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Abstract. Let N(·) be a norm on a unital C∗ -algebra A . For s and t are both nonnegative reals
and s+ t > 0 , we introduce a family of non-negative real-valued functions on A , defined by

v(N,(s,t)) (x) = sup
∈R

N
(
R(s,t)

(
ei x

))
, (x ∈ A).

Here, R(s,t)
(
ei x

)
= sei x + t(ei x)∗ for all x ∈ A . Some basic properties and other useful

characterizations of this family of functions are presented. As a special case of this family of
functions, some results involving the weighted algebraic numerical radius are obtained. Addi-
tionally, we establish the equivalence between the numerical radius v(x) and the norm v(s,t) (x) .

1. Introduction and preliminaries

Let A be a unital C∗ -algebra with unit denoted by e . We denote by A∗ the
topological dual space of A . A linear functional  ∈ A∗ is said to be positive, and
write  � 0, if  (a) � 0 for every positive element a ∈ A . A state is a positive linear
functional whose norm is equal to one. Let S (A) denote the set of all states on A .
The algebraic numerical range of x ∈ A is defined by

V (x) = { (x) :  ∈ S (A)} .

It is a nonempty compact and convex set of the complex plane C , and its maximum
modulus is the algebraic numerical radius of x ∈ A , defined by

v(x) = sup{| | :  ∈V (x)} .

It is known that v(·) defines a norm on A , which is equivalent to the C∗ -norm ‖·‖ . In
fact, for every x ∈ A , the following inequalities hold:

1
2
‖x‖ � v(x) � ‖x‖ .

For more detailed information about C∗ -algebras, the reader is referred to [17,23,
24] and the references therein.
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There are many generalizations of the classical numerical range and numerical
radius, and there has been a great deal of interest in their systematic properties and
applications. For instance, in [4], authors introduced and studied A-numerical range
and A-numerical radius for Semi-Hilbertian space operators. Then more properties of
these concepts were established, see [3,11,20]. Bourhim and Mabrouk in [9] introduced
and studied a -numerical range and a -numerical radius of elements in C∗ -algebras.
More basic properties of these concepts were established in [2, 16]. Sheikhhosseini,
Khosravi and Sababheh in [22] introduced and studied the weighted numerical radius
of Hilbert space operators. In addition, the relationship between weighted numerical
radius and classical numerical radius was also investigated. In [14], the weighted A-
numerical radius for Semi-Hilbertian space operators was introduced and some basic
properties and inequalities about it were obtained. For more about numerical range and
numerical radius, we refer the reader to [5–7,10,12,13,15,18,19,21] and the references
therein.

Throughout this paper, A denotes a unital C∗ -algebra with unit denoted by e , and
s and t are both nonnegative real numbers such that their sum is positive. Let N(·) be
a norm on A . The norm N(·) is said to be an algebra norm if N (xy) � N (x)N (y) for
every x,y ∈ A , and is called self-adjoint if N (x) = N (x∗) for every x ∈ A .

Any element x ∈ A can be represented by the Cartesian decomposition as x =
R(x)+ iI(x) , where R(x) = 1

2 (x+ x∗) and I(x) = 1
2i (x− x∗) are the real and imagi-

nary parts of x , respectively. Recently, Mabrouk and Zamani in [16] defined the weighted
real and imaginary parts of x ∈ A , by

R(s,t) (x) = sx+ tx∗ and I(s,t) (x) = s(−ix)+ t(−ix)∗,

respectively, where s and t are both nonnegative reals and s + t > 0. When s =  ,
t = 1−  , where 0 �  � 1, we can see that R (x) = x+(1− )x∗ and I (x) =
 (−ix)+(1− )(−ix)∗ . When s = t = 1

2 , we can see that R 1
2
(x)= R(x) and I 1

2
(x) =

I(x) . In addition, the authors also defined the following norm:

v(s,t) (x) = sup
∈R

∥∥∥R(s,t)

(
eix

)∥∥∥ (1.1)

for all x ∈ A , which generalizes the C∗ -norm and algebraic numerical radius.
Some interesting relationships about R(s,t) (x) , I(s,t) (x) and R(x) , I(x) are con-

tained in the following result.

PROPOSITION 1.1. Let x ∈ A . Then
(i) R(s,t) (x) = I(s,t) (ix) .
(ii) R(s,t) (x) = (s+ t)R(x)+ i(s− t)I(x) .
(iii) I(s,t) (x) = (s+ t)I(x)+ i(t− s)R(x) .
(iv) R(s,t) (x)− iR(s,t) (ix) = 2sx .

Proof. (i) According to the definition of weighted real and imaginary parts of
x ∈ A , we have I(s,t) (ix) = s

(−i2x
)
+ t

(−i2x
)∗ = sx+ tx∗ = R(s,t) (x) .
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(ii) According to the definition of weighted real part of x ∈ A , we have

R(s,t) (x) = sx+ tx∗ =
(

s+ t
2

+
s− t
2

)
x+

(
s+ t
2

− s− t
2

)
x∗

= (s+ t)
x+ x∗

2
+ i(s− t)

x− x∗

2i
= (s+ t)R(x)+ i(s− t)I(x) .

(iii) By (i) and (ii), we can derive I(s,t) (x) = R(s,t) (−ix) = (s+ t)R(−ix)+ i(s−
t)I(−ix) . And because R(−ix) = I(x) , I(−ix) = −R(x) , we have I(s,t) (x) = (s+
t)I(x)+ i(t− s)R(x) .

(iv) By (ii), we have R(s,t) (ix) = (s+ t)R(ix)+ i(s− t)I(ix) . Hence,

R(s,t) (x)− iR(s,t) (ix)

= (s+ t)R(x)+ i(s− t)I(x)− i [(s+ t)R(ix)+ i(s− t)I(ix)]
= (s+ t)R(x)+ i(s− t)I(x)− i [(s+ t)(−I(x))+ i(s− t)R(x)]
= 2s(R(x)+ iI(x)) = 2sx. �

Inspired by the weighted numerical radius of Hilbert space operators, let s =  ,
t = 1−  as in (1.1), where 0 �  � 1, the authors defined the weighted algebraic
numerical radius of elements in C∗ -algebras in [16]. As shown below.

DEFINITION 1.2. Let x ∈ A and 0 �  � 1. Then the weighted algebraic numer-
ical radius on A is denoted by

v (x) = sup
∈R

∥∥∥R

(
ei x

)∥∥∥ . (1.2)

The remainder of the paper is organized as follows. In Section 2, inspired by
[25], we introduce a family of non-negative real-valued functions on a C∗ -algebra
A , which generalizes the norm v(s,t) (x) and the weighted algebraic numerical radius
v (x) . Some of the fundamental properties of this family of functions are presented.
We also present some other useful characterizations of this family of functions. Further,
we draw some conclusions about the norm v(s,t) (x) and the weighted algebraic numer-
ical radius. In Section 3, some results of v(s,t) (x) are given. In particular, we prove the
equivalence between the numerical radius v(x) and the norm v(s,t) (x) .

2. A generalization of v(s,t) (·) and v (·)

In this section, we introduce a norm on A , which generalizes the norm v(s,t) (x)
and the weighted algebraic numerical radius v (x) . Further, some basic properties of
this norm will be established.
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DEFINITION 2.1. Let N(·) be a norm on A . The function v(N,(s,t)) (·) : A →
[0,+) is defined by

v(N,(s,t)) (x) = sup
∈R

N
(
R(s,t)

(
eix

))
, x ∈ A.

REMARK 2.2. When N(·) is the C∗ -norm ‖·‖ in Definition 2.1, the function
v(N,(s,t)) (·) is denoted by (1.1). When N(·) is the C∗ -norm ‖·‖ and s =  , t = 1− 
in Definition 2.1, where 0 �  � 1, the function v(N,(s,t)) (·) represents the weighted
algebraic numerical radius, and is denoted by (1.2).

THEOREM 2.3. Let N(·) be a norm on A and x ∈ A . Then

v(N,(s,t)) (x) = sup
∈R

N
(
I(s,t)

(
eix

))
.

Proof. To prove this result, first of all, we need to prove that

v(N,(s,t)) (x) = | |v(N,(s,t)) (x) (2.1)

for all  ∈ C . We may assume that  �= 0, otherwise (2.1) trivially holds. For every
nonzero  ∈ C , there exists  ∈ R such that  = | |ei , we get

v(N,(s,t)) (x) = sup
∈R

N
(
R(s,t)

(
eix

))
= sup

∈R

N
(
seix+ te−ix∗

)
= sup

∈R

N
(
s | |ei(+)x+ t | |e−i(+)x∗

)
= | | sup

 ,∈R

N
(
sei(+)x+ te−i(+)x∗

)
= | |v(N,(s,t)) (x) .

Then by using Proposition 1.1 (i), we have

v(N,(s,t)) (x) = v(N,(s,t)) (ix) = sup
∈R

N
(
R(s,t)

(
iei x

))
= sup

∈R

N
(
I(s,t)

(
eix

))
. �

REMARK 2.4. When N(·) is the C∗ -norm ‖·‖ in Theorem 2.3, we have

v(s,t) (x) = sup
∈R

∥∥∥I(s,t)

(
eix

)∥∥∥
for all x ∈ A .

REMARK 2.5. In Remark 2.4, let s =  , t = 1−  , where 0 �  � 1. Then

v (x) = sup
∈R

∥∥∥I

(
eix

)∥∥∥
for all x ∈ A .
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In the following result, we present some properties of v(N,(s,t)) (·) .

PROPOSITION 2.6. Let N(·) be a norm on A and x ∈ A . Then
(i) v(N,(s,t)) (x) = v(N,(t,s)) (x∗) .
(ii) If x is self-adjoint, then v(N,(s,t)) (x) = (s+ t)N (x) .

Proof. (i) can be obtained by the definition of the v(N,(s,t)) (·) , as follows

v(N,(s,t)) (x) = sup
∈R

N
(
R(s,t)

(
eix

))
= sup

∈R

N
(
seix+ te−ix∗

)
= sup

∈R

N
(
te−ix∗ + sei (x∗)∗

)
= sup

∈R

N
(
R(t,s)

(
e−ix∗

))
= v(N,(t,s)) (x

∗) .

Next, we prove (ii). Since x is self-adjoint, we have

v(N,(s,t)) (x) = sup
∈R

N
(
sei x+ te−ix∗

)
= sup

∈R

N
((

sei + te−i
)

x
)

= sup
∈R

∣∣∣sei + te−i
∣∣∣N (x)

= sup
∈R

√
s2 + t2 +2st

(
cos2 − sin2

)
N (x)

= (s+ t)N (x) . �

REMARK 2.7. When N(·) is the C∗ -norm ‖·‖ in Proposition 2.6, for every x∈A
the following statements hold:

1. v(s,t) (x) = v(t,s) (x∗) .

2. If x is self-adjoint, then (s+ t)v(x) = v(s,t) (x) = (s+ t)‖x‖ .

REMARK 2.8. In Remark 2.7, let s =  , t = 1−  , where 0 �  � 1. Then for
every x ∈ A , the following statements hold:

1. v (x) = v1− (x∗) .

2. If x is self-adjoint, then v(x) = v (x) = ‖x‖ .

In the next theorem, we prove that v(N,(s,t)) (·) is a norm on A , and the bounds of
the norm v(N,(s,t)) (·) are presented.

THEOREM 2.9. Let N(·) be a norm on A . Then v(N,(s,t)) (·) is a norm on A and

max{sN (x) ,tN (x∗)} � v(N,(s,t)) (x) � (s+ t)max{N (x) ,N (x∗)} (2.2)

for all x ∈ A .
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Proof. Let N(·) be a norm on A and x ∈ A . Since v(N,(s,t)) (x) � 0, we know
that non-negativity is ture. Next, we show that positive definiteness is also true. Let
us assume that v(N,(s,t)) (x) = 0. If s = 0, we have v(N,(s,t)) (x) = tN (x∗) = 0. Since
s+ t > 0, then t �= 0. Thus x∗ = 0, or equivalently x = 0. Similarly, if t = 0, we have
v(N,(s,t)) (x) = sN (x) = 0. Thus x = 0. Hence, we may assume that s �= 0 and t �= 0.
Then by Definition 2.1, we can see that R(s,t)

(
ei x

)
= 0 for every  ∈R . Taking  = 0

and  = 
2 , respectively, we obtain

R(s,t) (x) = R(s,t) (ix) = 0.

Applying Proposition 1.1 (iv), we get

x =
R(s,t) (x)− iR(s,t) (ix)

2s
= 0.

In Theorem 2.3, we have proved v(N,(s,t)) (x) = | |v(N,(s,t)) (x) for all  ∈ C . That is,
positive homogeneity is satisfied. Therefore, to show that v(N,(s,t)) (·) is a norm on A ,
it suffices to show that v(N,(s,t)) (·) is subadditive. Let y,z ∈ A , we have

v(N,(s,t)) (y+ z) = sup
∈R

N
(
R(s,t)

(
ei (y+ z)

))
= sup

∈R

N
(
R(s,t)

(
ei y

)
+R(s,t)

(
ei z

))
� sup

∈R

(
N

(
R(s,t)

(
eiy

))
+N

(
R(s,t)

(
ei z

)))
� sup

∈R

N
(
R(s,t)

(
ei y

))
+ sup

∈R

N
(
R(s,t)

(
ei z

))
= v(N,(s,t)) (y)+ v(N,(s,t)) (z) .

In addition, by using Proposition 1.1 (i) and (iv), we have

R(s,t) (x)+ iI(s,t) (x) = 2sx. (2.3)

By the Definition 2.1, we have

v(N,(s,t)) (x) � N
(
sei x+ te−ix∗

)
,  ∈ R.

Setting  = 0 and  = −/
2 in the above inequality, respectively. We get

v(N,(s,t)) (x) � N
(
R(s,t) (x)

)
and v(N,(s,t)) (x) � N

(
I(s,t) (x)

)
. (2.4)

Then applying (2.3) and (2.4), we have that

v(N,(s,t)) (x) �
N

(
R(s,t) (x)

)
+N

(
I(s,t) (x)

)
2

�
N

(
R(s,t) (x)+ iI(s,t) (x)

)
2

=
N (2sx)

2
= sN (x) .
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Hence, we have

sN (x) � v(N,(s,t)) (x) . (2.5)

In (2.5), let s and t replace each other and let x be replaced by x∗ . We have

tN (x∗) � v(N,(t,s)) (x
∗) . (2.6)

Since v(N,(s,t)) (x) = v(N,(t,s)) (x∗) (see Proposition 2.6 (i)), we deduce that

tN (x∗) � v(N,(s,t)) (x) . (2.7)

By combining (2.5) together with (2.7), we get

max{sN (x) ,tN (x∗)} � v(N,(s,t)) (x) . (2.8)

On the other hand, by the triangle inequality for the norm N(·) , we have

v(N,(s,t)) (x) = sup
∈R

N
(
seix+ te−ix∗

)
� sN (x)+ tN (x∗)

� smax{N (x) ,N (x∗)}+ t max{N (x) ,N (x∗)}
= (s+ t)max{N (x) ,N (x∗)} .

Hence, we obtain

v(N,(s,t)) (x) � (s+ t)max{N (x) ,N (x∗)} . (2.9)

By combining (2.8) together with (2.9), we get (2.2) as required. �
As a consequence of the preceding theorem, we have the following result.

COROLLARY 2.10. If N(·) is a self-adjoint norm on A , then v(N,(s,t)) (·) is self-
adjoint. Furthermore, v(N,(s,t)) (·) is equivalent to N(·) and for every x ∈A the follow-
ing inequalities hold:

max{s,t}N (x) � v(N,(s,t)) (x) � (s+ t)N (x) . (2.10)

Proof. Since N(·) is a self-adjoint norm on A , we have

v(N,(s,t)) (x
∗) = sup

∈R

N
(
sei x∗ + te−ix

)
= sup

∈R

N
(
se−i x+ teix∗

)
= v(N,(s,t)) (x) .

Therefor, v(N,(s,t)) (·) is self-adjoint. Furthermore, since N(·) is a self-adjoint norm on
A , from (2.2) it follows that

max{s,t}N (x) � v(N,(s,t)) (x) � (s+ t)N (x) .

So v(N,(s,t)) (·) is equivalent to N(·) . �
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REMARK 2.11. If N(·) is a self-adjoint norm on A . By Corollary 2.10, we know
that v(N,(s,t)) (·) is self-adjoint. In view of Proposition 2.6 (i), thus we have

v(N,(s,t)) (x) = v(N,(t,s)) (x
∗) = v(N,(t,s)) (x) .

REMARK 2.12. Since C∗ -norm ‖·‖ is a self-adjoint norm on A , by Remark 2.11,
we have

v(s,t) (x) = v(t,s) (x
∗) = v(t,s) (x) .

Furthermore, v(s,t) (·) is equivalent to C∗ -norm ‖·‖ and for every x ∈ A the following
inequalities hold:

max{s,t}‖x‖ � v(s,t) (x) � (s+ t)‖x‖ . (2.11)

REMARK 2.13. In Remark 2.12, let s =  , t = 1−  , where 0 �  � 1. It is clear
that v (x) is self-adjoint. We have

v (x) = v1− (x∗) = v1− (x) .

Furthermore, v (x) is equivalent to C∗ -norm ‖·‖ and for every x ∈ A , the following
inequalities hold:

max{,1− }‖x‖ � v (x) � ‖x‖ . (2.12)

REMARK 2.14. It should be mentioned here that in Corollary 2.10, when A is
the set of all bounded linear operators on a complex Hilbert space, and with s = t = 1

2 ,
Abu-Omar and Kittaneh have proved this case in [1, Theorem 2].

The next theorem shows that when N(·) is a self-adjoint norm on A and the sum
of s and t is fixed, the maximum and minimum values of the norm v(N,(s,t)) (·) can be
obtained.

THEOREM 2.15. If N(·) is a self-adjoint norm on A and  is a positive real
number. Then for every x ∈A , the function f (s) = v(N,(s,−s)) (x) is convex continuous

function on [0, ] , and that the minimum of f is f
(

2

)
and the maximum of f is

f (0) , f ( ) .

Proof. For every x ∈ A and  ∈ [0,1] , we have

f ( s+(1− ) t)
= v(N,( s+(1− )t,−( s+(1− )t))) (x)

= sup
∈R

N
(
( s+(1− )t)eix+( − ( s+(1− )t))e−ix∗

)
= sup

∈R

N
(
 seix+  ( − s)e−ix∗ +(1− ) teix+(1− )( − t)e−ix∗

)
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�  sup
∈R

N
(
sei x+( − s)e−ix∗

)
+(1− ) sup

∈R

N
(
teix+( − t)e−ix∗

)
=  v(N,(s,−s)) (x)+ (1− )v(N,(t,−t)) (x)

=  f (s)+ (1− ) f (t) .

Therefore, f is convex on [0, ] . From property of convex function it follows that f is
continuous on (0, ) . In view of (2.10), we have

0 � N (x)− v(N,(s,−s)) (x) �  −|2s− |
2

N (x) .

Hence f is continuous at s = 0 and s =  , i.e. it is continuous on [0, ] . By Remark
2.11, we have

v(N,(s,−s)) (x) = v(N,(−s,s)) (x
∗) = v(N,(−s,s)) (x) .

It follows that f (s) = f ( − s) . Thus f is symmetric about s = 
2 . In other words, f

is decreasing on [0, 2 ] and increasing on [2 , ] . Therefore, we get that f attains its
minimum at s = 

2 and its maximum at s = 0, s =  . This completes the proof. �

As an immediate consequence of Theorem 2.15, we obtain the following result.

COROLLARY 2.16. If N(·) is a self-adjoint norm on A ,  is a positive real num-

ber. Then for every x ∈ A , v(N,(s,−s)) (x) � v(N,(t,−t)) (x) if and only if
∣∣∣s− 

2

∣∣∣ �∣∣∣t − 
2

∣∣∣ .
Proof. From Theorem 2.15, f is symmetric about s = 

2 , i.e. f is decreasing on

[0, 2 ] and increasing on [2 , ] . Thus Corollary 2.16 is obviously true. �

REMARK 2.17. Let N(·) is the C∗ -norm ‖·‖ in Theorem 2.15. Since C∗ -norm
‖·‖ is a self-adjoint norm on A . Thus the function f (s) = v(s,−s) (x) is convex con-

tinuous function on [0, ] , and that the minimum of f is f
(

2

)
and the maximum of

f is f (0) , f ( ) . Then we have

v(x) � v(s,−s) (x) �  ‖x‖ .

REMARK 2.18. In Remark 2.17, let s =  , t = 1−  , where 0 �  � 1. Hence,
the function f () = v (x) is convex continuous function on [0,1] , and the following
inequality holds:

v(x) � v (x) � ‖x‖ .

Now, we are in a position to state other useful representations of v(N,(s,t)) (·) .
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THEOREM 2.19. Let N(·) be a norm on A and x ∈ A . Then we have

v(N,(s,t)) (x) =
1
2

sup
 ,∈R

N
(
R(s,t)

((
ei − iei

)
x
))

.

Proof. Let N(·) be a norm on A and x ∈ A . We have

v(N,(s,t)) (x) =
1
2

sup
∈R

N
(
R(s,t)

(
eix

)
+R(s,t)

(
eix

))
=

1
2

sup
∈R

N
(
R(s,t)

(
eix

)
+I(s,t)

(
ei( 

2 +)x
))

� 1
2

sup
 ,∈R

N
(
R(s,t)

(
eix

)
+I(s,t)

(
eix

))

=
1
2

sup
 ,∈R

N
(
s
(
ei − iei

)
x+ t

((
ei − iei

)
x
)∗)

=
1
2

sup
 ,∈R

N
(
R(s,t)

((
ei − iei

)
x
))

� 1
2

sup
 ,∈R

v(N,(s,t))

((
ei − iei

)
x
)

=
1
2

sup
 ,∈R

∣∣∣ei − iei
∣∣∣v(N,(s,t)) (x)

=
v(N,(s,t)) (x)

2
sup
 ,∈R

√
2−2sin( −)

= v(N,(s,t)) (x) .

Hence, we have

v(N,(s,t)) (x) =
1
2

sup
 ,∈R

N
(
R(s,t)

((
ei − iei

)
x
))

. �

REMARK 2.20. When N(·) is the C∗ -norm ‖·‖ in Theorem 2.19, for every x∈A
the following equality holds:

v(s,t) (x) =
1
2

sup
 ,∈R

∥∥∥R(s,t)

((
ei − iei

)
x
)∥∥∥ .

REMARK 2.21. In Remark 2.20, let s =  , t = 1−  , where 0 �  � 1. Then for
every x ∈ A , the following equality holds:

v (x) =
1
2

sup
 ,∈R

∥∥∥R

((
ei − iei

)
x
)∥∥∥ .

In the following theorem, we present an expression of v(N,(s,t)) (x) in terms of the
real and imaginary of x ∈ A .
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THEOREM 2.22. Let N(·) be a norm on A and x ∈ A . For , ∈ R , we have

v(N,(s,t)) (x)

= sup
2+ 2=1

N
(
R(s,t) (x)+I(s,t) (x)

)
= sup

2+ 2=1
N ((s+ t)(R(x)+I(x))+ i(s− t)(I(x)−R(x))) .

Proof. Let  ∈ R . Put  = cos and  = −sin , we have

sei x+ te−ix∗ = s(cos + isin)x+ t (cos − isin )x∗

= cos (sx+ tx∗)− sin (−six+ tix∗)
= R(s,t) (x)+I(s,t) (x) .

Therefor, we have

N(sei x+ te−ix∗) = N
(
R(s,t) (x)+I(s,t) (x)

)
.

Taking the supremum over  ∈ R in the above equality, we obtain

v(N,(s,t)) (x) = sup
2+ 2=1

N
(
R(s,t) (x)+I(s,t) (x)

)
.

Using Proposition 1.1 (ii) and (iii), we get

v(N,(s,t)) (x)

= sup
2+ 2=1

N
(
R(s,t) (x)+I(s,t) (x)

)
= sup

2+ 2=1
N ((s+ t)(R(x)+I(x))+ i(s− t)(I(x)−R(x))) . �

REMARK 2.23. When N(·) is the C∗ -norm ‖·‖ in Theorem 2.22, for every x∈A
and , ∈ R , we have

v(s,t) (x)

= sup
2+ 2=1

∥∥R(s,t) (x)+I(s,t) (x)
∥∥

= sup
2+ 2=1

‖(s+ t)(R(x)+I(x))+ i(s− t)(I(x)−R(x))‖ .

REMARK 2.24. In Remark 2.23, let s =  , t = 1−  , where 0 �  � 1. Then for
every x ∈ A and , ∈ R , we have

v (x)

= sup
2+ 2=1

∥∥R (x)+I (x)
∥∥

= sup
2+ 2=1

‖R(x)+I(x)+ i(2−1)(I(x)−R(x))‖ .
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In the following result, a upper bound of v(N,(s,t)) (x) in terms of the real and
imaginary of x ∈ A is given.

THEOREM 2.25. Let N(·) be a norm on A and x ∈ A . Then

v(N,(s,t)) (x) �
√

2(s2 + t2) inf
∈R

√
N2 (R(eix))+N2 (I(eix)).

Proof. Let , ∈ R be such that 2 + 2 = 1. Then clearly

N ((s+ t)(R(x)+I(x))+ i(s− t)(I(x)−R(x)))
= N (mR(x)+nI(x)) ,

where m =  (s+ t)− i (s− t) and n =  (s+ t) + i (s− t) . By using triangle in-
equality and Cauchy-Buniakowsky-Schwarz inequality, respectively, we get

N (mR(x)+nI(x)) � |m|N (R(x))+ |n|N (I(x))

�
√
|m|2 + |n|2

√
N2 (R(x))+N2 (I(x)).

By simple calculations, we obtain |m|2 + |n|2 = 2
(
s2 + t2

)
. Hence we get

N ((s+ t)(R(x)+I(x))+ i(s− t)(I(x)−R(x)))

�
√

2(s2 + t2)
√

N2 (R(x))+N2 (I(x)).

Taking the supremum over all , ∈ R such that 2 + 2 = 1, and taking Theorem
2.22 into account, we get

v(N,(s,t)) (x) �
√

2(s2 + t2)
√

N2 (R(x))+N2 (I(x)). (2.13)

Replacing x by eix in (2.13), we get the desired result. �

REMARK 2.26. When N(·) is the C∗ -norm ‖·‖ in Theorem 2.25, for x ∈ A , we
have

v(s,t) (x) �
√

2(s2 + t2) inf
∈R

√
‖R(eix)‖2 +‖I(ei x)‖2

.

REMARK 2.27. Let s =  , t = 1−  in Remark 2.26, where 0 �  � 1. We get

v (x) �
√

4 (−1)+2 inf
∈R

√
‖R(eix)‖2 +‖I(ei x)‖2

.

In the next theorem, we give a lower bound for the v(N,(s,t)) (x) .
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THEOREM 2.28. Let N(·) be an algebra norm on A and x ∈ A . Then

stN (xx∗ + x∗x)+
1
2

sup
∈R

∣∣∣N2
(
R(s,t)

(
eix

))
−N2

(
I(s,t)

(
eix

))∣∣∣ � v2
(N,(s,t)) (x) .

Proof. Let  ∈ R . By simple calculations, we obtain

R2
(s,t)

(
eix

)
+I2

(s,t)

(
eix

)
= 2st (xx∗ + x∗x) .

It follows from Definition 2.1 and Theorem 2.3 that

v(N,(s,t)) (x) � max
{

N
(
R(s,t)

(
eix

))
,N

(
I(s,t)

(
eix

))}
.

Thus, we have

v2
(N,(s,t)) (x)

� max
{

N2
(
R(s,t)

(
eix

))
,N2

(
I(s,t)

(
eix

))}
=

N2
(
R(s,t)

(
eix

))
+N2

(
I(s,t)

(
eix

))
2

+

∣∣N2
(
R(s,t)

(
eix

))−N2
(
I(s,t)

(
eix

))∣∣
2

�
N

(
R2

(s,t)

(
eix

))
+N

(
I2

(s,t)

(
eix

))
2

+

∣∣N2
(
R(s,t)

(
eix

))−N2
(
I(s,t)

(
eix

))∣∣
2

(since N(·) is an algebra norm)

�
N

(
R2

(s,t)

(
eix

)
+I2

(s,t)

(
ei x

))
2

+

∣∣N2
(
R(s,t)

(
ei x

))−N2
(
I(s,t)

(
ei x

))∣∣
2

= stN (xx∗ + x∗x)+

∣∣N2
(
R(s,t)

(
eix

))−N2
(
I(s,t)

(
eix

))∣∣
2

.

Whence

stN (xx∗ + x∗x)+
1
2

sup
∈R

∣∣∣N2
(
R(s,t)

(
eix

))
−N2

(
I(s,t)

(
eix

))∣∣∣ � v2
(N,(s,t)) (x) . �

REMARK 2.29. When N(·) is the C∗ -norm ‖·‖ in Theorem 2.28, for x ∈ A , we
have

st ‖xx∗ + x∗x‖+
1
2

sup
∈R

∣∣∣∣∥∥∥R(s,t)

(
eix

)∥∥∥2−
∥∥∥I(s,t)

(
eix

)∥∥∥2
∣∣∣∣ � v2

(s,t) (x) .

REMARK 2.30. Let s =  , t = 1−  in Remark 2.29, where 0 �  � 1. We get

 (1− )‖xx∗ + x∗x‖+
1
2

sup
∈R

∣∣∣∣∥∥∥R

(
eix

)∥∥∥2−
∥∥∥I

(
eix

)∥∥∥2
∣∣∣∣ � v2

 (x) .
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3. Additional results of v(s,t) (·)

In this Section, some results for v(s,t) (·) are given. As a special case of norm
v(s,t) (·) , some results involving the weighted algebraic numerical radius v (·) are also
presented.

Below we give a useful lemma for proving the latter theorem.

LEMMA 3.1. Let  be a state over A . For x ∈ A , the following statements hold.
(i) sup

∈R

∣∣R(s,t)
(
ei (x)

)∣∣ = (s+ t) | (x)| .
(ii) sup

∈R

∣∣I(s,t)
(
ei (x)

)∣∣ = (s+ t) | (x)| .

Proof. We may assume that (x) �= 0 otherwise (i) and (ii) trivially hold.

1. Put ei0 = (x)
|(x)| . Then we have

(s+ t) | (x)| =
∣∣∣R(s,t)

(
ei0 (x)

)∣∣∣ � sup
∈R

∣∣∣R(s,t)

(
ei (x)

)∣∣∣
� (s+ t) sup

∈R

∣∣∣ei (x)
∣∣∣ = (s+ t) | (x)| .

Therefore, we obtain

sup
∈R

∣∣∣R(s,t)

(
ei (x)

)∣∣∣ = (s+ t) | (x)| .

2. Replacing x in (i) by ix . By using Proposition 1.1 (i), we get

sup
∈R

∣∣∣I(s,t)

(
ei (x)

)∣∣∣ = sup
∈R

∣∣∣R(s,t)

(
ei (ix)

)∣∣∣
= (s+ t) | (ix)| = (s+ t) | (x)| .

Hence we have

sup
∈R

∣∣∣I(s,t)

(
ei (x)

)∣∣∣ = (s+ t) | (x)| . �

REMARK 3.2. What we need to mention here is that Lemma 3.1 generalizes [23,
Lemma 2.1]

The next result establishes that v(s,t) (·) and v(·) are two equivalent norm on A .

THEOREM 3.3. Let x ∈ A , the following inequalities hold.

(s+ t)v(x) � v(s,t) (x) � 2max{s,t}v(x) .
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Proof. Let x ∈ A . By Lemma 3.1, we have

(s+ t)v(x) = (s+ t) sup
∈S (A)

| (x)| = sup
∈S (A)

sup
∈R

∣∣∣R(s,t)

(
ei (x)

)∣∣∣
= sup

∈S (A)
sup
∈R

∣∣∣ (
R(s,t)

(
eix

))∣∣∣
= sup

∈R

sup
∈S (A)

∣∣∣ (
R(s,t)

(
eix

))∣∣∣
= sup

∈R

v
(
R(s,t)

(
eix

))
� sup

∈R

∥∥∥R(s,t)

(
eix

)∥∥∥ = v(s,t) (x) ,

and hence

(s+ t)v(x) � v(s,t) (x) . (3.1)

On the other hand, using Proposition 1.1 (ii) , we have

v(s,t) (x) = sup
∈R

∥∥∥R(s,t)

(
eix

)∥∥∥
= sup

∈R

∥∥∥(s+ t)R
(
ei x

)
+ i(s− t)I

(
eix

)∥∥∥
� (s+ t) sup

∈R

∥∥∥R
(
eix

)∥∥∥+ |s− t| sup
∈R

∥∥∥I
(
eix

)∥∥∥
= (s+ t)v(x)+ |s− t|v(x)
= (s+ t + |s− t|)v(x) = 2max{s, t}v(x) .

Therefore, we obtain

v(s,t) (x) � 2max{s,t}v(x) . (3.2)

Now, from (3.1) and (3.2), we deduce the desired result. �

REMARK 3.4. Let s =  , t = 1−  in Theorem 3.3, where 0 �  � 1. We obtain
inequalities involving the weighted algebraic numerical radius, that is,

v(x) � v (x) � 2max{,1− }v(x) .

Recall that a character on a commutative C∗ -algebra A is a non-zero homomor-
phism  : A → C . We denote by Â the set of characters. Now, we prove a lemma that
we need in what follows.

LEMMA 3.5. Let A be a commutative C∗ -algebra. For x ∈ A , we have

(s+ t)‖x‖ = v(s,t) (x) = sup{(s+ t) | (x)| :  ∈ Â}.
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Proof. Since A is commutative, then v(x) = ‖x‖ for any x ∈ A . This together
with (2.11) and Theorem 3.3 allow us to conclude. In fact, one can say a little bit more
that: v(s,t) (x) = (s+ t)‖x‖ for any normal element x ∈ A without assuming that A is
commutative. �

Analogously to the usual numerical index [8], we define weighted algebra numer-
ical index of A by

n (A) = inf{v (x) : x ∈ A,‖x‖ = 1}.

We can state the following results.

THEOREM 3.6. The following statements hold.
(i) max{,1− } � n (A) � 1 .
(ii) If A is commutative then n (A) = 1 .

Proof. (i) According to (2.12), it is easy to deduce the desired result.
(ii) It follows immediately from Lemma 3.5. �
In [24], the numerical radius Crawford number of x ∈ A is defined by

C (x) = inf {| (x)| :  ∈ S (A)} .

The following Proposition 3.7, as a generalization of [24, Proposition 2], gives a large
family of elements satisfying C (x) > 0.

PROPOSITION 3.7. Let x ∈ A with v(s,t) (x) < s+ t . If y = e+ x , then C (y) > 0 .

Proof. Since v(s,t) (x) < s+ t , thus there is a positive number  ∈ [0,1) such that
v(s,t) (x) � (s+ t) < s+ t . From the first inequality of Theorem 3.3, for  ∈ S (A) ,
we have

| (y)| = | (e)+ (x)| � | (e)|− | (x)| � 1− v(s,t) (x)
s+ t

� 1− .

Taking the infimum over  ∈ S (A) , we get C (y) � 1− , Thus C (y) > 0. �
Let s =  , t = 1−  in Proposition 3.7, where 0 �  � 1. We have the following

remark.

REMARK 3.8. Let x ∈ A with v (x) < 1. If y = e+ x , then C (y) > 0.
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