H) . The assertions of the corollary
then follow from the Theorem 3.2 by choosing c =  (H) . �

It may be noted that the Corollary 3.3 provides various bounds for 2 (A) and
n−1 (A) for different choices of  . For example,  (H) = trH

3 and  (H) = 1
3 

3
i, j ai j

are positive unital linear functionals and by substituting these in (3.15) and (3.16) we
can write down the corresponding inequalities. One such similar case provides a refine-
ment of the inequality (1.8). We mention it in the following corollary.
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COROLLARY 3.4. Let A∈ M(n) be nonnegative and symmetric and let its eigen-
values and diagonal entries be arranged as in (1.1) and (1.2), respectively. Let X ∈
M(3) be the principal submatrix of A whose diagonal entries are a1,a2,a3. Then

2 (A) � a3−2
det(X −a3I3)

tr(X −a3I3)
2 � a3. (3.17)

Proof. The matrix X = (xi j) ∈ M(3) is nonnegative and symmetric. Its largest
diagonal entry is a3 = max

i
xii. Suppose a3 = x33. Then

det(X −a3I3) = 2x12x23x13 +(x33− x11)x2
23 +(x33− x22)x2

13.

So, det(X −a3I3) � 0 when X is nonnegative. The same is true if a3 = x11 or a3 = x22.
Hence det(X −a3I3) � 0. The equality holds in this inequality if and only if a3 is
an eigenvalue of X . Further, (X) = a3 is a positive unital linear functional. Then
the first inequality (3.17) follows by applying the first inequality (3.15) to X . Since
det(X −a3I3) � 0, the second inequality (3.17) is immediate. �

COROLLARY 3.5. Let A ∈ M(n) be positive definite and let its eigenvalues be
arranged as in (1.1). Let H ∈M(3) be any principal submatrix of A and  : M(3)−→
C be a positive unital linear functional. Denote H− (H2)

(H) I3 by X . Then, if detX > 0,

2 (A) �

(
H2
)

 (H)
−2

detX
trX2 �


(
H2
)

 (H)
+2

detX
trX2 � n (A) (3.18)

and if detX < 0

1 (A) �

(
H2
)

 (H)
+2

detX
trX2 �


(
H2
)

 (H)
−2

detX
trX2 � n−1 (A) . (3.19)

Proof. The principal submatrix of a positive definite matrix is positive definite.
Therefore, H is positive definite. Let the eigenvalues of H be arranged as in (1.1). The
functional  : M(3) −→ C is positive, therefore, 0 < 1 (H) �  (H) � 3 (H) . Also,
by (3.1), 

(
H2
)

�  (H)2 . We thus have

1 (H) (H) �  (H)2 � 
(
H2) . (3.20)

Further, by the spectral theorem,

H = 1 (H)P1 +2 (H)P2 +3 (H)P3

where Pj ’s are orthogonal projections, P∗
j = Pj � O, PiPj = O for i �= j and P1 +P2 +

P3 = I3. So,
H2 =  2

1 (H)P1 + 2
2 (H)P2 + 2

3 (H)P3. (3.21)
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By applying  to both sides of (3.21), and using linearity of  , we get


(
H2)=

3


j=1

 2
j (H) (Pj) � 3 (H)

3


j=1

 j (H) (Pj) = 3 (H) (H) . (3.22)

From (3.20) and (3.22), we get that

1 (H) �

(
H2
)

 (H)
� 3 (H) .

The assertions of the corollary now follow from the Theorem 3.2 by choosing c=
(H2)
(H)

and applying (3.11) and (3.12) to H. The arguments are same as in the proof of the
Corollary 3.3. �

The Corollary 3.3 provides an upper bound for 2 (A) when det(H− (H) I3) >
0. In the following theorem we show that by using (3.2) we can derive an upper bound
for 2 (A) when det(H − (H) I3) < 0.

THEOREM 3.6. Let H ∈ M(3) be a principal submatrix of a Hermitian element
A ∈ M(n) . Let  : M(3) −→ C be positive and unital. If det(H− (H) I3) < 0, then
for 

(
H2
) �=  (H)2 , we have

2 (A) �  (H)− det(H− (H) I3)
 (H2)− (H)2 (3.23)

and if det(H− (H) I3) > 0, we have

n−1 (A) �  (H)− det(H− (H) I3)
 (H2)− (H)2 . (3.24)

Proof. By applying (3.1) and (3.2) to positive unital linear functional  : M(3)−→
C, we find that

0 < 
(
H2)− (H)2 � (3 (H)− (H))( (H)−1 (H)) . (3.25)

Also, det(H − (H) I3) =
3

j=1

( j (H)− (H)) , therefore

(3 (H)− (H))( (H)−1 (H)) = −det(H − (H) I3)
2 (H)− (H)

. (3.26)

From (3.25) and (3.26),we get

0 < 
(
H2)− (H)2 � −det(H − (H) I3)

2 (H)− (H)
. (3.27)
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We have 1 (H) <  (H) < 3 (H) , therefore, if det(H− (H) I3) < 0, then 2 (H) >
 (H) and (3.27) gives an upper bound for 2 (H) and by using 2 (A) � 2 (H) , we
get (3.23).

Further, if det(H − (H) I3) > 0, then 2 (H) <  (H) and (3.27) yields a lower
bound for 2 (H) . Then, by using n−1 (H) � 2 (H) , we immediately get (3.24). �

The inequalities discussed in the above theorems are derived by using the condition
that A is Hermitian and det(A3− cI3) is positive or negative. By using (3.2) we now
derive some bounds for 2 (A) and n−1 (A) when A is positive definite.

THEOREM 3.7. Let H ∈ M(3) be positive definite and let its eigenvalues be ar-
ranged as in (1.1). Then, for any positive unital linear functional  : M(3) −→ C, we
have

1 (H) � − � 2 (H) � + � 3 (H) (3.28)

where

 =
trH (H)−

(
H2
)

2 (H)
and  =

√
2 − detH

 (H)
. (3.29)

Proof. The matrix H ∈ M(3) is positive definite, therefore i (H) > 0, i = 1,2,3,
we write,

1 (H)3 (H) =
detH
2 (H)

and 1 (H)+3 (H) = trH−2 (H) . (3.30)

From (3.2) and (3.30), we find that


(
H2)� (1 (H)+3 (H)) (H)−1 (H)3 (H) = (trH −2 (H)) (H)− detH

2 (H)
.

This gives a quadratic inequality in 2 (H) ,

 (H) 2
2 (H)+

(

(
H2)− trH (H)

)
2 (H)+detH � 0. (3.31)

The roots of the quadratic equation in (3.31) are − and + where  and  are as
given in (3.29) . Also  (H) > 0. Therefore, we conclude that − � 2 (H) �+ .
This gives second and third inequalities (3.28). It is clear that i (H) lies outside the
interval

(
 j−1 (H) , j (H)

)
. Also, projections Pi ’s are positive semidefinite, therefore

for i = 1,2,3 and any fixed j = 2,3, we have(
i (H)− j−1 (H)

)
(i (H)− j (H))Pi � 0.

By adding these three inequalities for any fixed j = 2,3, we get

3


i=1

 2
i (H)Pi−

(
 j−1(H)+ j(H)

) 3


i=1

i(H)Pi + j−1(H) j(H)I3 � 0. (3.32)
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By applying  to (3.32), we find that


(
H2)� (1 (H)+2 (H)) (H)−1 (H)2 (H) = (trH−3 (H)) (H)− detH

3 (H)
(3.33)

and


(
H2)� (2 (H)+3 (H)) (H)−2 (H)3 (H) = (trH −1 (H)) (H)− detH

1 (H)
.

(3.34)
From (3.33) and (3.34), we find that for k = 1,3, we have

 (H) 2
k (H)+

(

(
H2)− trH (H)

)
k(H)+detH � 0. (3.35)

The discriminant of the quadratic in (3.35) is nonnegative and its roots are  − and
 + . We conclude that k(H) lies outside (− ,+ ) . So,

1 (H) � − or 1 (H) �  + and 3 (H) � − or 3 (H) �  + .

But  −  � 2 (H) �  +  . So, 3 (H) �  −  and 1 (H) �  +  . Hence,
1 (H) � − and 3 (H) �  + . �

THEOREM 3.8. Let  : M(n) −→ C be a positive unital linear functional. Let
A ∈ M(n) , n � 3, be positive definite and let its eigenvalues be arranged as in (1.1).
For any principal submatrix H ∈ M(3) , we have

1 (A) � − � n−1 (A) and 2 (A) �  + � n (A) (3.36)

where  and  are given as in (3.29).

Proof. The principal submatrix H ∈M(3) of positive definite matrix A is positive
definite. By interlacing inequalities (2.1), we have

1 (A) � 1 (H) � 2 (H) � n−1 (A) . (3.37)

The first and second inequalities (3.36) follow on combining (3.37) and the first and
second inequalities (3.28).

Likewise, from (2.1), we have 2 (A) � 2 (H) � 3 (H) � n (A) . Then, (3.28)
yields the bounds for 2 (A) and n−1 (A) in (3.36). �

The above inequalities and their applications are independent of each others. We
illustrate and compare our results with those in literature by means of the following
simple examples.

EXAMPLE 3.1. Let

A1 =

⎡⎣ 1 1 i
1 1 1
−i 1 2

⎤⎦ , A2 =

⎡⎣ 1 1 i
1 1 1
−i 1 4

⎤⎦ and A3 =

⎡⎣ 1 −2 3
−2 1 2
3 2 1

⎤⎦ .
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Choose  (A1) = a33 = 2. Then, det(A1−a33I3) = 2 > 0 and therefore from (3.15) and
(3.24), 1 � 2 (A1) � 1.5. From (1.3) and (1.4), we have 0.2792 � 2 (A1) � 2.387.

Choose  (A2) = a33 = 4. Then, det(A2−a33I3) = 6 > 0. Therefore, from (3.15)
and (3.24), 1 � 2 (A2) � 3.5. From (1.3) and (1.4), we have 0.585 � 2 (A2) � 3.414.

Choose  (A3) = a33 = 1. Then, det(A3−a33I3) = −24 < 0. Therefore, from
(3.16) and (3.23), 2.411 � 2 (A3) � 2.846. From (1.3) and (1.4), −1.380 � 2 (A3) �
3.380.

EXAMPLE 3.2. Let

A4 =

⎡⎣ 3 1 0
1 2 1
0 1 3

⎤⎦ and A5 =

⎡⎣5 1 1
1 6 1
1 1 1

⎤⎦ .

The matrix A4 is positive definite. Choose  (A4) = a33 = 3. Then, c =
(A2

4)
(A4)

= 10
3

and det(A4− cI3) = 14
27 > 0. Therefore, from (3.18), 2 (A4) � 3.160 while from (1.3)

and (1.7), 1.784 � 2 (A4) � 3.548 and 1.441 � 2 (A4) � 3.506, respectively. From
(3.28), 1.131 � 2 (A4) � 3.535 � 3 (A4) . The matrix A5 is positive definite. Choose

 (A5) = a22 = 6. Then c =
(A2

5)
(A5)

= 19
3 and det(A5− cI3) = 179

27 > 0. Therefore,

from (3.18), 2 (A5) � 5.968 while from (1.3) and (1.7), 2.174 � 2 (A5) � 5.825 and
1.112 � 2 (A5) � 5.677, respectively. From (3.28), 0.666 � 2 (A5) � 4.999. From
(3.15) and (3.24), 2 � 2 (A5) � 5.5.

EXAMPLE 3.3. (Example 4.2, [29].) The Laplacian matrix of a graph in [29] is

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 −1 −1 −1 −1 −1 −1
−1 3 −1 −1 0 0 0
−1 −1 3 −1 0 0 0
−1 −1 −1 3 0 0 0
−1 0 0 0 3 −1 −1
−1 0 0 0 −1 3 −1
−1 0 0 0 −1 −1 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The best lower bound for the second largest eigenvalue of A in [29] is 2.9 that is
6 (A) � 2.9. By (2.8), 6 (A) � 3. Further, consider the principal submatrix

H =

⎡⎣ 6 −1 −1
−1 3 −1
−1 −1 3

⎤⎦
of A and let  (H) = h22 = 3. Then, from (3.16), 6 (A) � 3.6. The best lower bound
for the largest eigenvalue of A in [29] is 3.4 that is 7 (A) � 3.4. For the choice
 (H) = h11 = 6 and by (3.15) we have 7 (A) � 6.3.
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4. Bounds using estimates of the spread

The spread of a matrix is the maximum distance between the eigenvalues of a
matrix in the complex plane. For any Hermitian element A∈ M(n) , we have spd(A) =
n (A)−1 (A) . The bounds for the spread have been studied extensively in literature.
Jiang and Zhan [15] and Bhatia and Sharma [8] have discussed various lower bounds
for the spreads of Hermitian matrices. We show here that these lower bounds for the
spreads can be used to obtain lower (upper) bounds for 2 (A) (n−1 (A)) .

We need following basic results in the proofs of the subsequent theorems.

1. Let  : M(n) −→ M(k) be a positive unital linear map and let A be any Hermi-
tian element of M(n) . Then, Bhatia and Davis [6] have proved that


(
A2)−(A)2 � spd(A)2

4
Ik. (4.1)

Also, Bhatia and Sharma [7] have shown that

||1 (A)−2 (A)|| � spd(A) , (4.2)

where ||.|| denotes the operator norm, ‖A‖ = max
x∗x=1

x∗A∗Ax, x ∈ Cn .

2. Let x1,x2, . . . ,xn denote n real numbers. Their arithmetic mean and variance are
respectively the numbers,

x =
1
n

n


i=1

xi and s2 =
1
n

n


i=1

(xi − x)2 .

The Nagy inequality [20] says that

s2 � 1
2n

(
max

i
xi−min

i
xi

)2

. (4.3)

LEMMA 4.1. Let x and s2 respectively denote the arithmetic mean and variance
of n real numbers x j ’s. Let s2

n−1 be the variance of n−1 numbers obtained by exclud-
ing a number xk from the numbers x1,x2, . . . ,xn. Then,

s2 =
n−1

n
s2
n−1 +

1
n−1

(x− xk)
2 . (4.4)

Proof. Denote 1
n−1 

n
i=1
i �=k

xi by y. Then, a simple calculation shows that

x− xk =
n−1

n
(y− xk) , (4.5)

s2 =
1
n

n


i=1

(xi− xk + xk − x)2 =
1
n

n


i=1

(xi − xk)
2 − (x− xk)

2 (4.6)
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and
n


i=1

(xi− xk)
2 = (n−1)s2

n−1 +(n−1)(y− xk)
2 . (4.7)

Combining (4.5)–(4.7), a little computation leads to (4.4). �

LEMMA 4.2. For x1 � xi � xn, i = 1,2, . . . ,n, and with notations as above, we
have

s2 � (xn − x1)
2

2n
+

1
n−1

(x− xk)
2 (4.8)

for all k = 2,3, . . . ,n−1.

Proof. Let x1 � xi � xn, i = 1,2, . . . ,n. We exclude a number xk, k = 2, . . . ,n−1,
from these n numbers x j ’s. Then, max

i
xi −min

i
xi = xn − x1 . Therefore, by applying

(4.3) to these n−1 numbers, we get

s2
n−1 � (xn− x1)

2

2(n−1)
. (4.9)

Combining (4.4) and (4.9), we immediately get (4.8). �

THEOREM 4.1. Let i : M(n) −→ M(k) , i = 1,2, be two positive unital linear
maps and let the eigenvalues of any Hermitian element A ∈ M(n) be arranged as in
(1.1). Let S2 be defined as in (1.5). Then, for j = 2,3, . . . ,n−1 , we have

∣∣∣∣ j (A)− trA
n

∣∣∣∣ Ik �
√

n−1

√
S2Ik − ‖1 (A)−2 (A)‖2

2n
Ik. (4.10)

Proof. We have trAr =n
j=1 j (A)r , r = 1,2. Therefore, from (1.5), with ̃ (A) =

1
n 

n
j=1 j (A) ,

S2 =
1
n

n


j=1

 j (A)2 −
(

1
n

n


j=1

 j (A)

)2

=
1
n

n


j=1

(
 j (A)− ̃ (A)

)2

is the variance of the eigenvalues  j (A) . It then follows from the Lemma 4.2 that

S2Ik � (n (A)−1 (A))2

2n
Ik +

1
n−1

(
 j (A)− trA

n

)2

Ik. (4.11)

We have spd(A) = n (A)− 1 (A) . So, by using (4.2) in (4.11), we immediately get
(4.10). �
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COROLLARY 4.2. Let i : M(n) −→ C be positive unital linear functionals, i =
1,2 . Then, under the conditions of the Theorem 4.1, we have

2 (A) � trA
n

−√
n−1

√
S2− (1 (A)−2 (A))2

2n
(4.12)

and

n−1 (A) � trA
n

+
√

n−1

√
S2− (1 (A)−2 (A))2

2n
. (4.13)

Proof. Note that for any Hermitian element A ∈ M(n) ,  (A) is a real number.
Then, by applying (4.10) to  and using the fact that |x−a|� b if and only if a−b �
x � a+b, we immediately get (4.12) and (4.13). �

THEOREM 4.3. With notations and conditions as in the Theorem 4.1, we have for
j = 2,3, . . . ,n−1,

∣∣∣∣ j (A)− trA
n

∣∣∣∣ Ik �
√

n−1

√(
S2− 2

n

∥∥∥(A2)−(A)2
∥∥∥) Ik. (4.14)

Proof. For P � Q, we have x∗Px � x∗Qx for all unit vectors x ∈ Cn. Therefore,
from (4.1), we find that

spd(A)2 � 4
∥∥∥(A2)−(A)2

∥∥∥ . (4.15)

Combining (4.11) and (4.15), we immediately get (4.14). �

COROLLARY 4.4. With notations and conditions as in the Corollary 4.2, we have

2 (A) � trA
n

−√
n−1

√
S2− 2

n

(
 (A2)− (A)2

)
(4.16)

and

n−1 (A) � trA
n

+
√

n−1

√
S2− 2

n

(
 (A2)− (A)2

)
. (4.17)

Proof. The assertions of the corollary follow from the Theorem 4.3 by using ar-
guments similar to those used in the proof of Corollary 4.2. �

Bhatia and Sharma [8] have shown that the various lower bounds obtained by Jiang
and Zhan [15] also follow from the inequality (4.1). We borrow two examples from [15]
to illustrate our results.
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EXAMPLE 4.1. Let

A6 =

⎡⎢⎢⎣
2 0 1−2i 1−2i
0 1 1+2i 1+2i

1+2i 1−2i 1 0
1+2i 1−2i 0 1

⎤⎥⎥⎦ and A7 =

⎡⎣ 5 1 2− i
1 1 1+2i

2+ i 1−2i 3

⎤⎦ .

Here spd(A6)
2 � 81. Therefore from (4.16) and (4.17), we have 0.816 � 2 (A6) �

3 (A6) � 1.683. From (1.3), −1.931� 2 (A6)� 3.0928. Also, spd(A7)
2 � 60. There-

fore, from (4.16) and (4.17), we have 2(A7)= 3. From (1.3), 0.763�2 (A7)� 5.236.
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