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Abstract. For entire functions f and g , we study the problem of when the mixed products
of Toeplitz and Hankel operators Hf Tg is bounded or compact on the Fock-Sobolev spaces

Fp,m(Cn) with 1 � p <  . This is a companion to Sarason’s Toeplitz product problem which
was completely solved for the Fock space by Cho-Park-Zhu in 2014. Our results here completely
characterize the bounded and compact mixed product Hf Tg on the Fock-Sobolev space.

1. Introduction

Let C
n be n dimensional complex vector space and dv be the ordinary volume

measure on Cn . If z = (z1, · · · ,zn) and w = (w1, · · · ,wn) are points in Cn , we write

z ·w =
n


j=1

z jw j, |z| = (z · z) 1
2 .

For any 1 � p <  , Lp
g denotes the space of Lebesgue measurable functions f on Cn

such that the function f (z)e−
|z|2
2 is in Lp(Cn,dv) . The Fock space F p is a subspace of

Lp
g(Cn,dv) consisting of all entire functions f on Cn such that

‖ f‖p =
(
(

p
2

)n
∫

Cn
| f (z)e− |z|2

2 |pdv(z)
) 1

p
< .

For an n− tuple  = (1,2, · · · ,n) of non-negative integers and z ∈ Cn, we write

|| = 1 + · · ·+n, ! = 1! · · ·n!,  = 1
1 · · ·n

n , z = z1
1 · · · zn

n ,

where  j denotes the partial differentiation with respect to the j− th component.
For any non-negative integer m , we consider the Fock-Sobolev space Fp,m con-

sisting of all entire functions f on Cn such that

‖ f‖p,m := 
| |�m

‖ f‖p < ,
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where ‖ · ‖p is the norm in F p and  f is the  -th order derivative of f .
Let Lp,m

g denote the space of Lebesgue measurable functions f on Cn such that
the function |z|m f is in Lp

g . It follows from the mean-value property of subharmonic
functions (see [26] for example) that F p,m is a closed subspace of Lp,m

g . The orthogonal
projection Pm : Lp,m

g → F p,m is defined by

Pm f (w) = 2,m,n

∫
Cn

f (z)Km(w,z)e−|z|2 |z|2mdv(z),

where Km(z,w) is the reproducing kernel of the Fock-Sobolev space F2,m . It is proved
in [6] that Pm is a bounded projection from Lp,m

g onto F p,m . There are some research
about Fock-Sobolev spaces, see [2–4, 6, 9, 11, 23]

Moreover, for any 1 � p <  it is easily checked Km(z,w) as a function of z is
also in F p,m(Cn) . It yields from [6] that the set of all finite linear combinations of
kernel functions is dense in F p,m(Cn) . Then for  ∈ F p,m(Cn) , the Toeplitz operator
T can be densely defined as

T f (w) = 2,m,n

∫
Cn
(z) f (z)Km(w,z)e−|z|2 |z|2mdv(z), z ∈ C

n, f ∈ F p,m,

and the Hankel operator H : F2,m −→ (F2,m)⊥ is also densely defined by

H = (I−Pm)( f ).

The study of Hankel and Toeplitz operators is an active area of research over the
past few decades, see [8, 17, 26]. Because researchers often consider the operators
T and H side-by-side, a new term has been invented to refer to mixed products of
Toeplitz and Hankel operators, that is, “Haplitz operators” or “Ha-plitz operators”.

Originally, Sarason’s Toeplitz product problem was raised by Sarason in [18]:
characterize functions f and g in the Hardy space H2 such that the Toeplitz prod-
uct Tf Tg is bounded on H2 . Sarason’s Toeplitz product conjecture was offered in [18],
in terms of the boundedness of the function

|̃ f |2(z)|̃g|2(z),
where f̃ denotes the so-called Berezin transform of f . It was eventually shown to be
false, both for Hardy space and Bergman space, see [1, 15]. Furthermore, Sarason’s
Toeplitz product problem was partially solved for the Hardy and Bergman spaces in
[1, 15, 21, 25]. Somewhat surprisingly, Sarason’s conjecture is true for classical Fock
space and Fock-sobolev space, see [5, 7, 19]. Cho, Park, and Zhu completely solved
Sarason’s product problem for the classical Fock space F2

 and general Fock spaces F p


in [5], which was also generalized to the Fock-sobolev space in [7].
As companions to Sarason’s Toeplitz product problem are the following two anal-

ogous problems, which have been studied in the literature (see [2, 14, 19, 22, 24]):
(P1) characterize functions f and g in each of the Hardy, Bergman, Fock, and

Fock-Sobolev spaces such that the Hankel product H∗
f
Hg is bounded (or compact). It

is natural to conjecture that H∗
f
Hg is bounded if and only if the function

[|̃ f |2(z)−| f (z)|2][|̃g|2(z)−|g(z)|2]
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is bounded.
(P2) characterize functions f and g in each of the Hardy, Bergman, Fock, and

Fock-Sobolev spaces such that the mixed product Hf Tg is bounded. It is also natural to
conjecture that Hf Tg is bounded if and only if the function

D( f ,g)(z) := |g(z)|2[|̃ f |2(z)−| f (z)|2]
is bounded.

Some scholars guess that Sarason’s conjecture for Hankel products is probably
false for the Hardy and Bergman and Fock spaces in [1,15]. Ma-Yan-Zheng-Zhu in [14]
discovered that the conjecture for Hankel product problem was false for the Fock space.
Although the conjecture for Haplitz product on Hardy and Bergman is still open, it is
completely solved on the Fock spaces. In [22], Stroethoff and Zheng study the problem
for the mixed product Hf Tg on Bergman space. Also they gave a sufficient condition
and a necessary condition, and proposed the conjecture in (P2) for the Bergman space.

In [13], the elementary explicit condition was given for the symbol functions f
and g in F2

 (C) such that Hf Tg is bounded on F2
 (C) . The analogue problem to Fock-

Sobolev space F2,m(Cn) was proposed in [16].
The main contribution of this paper is to show that Sarason’s conjecture for the

Haplitz product problem is true on the Fock-Sobolev space Fp,m(Cn) with 1 � p < .
The most critical part in our proof is that we make full use of some properties of the
Fock-Sobolev space F p,m(Cn) and find that there exist t1,t2 > 0 such that F2,m

t1 ⊆
Fp,m ⊆ F2,m

t2 . Our main result is stated as follows.

THEOREM 1. (Main) Given 1 � p < . Suppose that f and g are functions
in the Fock-Sobolev space Fp,m(Cn) . Then the Haplitz product Hf Tg is bounded on

Fp,m(Cn) if and only if one of the following conditions holds.

(a) f is constant.

(b) g is identically zero.

(c) f is a linear polynomial, and g is a nonzero constant.

(d) There exist a nonzero complex constant C and a complex linear polynomial q
such that

f = eq, g = Ce−q.

2. Preliminaries

Throughout the paper, we write X �Y for non-negative quantities X and Y when-
ever there is a constant C > 0 (independent of the parameters in X and Y ) such that
X � CY. Similarly, we write X ≈ Y if X � Y and Y � X .

For one fixed non-negative integer m, in the rest of the paper we simply write

Km(z,w) = Kz(w) = K(z,w), km(z,w) = kz(w) = k(z,w),
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where km(z,w) = Km(z,w)
‖Km(z,w)‖ .

If T is a linear operator (not necessarily bounded) on F2,m whose domain contains
the set of all finite linear combinations of reproducing kernel functions in F2,m , then
the Berezin transform of T is defined by

T̃ (z) = 〈Tkz,kz〉, z ∈ C
n.

If f is a Lebesgue measurable function on C satisfying∫
Cn

| f (w)||w|m|Km(z,w)|e−|w|2dv(w) < ,

then the Berezin transform of f is defined by

f̃ (z) = 〈 f kz,kz〉m, z ∈ C
n,

or explicitly,

f̃ (z) = 2,m,n

∫
C

f (w)|kz(w)|2|w|2me−|w|2dv(w).

Actually, f̃ = f if f is an entire function.
It is shown in [6] that f ∈ Fp,m(Cn) if and only if the function z f (z) is in F p

for all multi-indices  with || = m , then the norm in F p,m is defined by

‖ f‖p
p,m = p,m,n

∫
Cn

||z|m| f (z)|e− |z|2
2 |pdv(z),

where

p,m,n =
( p

2

)( pm
2 )+n (n−1)!

n(( pm
2 )+n)

is a normalizing constant so that the constant function 1 has norm 1 in Fp,m . Specially,
F2,m is a Hilbert space with the inner product

〈 f ,g〉m = w2,m,n

∫
Cn

f (z)g(z)|z|2me−|z|2dv(z), f ,g ∈ F2,m.

In what follows, we give some lemmas which will be used to prove our main result.

LEMMA 1. [6] Given f ∈ F2,m, z,w ∈ Cn . Then

| f (z)| � ‖ f‖2,m
e

1
2 |z|2

(1+ |z|)m

and

|Km(z,w)| � e
1
2 |z|2 + 1

2 |w|2 − 1
8 |z−w|2

(1+ |z||w|)m .
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More specifically, there is a positive constant  such that

|Km(z,w)|e− 1
2 (|z|2+|w|2)(1+ |z|2)m

2 (1+ |w|2)m
2

�|Km(z,z)|e−|z|2(1+ |z|2)m

�1

whenever |z−w|< .

The above lemma implies that each point evaluation is a bounded linear functional
on F2,m .

REMARK 1. Lemma 1 shows that if a nonvanishing function f is in F p,m(Cn) for
1 � p < , then f = eq, where q is a complex polynomial with deg(q) � 2.

The following result derives from [6], which is a basic auxiliary.

LEMMA 2. [6] Given p > 0, b > 0, and a > 0. Then there exists a constant
C = C(a,b) > 0 such that∫

Cn
| f (w)|pe−b|w|2 � C

∫
Cn

| f (w)|p|w|ae−b|w|2dv(w)

for all entire functions f on Cn .

In what follows, we give a relationship between the function in F2,m(Cn) and its
Berezin transform.

LEMMA 3. Suppose f ∈ F2,m. Then

| f (z)|2 � |̃ f |2(z)
for all z ∈ Cn.

Proof. It follows from the Cauchy-Schwarz inequality that

| f (z)|2 �
∫

Cn
| f (w)|2|w|2m|km(z,w)|2e−|w|2d(w)

∫
Cn

|w|2m|km(z,w)|2e−|w|2d(w)

=|̃ f |2(z).
It ends the proof. �

For Sarason’s Toeplitz product problem on Fock-Sobolev space F2,m(Cn) , Chen-
Wang in [7] gave a complete solution as the following.

LEMMA 4. [7] Suppose that f and g are two nonzero functions in the Fock-
Sobolev space F2,m(Cn) . Then the following conditions are equivalent:

(i) The Toeplitz product Tf Tg is bounded on F2,m(Cn) .
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(ii) There exists a complex linear polynomial q(z) on Cn such that f = eq and g =
Ce−q , where C is a nonzero complex constant.

(iii) The product |̃ f |2 |̃g|2 is a bounded function on the complex space Cn .

The next lemma is a key ingredient in our proof of the main theorem.

LEMMA 5. Suppose that f ∈ F2,m(Cn). Then

‖Hf kz‖2 = |̃ f |2(z)−| f (z)|2, z ∈ C
n.

Proof. For any f ∈ F2,m(Cn) and z ∈ Cn , we have Hf kz = (I − P)( f kz) =

( f − f (z))kz. Then

‖Hf kz‖2 =〈| f − f (z)|2kz,kz〉
=〈| f |2kz,kz〉+ 〈| f (z)|2kz,kz〉
−〈 f (z) f kz,kz〉− 〈 f (z) f kz,kz〉
=|̃ f |2(z)−| f (z)|2.

(1)

This ends the proof. �
The identity (1) above will be freely used in the next section without being explic-

itly mentioned. It directly yields the following result.

COROLLARY 1. Suppose f is a linear polynomial and g is a constant function.
Then for all z ∈ C

n

D( f ,g)(z) = C‖Hf kz‖2,

where C is a complex constant.

Qin-Wang gave the following result for F2,m(Cn) .

LEMMA 6. (Proposition 3.4 in [16]) Given f ,g∈F2,m(Cn). Then D( f ,g) is boun-
ded on Cn if and only if one of the following conditions holds.

(a) f is constant.

(b) g is identically zero.

(c) f is a linear polynomial, and g is a nonzero constant.

(d) There are a nonzero constant C and a constant B, and there is a linear polyno-
mial q such that

f = Ceq +B, g = e−q.

We also need the following additional lemma to study the compactness of the
Haplitz products.
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LEMMA 7. [16] Given f ,g ∈ F2,m(Cn). Then the following conclusions are
equivalent.

(a) Hf Tg is compact.

(b) Hf Tg = 0 .

(c) f is constant or g = 0 .

3. Bounded Haplitz products

In this section we will show that Sarason’s conjecture is true for the Haplitz prod-
ucts on Fock-Sobolev space Fp,m(Cn) when 1 � p <  .

Firstly, we introduce some corresponding basic knowledge which will be used in
this section. For any positive parameter t , the weighted Gaussian measure is dt(z) =
e−t|z|2dv(z), and the reproducing kernel for F2

t is Kt(z,w) = etz·w. Let Lp,m
t denote the

space of Lebesgue measurable functions f on Cn such that the function |z|m f (z) is in

Lp(Cn,e−
t p
2 |z|2dv(z)) . And the corresponding Fock-Sobolev spaces Fp,m

t consists of
all entire functions in Lp,m

t . The orthogonal projection Pm : Lp,m
t → F p,m

t is given by

Pm f (w) = 2,n,m,t

∫
Cn

f (z)Km,t (w,z)e−t|z|2 |z|2mdv(z),

where Km,t(z,w) = Km(tz,w) is the reproducing kernel of F2,m
t . Let kt,z denote the

normalization of the kernel Kt,z . Then for any z ∈ Cn,t > 0, we define

Dt( f ,g)(z) = |g(z)|2[|̃ f |2(z)−| f̃ (z)|2],
where f̃ (z) = 〈 f kt,z,kt,z〉m.

The following lemma describes that ‖Hf kz‖ is bounded when f is a linear poly-
nomial.

LEMMA 8. Given t > 0 ,  �= 0 and f = z . If || = 1, then ‖Hf kz‖2,m,t is
bounded.

Proof. Note that 2,m,n,t
∫
Cn |w|2me−t|w|2dv(w) = 1, and a simple calculation gives

that 2,m,n,t = tm+n

n(m+n) . By the definition of Hf kz and the properties of reproducing
kernel kz , we have that

‖Hf kz‖2
2,m,n,t

=n,m,t

∫
Cn

| f (w)− f (z)|2|kz(w)|2|w|2me−t|w|2dv(w)

=
tm+n

Kz(z)

( 


k=0


k=| |




l=0




l=| |

(n+m−1)!(n+ k−1)!
(n−1)!!(n+ k+m−1)!

(n+ l−1)!
 !(n+ l +m−1)!n t | |z t | |z

×
∫

Cn
|w1 − z1|2ww |w|2me−t|w|2dv(w)
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=
tm+n

Kz(z)

( 


k=0


k=| |




l=0




l=| |

(n+m−1)!(n+ k−1)!
(n−1)!!(n+ k+m−1)!

(n+ l−1)!
 !(n+ l +m−1)!n t | |z t | |z

×2n
∫ 

0
r2n−1dr

∫
S
|r  − z1|2r2m+k+1e−tr2


d( )

)
=

2ntm+n

Kz(z)

( 


k=0


k=| |




l=0




l=| |

(n+m−1)!(n+ k−1)!
(n−1)!!(n+ k+m−1)!

(n+ l−1)!
 !(n+ l+m−1)!n t | |z t | |z

×
∫ 

0
r2n+k+l+2m−1e−tr2dr

∫
S

(
r2|  |2− z1r  − z1r


+ |z1|2

)


d( )

)
=

tm+n

Kz(z)

( 


k=0


k=| |

(n+m−1)!(n+ k−1)!
(n−1)!!(n+ k+m−1)!

(n+ k+m)(1 +1)
(n+ k)

t2k|z |2

−



k=0


k=| |

(n+m−1)!(n+ k−1)!
(n−1)!!(n+ k+m−1)!

1(n+ k+m−1)
(n+ k−1)

t2k|z |2

−



k=0


k=| |

(n+m−1)!(n+ k−1)!
(n−1)!!(n+ k+m−1)!

t2k|z |2|z1|2

+



k=0


k=| |

(n+m−1)!(n+ k−1)!
(n−1)!!(n+ k+m−1)!

t2k|z |2|z1|2
)

=
tm+n

Kz(z)




k=0


k=| |

(n+m−1)!(n+ k−1)!
(n−1)!!(n+ k+m−1)!

t2k|z |2

×
((n+ k+m)(1 +1)

(n+ k)
− 1(n+ k+m−1)

(n+ k−1)

)
=

tm+n

Kz(z)




k=0


k=| |

(n+m−1)!(n+ k−1)!
(n−1)!!(n+ k+m−1)!

t2k|z |2

×
(
(1 +1)(1+

m
n+ k

)−1(1+
m

n+ k−1
)
)

=
tm+n

Kz(z)




k=0


k=| |

(n+m−1)!(n+ k−1)!
(n−1)!!(n+ k+m−1)!

t2k|z |2
(
1+

m(n+ k−1−1)
(n+ k−1)(n+ k)

)
=

tm+n

Kz(z)
(n+m−1)!

(n−1)!




k=0


k=| |

(n+ k−1)!
!(n+ k+m−1)!

t2k|z |2
(
1+

m(n+ k−1−1)
(n+ k−1)(n+ k)

)
,

(2)

where the above equation yields from the fact that (s) =
∫ 
0 xs−1e−xdx and (n+1) =

n! . Since

1 � 1+
m(n+ k−1−1)
(n+ k−1)(n+ k)

� 1+
m

n+ k
� 1+m,

then (2) shows that

‖Hf kz‖2 � tm+n

Kz(z)
(n+m−1)!

(n−1)!




k=0


k=| |

(n+ k−1)!
!(n+ k+m−1)!

t2k|z |2(1+m). (3)
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Note that

Kz(z) =
(n+m−1)!

(n−1)!




k=0


k=| |

(n+ k−1)!
!(n+ k+m−1)!

t2k|z |2.

Thus (3) shows that
‖Hf kz‖2

2,m,t � tm+n(1+m),

which implies that ‖Hf kz‖2,m,t is bounded. �

Similar to the proof of Lemma 3.4 in [16], we get the following conclusion.

PROPERTY 1. Given t > 0 and f ,g∈ F2,m
t (Cn). Then Dt( f ,g) is bounded on C

n

if and only if one of the following conditions holds:

(a) f is constant.

(b) g is identically zero.

(c) f is a linear polynomial, and g is a nonzero constant.

(d)
f = eq, g = Ce−q,

where C is a nonzero complex constant and q is a complex linear polynomial.

Proof. It is obvious that Dt( f ,g)(z) = 0 if (a) or (b) holds. From Lemma 5 and
Corollary 1 and Lemma 8, we have (c) implies that Dt( f ,g) is bounded on Cn . Assume
f (z) = eq(z) , g(z) = e−q(z). Given any t > 0. By Lemma 1, for any z,w ∈ C

n it is easily
seen that

|Km,t(z,w)| � e
t
2 |z|2 + t

2 |w|2 − 1
8 |z−w|2

(1+ |z||w|)m , Km,t (z,z) =
et|z|2

1+ |z|2m . (4)

Then by a simple calculation, we have that

|̃ f |2(z)−| f̃ (z)|2 =2,n,m,t

∫
Cn

|eq(w)− eq(z)|2|kz(w)|2|w|2me−t|w|2dv(w)

�|eq(z)|2
∫

Cn
|e−q(w)−1|2e− 1

4 |w|2dv(w),

where the last equality yields from Lemma 1 and (4). It is easily got that∫
Cn

|e−q(w)−1|2e− 1
4 |w|2dv(w) < ,

then
|̃ f |2(z)−| f̃ (z)|2 � |eq(z)|2.
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By the same way, we get that

|̃g|2(z) =2,n,m,t

∫
Cn

|e−q(w)|2|kz(w)|2|w|2me−t|w|2dv(w)

�|e−q(z)|2
∫

Cn
|eq(w)−1|2e− 1

4 |w|2dv(w)

�|e−q(z)|2.
Then

|̃g|2(z)(|̃ f |2(z)−| f̃ (z)|2) � |eq(z)|2|e−q(z)|2 < .

Moreover, Lemma 3 implies that |g(z)|2 � |̃g|2(z). Then

Dt( f ,g)(z) =|g(z)|2(|̃ f |2(z)−| f̃ (z)|2)
�|̃g|2(z)(|̃ f |2(z)−| f̃ (z)|2)
<.

Thus Dt( f ,g) is bounded on Cn if (d) holds.
The proof of the necessity is completely the same as Lemma 6 which was proved

in [16]. It ends the proof. �
From Lemma 2, for the pointwise estimates of the functions in F2,m

t , we get the
following result, as one would expect.

PROPERTY 2. Given t > 0 and 0 < p <  . If f is an entire function, then

| f (z)| � ‖ f‖p,m,t
e

t|z|2
2

(1+ |z|)m

holds for any z ∈ Cn .

Proof. From the subharmonicity of the function w �→ | f (z+w)e−aw·z|p , we have
that

| f (z)|p �
∫
|w|<r

| f (z+w)e−tw·z |pe− pt
2 |w|2dv(w)

=e
pt
2 |z|2

∫
|w−z|<r

| f (w)|pe− pt
2 |w|2dv(w).

As |z| < r+ |w| for |w− z| < r, we have

| f (z)|p(1+ |z|)pme−
pt
2 |z|2 �C

∫
|w−z|<r

| f (w)|p(1+ r+ |w|)pme−
pt
2 |w|2dv(w)

�
∫
|w−z|<r

| f (w)|p(1+ |w|)pme−
pt
2 |w|2dv(w)

�
∫

Cn
| f (w)|p(1+ |w|)pme−

pt
2 |w|2dv(w),

(5)
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where the suppressed constant depends only m,r. Since (1 + |w|)pm � C(1 + |w|pm) ,
then it yields from (5) and Lemma 2 that

| f (z)|p(1+ |z|)pme−
pt
2 |z|2 �

∫
Cn

| f (w)|pe− pt
2 |w|2dv(w)

+
∫

Cn
| f (w)|p|w|pme−

pt
2 |w|2dv(w)

�C1

∫
Cn

| f (w)|p|w|pme−
pt
2 |w|2dv(w)

+C2

∫
Cn

| f (w)|p|w|pme−
pt
2 |w|2dv(w)

�C3

∫
Cn

| f (w)|p|w|pme−
pt
2 |w|2dv(w),

where C3 = max{C1,C2} . This implies that

| f (z)|p(1+ |z|)pme−
pt
2 |z|2 � ‖ f‖p,m,t .

Then the desired result follows that

| f (z)| � ‖ f‖p,m,t
e

t|z|2
2

(1+ |z|)m .

It ends the proof. �
Moreover, the following lemma gives a relationship between that the norm of func-

tions in Lp,m and the norm of functions in L2,m
t .

PROPERTY 3. Given 1 � p < . Then there exist 0 < t1 < 1 and t2 > 1 such that

‖ f‖2,m,t2 � ‖ f‖p,m � ‖ f‖2,m,t1 , f ∈ F p,m.

Proof. For any t > 0, Proposition 2 implies that the following pointwise estimate

| f (z)| � ‖ f‖2,m,t
e

t|z|2
2

(1+ |z|)m

for any entire function f . Then, it follows that

n,p,m

∫
Cn

||z|m| f (z)|e− |z|2
2 |pdv(z)

�n,p,m

∫
Cn

‖ f‖p
2,m,t

e
pt
2 |z|2

(1+ |z|)mp |z|mpe−
p|z|2

2 dv(z)

�n,p,m‖ f‖p
2,m,t

∫
Cn

(
|z|

1+ |z|)
mpe

(t−1)p|z|2
2 dv(z)

�n,p,m‖ f‖p
2,m,t

∫
Cn

e
(t−1)p|z|2

2 dv(z),

(6)
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where the second inequality yields from Lemma 2. Take 0 < t1 = t < 1, then

∫
Cn

e
(t1−1)p|z|2

2 dv(z) < ,

which coupled with (6) imply that

‖ f‖p
p,m =n,p,m

∫
Cn

||z|m| f (z)|e− |z|2
2 |pdv(z)

�‖ f‖p
2,m,t .

Thus it yields that there exist 0 < t1 < 1 and a positive constant C1 > 0 such that

‖ f‖p,m � C1‖ f‖2,m,t1

for all entire functions f .
Moreover, using Proposition 2 again, we also have that

n,2,m

∫
Cn

||z|m f (z)|2e−t2|z|2dv(z)

�n,2,m

∫
Cn

|z|2m‖ f‖2
p,m

e|z|2

(1+ |z|)2me−t2|z|2dv(z)

�‖ f‖2
p,m

∫
Cn

e(1−t2)|z|2dv(z).

Taking t2 > 1, then
∫
Cn e(1−t2)|z|2dv(z) < . Thus

‖ f‖2,m,t2 � C2‖ f‖p,m.

This ends the proof. �

The following result follows directly from Proposition 3.

COROLLARY 2. If 1 � p <, then there exist 0 < t1 < 1 and t2 > 1 such that

F2,m
t1 ⊆ F p,m ⊆ F2,m

t2 .

Using Lemma 4, we have the following result for Sarason’s Toeplitz product prob-
lem on Fock-Sobolev space Fp,m(Cn).

PROPERTY 4. Suppose that f and g are two nonzero functions in the Fock-Sobolev
space F p,m(Cn). Then the Toeplitz product Tf Tg is bounded on F p,m(Cn) if and only
if there exists a complex linear polynomial q on Cn and a nonzero complex scalar C
such that f = eq and g = Ce−q .
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Proof. If Tf Tg is bounded on F p,m(Cn) , then the Berezin transform T̃f Tg(z) is
also bounded on Cn . It is easily seen that T ∗

f = Tf . More specially, for any given

function f which belongs to the Fock-Sobolev space F2,m(Cn), we have that

Tf Kz(w) =〈Tf Kz,Kw〉m
=〈Kz,Tf Kw〉m
=〈 f Kw,Kz〉m
= f (z)Kz(w).

(7)

Then it follows that

T̃f Tg(z) =〈Tf Tgkz,kz〉m
=g(z)〈 f kz,kz〉m
= f (z)g(z).

Since each kz is a unit vector, it follows from the Cauchy-Schwartz inequality that

| f (z)g(z)| � ‖Tf Tg‖

for all z ∈ Cn. Then Liouville’s theorem shows that there exists a constant C such that
f g = C . Since neither f nor g is identically zero, we have C �= 0. Then, both f and g
are non-vanishing. By Remark 1, there exists a complex polynomial q(z) on Cn with
deg(q) � 2 such that f = eq and g = Ce−q . We claim that deg(q) � 1. Indeed, if
we assume deg(q) = 2, then we can write q(z) = bz2 +az+ c for convenience, where
b �= 0. In the following we hope that we can reach a contradiction.

By the boundedness of Tf Tg on F p,m(Cn) , the function

T (z,w) =
〈Tf TgKz,Kw〉m√
Kz(z)

√
Kw(w)

is also bounded on C
n×C

n . Then we will show that this is impossible when deg(q) =
2. Combining the fact that T ∗

f = Tf with (7), we have that

〈Tf TgKz,Kw〉m = f (w)g(z)〈Kz,Kw〉m.

Thus,

|T (z,w)| = |C||eq(w)−q(z)| Kz(w)√
Kz(z)

√
Kw(w)

.

Therefore, from the above equality and the properties of reproducing kernel, there exists
a constant 0 > 0 independent of z,w such that for any z,w ∈Cn satisfying |w−z|< 0
we have

|T (z,w)| � |eq(w)−q(z)|.
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Moreover, in view of homogeneous property of b �= 0, we let q2(z) = bz2 and
q1(z) = az+ c . Fix two points  and  in the unit sphere of Cn , then b · �= 0. Let
z = r and w = r + 0

2  , where r is any real positive number. It follows that

q2(w)−q2(z) =b
(
z+

0
2

)2

−bz2

=br0 ·+
2
0

2

4
.

Then we have that there exists a positive constant L dependent 0 but not r such that

|eq(w)−q(z)| = L · exp(br0 ·).

The fact that b · �= 0 implies that T (z,w) cannot be a bounded function on Cn×Cn

as r → . Then the contradiction demostrates that b = 0 and deg(q) � 1. Thus the
polynomial q must be linear.

Moreover, by a simple calculation, it is easily yielded that Tf Tg is bounded on
Fp,m(Cn) if f = eq and g = Ce−q . �

COROLLARY 3. Suppose f = eq and g = e−q with q is a complex linear polyno-
mial. Then the Haplitz product Hf Tg is bounded on F p,m(Cn).

Proof. It is easily seen that f ,g ∈ F p,m. We begin with the identity

H∗
f Hf = Tf f −Tf Tf ,

which is well-known (see [26] for example) and can be verified easily. An application
of this identity gives

(Hf Tg)
∗Hf Tg =TgH

∗
f Hf Tg

=Tg(Tf f −Tf Tf )Tg

=TgTf Tf Tg −TfgTf g

=(Tf Tg)
∗Tf Tg −TfgTf g.

(8)

Since f g = 1, then it follows that Tfg and Tfg are bounded as they are identity op-
erators on F p,m(Cn). Moreover, Proposition 4 implies that Tf Tg is also bounded on
Fp,m(Cn) . Hence, together with (8) we conclude that Hf Tg is bounded on F p,m(Cn).
This ends the proof. �

Next, let us prove our main theorem, which will give the result of Haplitz product
on F p,m(Cn) for 1 � p <  .

THEOREM 2. Given 1 � p <  and f ,g ∈ F p,m(Cn) . Then the Haplitz product
Hf Tg is bounded on F p,m(Cn) if and only if one of the following conditions holds.

(a) f is constant.
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(b) g is identically zero.

(c) f is a linear polynomial, and g is a nonzero constant.

(d) There exist a nonzero complex constant C and a complex linear polynomial q
such that

f = eq,g = Ce−q.

Proof. That condition (a) or (b) implies Hf Tg is bounded on Fp,m follows from
the fact that Hf = 0 for constant functions f and Hf Tg = 0 for g = 0. From Corollary
8.6 in [26], we have that (c) implies that Hf Tg is bounded. Moreover, Corollary 3
shows that (d) implies that Hf Tg is bounded.

Finally, it is sufficient for us to prove the necessity. We divide it into two cases.
Assume Hf Tg is bounded on F p,m(Cn) for 1 � p � 2. As Kz ∈ F p,m(Cn) , thus for all
z ∈ Cn we have kz ∈ Fp,m(Cn), then

‖Hf Tgkz‖p,m < . (9)

It follows from the fact that F p,m(Cn) ⊆ F2,m(Cn) for 1 � p � 2 that

‖Hf Tgkz‖2,m � ‖Hf Tgkz‖p,m. (10)

Therefore, ‖Hf Tgkz‖2,m < directly follows from (9) and (10). On the other hand, (7)

shows that Tf kz = f (z)kz for any z ∈ Cn. These together with Lemma 5 show that

‖Hf Tgkz‖2 =‖g(z)Hf kz‖2 = |g(z)|2‖Hf kz‖2

=|g(z)|2[|̃ f |2(z)−| f̃ (z)|2]
=D( f ,g)(z)
<.

Then Lemma 6 implies that (a) or (b) or (c) or (d) holds.
Assume that Haplitz product Hf Tg is bounded on Fp,m(Cn) for 2 � p <  . As

kz ∈ F p,m(Cn) for all z ∈ Cn, then ‖Hf Tgkz‖p,m is bounded. Proposition 3 and Corol-
lary 2 show that there exists t2 > 0 such that

‖Hf Tgkz‖2,m,t2 � C2‖Hf Tgkz‖p,m < ,

which implies that ‖Hf Tgkz‖2,m,t2 < . Combining Lemma 5 with (7), we can get that

‖Hf Tgkt2,z‖2,m,t2 =‖g(z)Hf kt2,z‖2 = |g(z)|2‖Hf kt2,z‖2

=|g(z)|2[|̃ f |2(z)−| f̃ (z)|2]
=Dt2( f ,g)(z)
<.
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Then Dt2( f ,g)(z) <  . Thus Proposition 1 implies that (a) or (b) or (c) or (d) holds.
Hence the necessity is proved. This completes the proof. �

The following result about the compactness of Hf Tg follows from Lemma 7.

COROLLARY 4. Given 1 � p < and f ,g∈F p,m. Then the following conditions
are equivalent:

(a) Hf Tg is compact.

(b) Hf Tg = 0 .

(c) f is constant or g = 0 .

Inspired by the result of Theorem 2, we can generalize the result to the correspond-
ing Haplitz product problem on the Fock-Sobolv spaces F p,m

t (Cn) for any 1 � p < 
and any t > 0. It is obvious that Theorem 2 is the special case that t = 1. Moreover,
similar to the above analysis process for Theorem 2, we can also give the explicit char-
acterization for the Haplitz product problem on F p,m

t (Cn) for 1 � p < , which is
stated as follows.

COROLLARY 5. Given t > 0 and 1 � p < , f ,g∈F p,m
t (Cn). Then the following

conditions are equivalent:

(i) The Haplitz product Hf Tg is bounded on Fp,m
t (Cn).

(ii) At least one of the following conditions holds:

(a) f is constant.

(b) g is identically zero.

(c) f is a linear polynomial, and g is a nonzero constant.

(d) There exist a nonzero complex constant C and a complex linear polynomial q
such that

f = eq, g = Ce−q.

4. Further results

If we generalize the above conclusions to a more general situation when its weight
becomes a more general weight, we have the following results.

Let dA be the Lebesgue area measure on the complex plane C . Suppose  ∈
C2(C) is a real-valued function and there are two positive numbers M1 and M2 such
that

M10 � ddc � M20,
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where 0 = ddc|z|2, dc =
√−1

4 ( − ). For 1 � p <, the space Lp() is the family
of all Lebesgue measurable functions f on C such that

‖ f‖p, =

(∫
Cn

| f (z)e−(z)|pd(z)

) 1
p

< .

For 0 < p <, Lp() = Lp(C,e−pdA). Moreover, (Lp(),‖·‖p,) is a Banach space
for 1 � p �  , and a quasi-Banach space for 0 < p < 1.

We consider the one-dimensional situation here. Let H(C) be the set of all holo-
morphic functions on C. The weighted Fock space [12] is defined to be

F p() = Lp()∩H(C)

with the norm ‖ · ‖(p,). Notice that F p() is a closed subspace of Lp() , and F p()
is a Banach space for 1 � p �  . This type of weighted Fock spaces was studied by
many authors, see [10, 11, 20] and the references therein. If (z) = 

2 |z|2, > 0, the
standard Fock space is obtained. And when (z) = −m ln(A+ |z|2)+ |z|2 with some
suitable A > 0 and positive integer m , F2() is just the Fock-Sobolev space F2,m.

Let Kz be the reproducing kernel of F2() , and let kz be the normalized repro-

ducing kernel, that is kz(·) = Kz(·)√
K(z,z)

. From [20], the following conclusions hold on

Fp() :

(i) There exist C and  > 0 such that

|K(z,w)|e−(z)e−(w) � Ce− |z−w|

for z,w ∈ C.

(ii) There exists some r > 0 such that

|K(z,w)|e−(z)e−(w) � 1

whenever w ∈ B(z,r) and z ∈ C .

(iii) For 1 � p <  ,

‖Kz(·)‖p, � e(z) �
√

K(z,z), z ∈ C.

The orthogonal projection P from L2() to F2() can be represented as

P f (z) =
∫

C

f (w)K(z,w)e−2(w)dA(w).

With this expression, P can be extended to a bounded linear operator from Lp()) to
Fp() for 1 � p < . Moreover, P f = f for all f ∈ F p() . The set span {Kz : z ∈ C}
is dense in F p() for 1 � p <  . See [20] for more details.

Similar to Corollary 2, for any 1 � p < , it yields that there exist 0 < t1 < 1 and
t2 > 1 such that F2

t1 () ⊆ F p() ⊆ F2
t2 ().Then the following result holds.
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THEOREM 3. Given 1 � p <  and f ,g ∈ F p()(C). Then the following condi-
tions are equivalent.

(i) The Haplitz product Hf Tg is bounded on F p()(C).

(ii) At least one of the following conditions holds:

(a) f is constant.

(b) g is identically zero.

(c) f is a linear polynomial, and g is a nonzero constant.

(d) There are constants a, b , c , and A such that

f (z) = eaz+b +A, g(z) = e−az+c.
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