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MIXED PRODUCTS OF TOEPLITZ AND HANKEL
OPERATORS ON THE FOCK-SOBOLEV SPACES

JUNMEI FAN, L1Uu L1U* AND YUFENG LU

(Communicated by C.-K. Ng)

Abstract. For entire functions f and g, we study the problem of when the mixed products

of Toeplitz and Hankel operators H];Tg is bounded or compact on the Fock-Sobolev spaces
FP™(C") with 1 < p < eo. This is a companion to Sarason’s Toeplitz product problem which
was completely solved for the Fock space by Cho-Park-Zhu in 2014. Our results here completely

characterize the bounded and compact mixed product H ng on the Fock-Sobolev space.

1. Introduction

Let C" be n dimensional complex vector space and dv be the ordinary volume
measure on C". If z=(zy,---,2,) and w = (wy,---,w,) are points in C", we write

n

1

W=y W, |2 =(2-2)7.
=1

For any 1 < p < oo, L% denotes the space of Lebesgue measurable functions f on C"
1%

such that the function f(z)e~ : isin LP(C",dv). The Fock space F? is a subspace of
L% (C" dv) consisting of all entire functions f on C" such that

1

1o = (L) [ 1@e T Pav) <o

21
For an n—tuple ot = (a1, 0, -+, ) of non-negative integers and z € C", we write
o=+ +an, al=a!-o), %= -9, ="z,

where d; denotes the partial differentiation with respect to the j—th component.
For any non-negative integer m, we consider the Fock-Sobolev space F7™ con-
sisting of all entire functions f on C" such that

fllpm =3 19 fllp <o,

|a|<m
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where || - ||, is the norm in F? and d*f is the o -th order derivative of f.

Let L™ denote the space of Lebesgue measurable functions f on C" such that
the function |z|™f is in L% . It follows from the mean-value property of subharmonic
functions (see [26] for example) that F7" is a closed subspace of Ly™ . The orthogonal
projection P, : L™ — FP™ is defined by

Puf (W) = 02 [ F@Kn(m2)e” F [ av(2),

where K, (z,w) is the reproducing kernel of the Fock-Sobolev space F>" . It is proved
in [6] that P, is a bounded projection from L;™ onto FP™. There are some research
about Fock-Sobolev spaces, see [2—4,6,9,11,23]

Moreover, for any 1 < p < e it is easily checked K,,(z,w) as a function of z is
also in FP™(C"). It yields from [6] that the set of all finite linear combinations of
kernel functions is dense in F7”(C"). Then for ¢ € FP™'(C"), the Toeplitz operator
Ty can be densely defined as

Tpf (W) = @2 /(C 0 @Kn(w.2)e FPav(z), zeC”, feFr,

and the Hankel operator H, : F>™ — (F?™) is also densely defined by
Hy = (I—Pn)(9f).

The study of Hankel and Toeplitz operators is an active area of research over the
past few decades, see [8,17,26]. Because researchers often consider the operators
Ty and H, side-by-side, a new term has been invented to refer to mixed products of
Toeplitz and Hankel operators, that is, “Haplitz operators” or “Ha-plitz operators”.

Originally, Sarason’s Toeplitz product problem was raised by Sarason in [18]:
characterize functions f and g in the Hardy space H? such that the Toeplitz prod-
uct TyTg is bounded on H 2 Sarason’s Toeplitz product conjecture was offered in [18],
in terms of the boundedness of the function

IfP@)gl(2),

where f denotes the so-called Berezin transform of f. It was eventually shown to be
false, both for Hardy space and Bergman space, see [1, 15]. Furthermore, Sarason’s
Toeplitz product problem was partially solved for the Hardy and Bergman spaces in
[1,15,21,25]. Somewhat surprisingly, Sarason’s conjecture is true for classical Fock
space and Fock-sobolev space, see [5,7, 19]. Cho, Park, and Zhu completely solved
Sarason’s product problem for the classical Fock space FO% and general Fock spaces F
in [5], which was also generalized to the Fock-sobolev space in [7].

As companions to Sarason’s Toeplitz product problem are the following two anal-
ogous problems, which have been studied in the literature (see [2, 14, 19,22, 24]):

(P1) characterize functions f and g in each of the Hardy, Bergman, Fock, and
Fock-Sobolev spaces such that the Hankel product H;H;, is bounded (or compact). It

is natural to conjecture that Hj—’ﬁHg is bounded if and only if the function

1/12(2) = £ @) PlIglP () — [g(2)]?]
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is bounded.
(P2) characterize functions f and g in each of the Hardy, Bergman, Fock, and
Fock-Sobolev spaces such that the mixed product H T; is bounded. It is also natural to

conjecture that H fT— is bounded if and only if the funct1on

2(£,8)(2) == 18 PIIfP@) — [ f @]

is bounded.

Some scholars guess that Sarason’s conjecture for Hankel products is probably
false for the Hardy and Bergman and Fock spaces in [1,15]. Ma-Yan-Zheng-Zhuin [14]
discovered that the conjecture for Hankel product problem was false for the Fock space.
Although the conjecture for Haplitz product on Hardy and Bergman is still open, it is
completely solved on the Fock spaces. In [22], Stroethoff and Zheng study the problem
for the mixed product H T; on Bergman space. Also they gave a sufficient condition
and a necessary COIldlthIl and proposed the conjecture in (P2) for the Bergman space.

In [13], the elementary explicit condition was given for the symbol functions f
and g in F2(C) such that HT; is bounded on F, 2(C). The analogue problem to Fock-

Sobolev space F2"(C") was proposed in [16].

The main contribution of this paper is to show that Sarason’s conjecture for the
Haplitz product problem is true on the Fock-Sobolev space FP™(C") with 1 < p < eo.
The most critical part in our proof is that we make full use of some properties of the
Fock-Sobolev space F?"(C") and find that there exist 71,72 > 0 such that Ft?m -

FPmC Fé’m . Our main result is stated as follows.

THEOREM 1. (Main) Given 1 < p < o. Suppose that f and g are functions
in the Fock-Sobolev space FP ’”(C”). Then the Haplitz product H- fT is bounded on

FP™(C") if and only if one of the following conditions holds.
(a) f is constant.
(b) g is identically zero.
(¢) f is alinear polynomial, and g is a nonzero constant.

(d) There exist a nonzero complex constant C and a complex linear polynomial q
such that
f=el, g=Ce 1

2. Preliminaries

Throughout the paper, we write X <Y for non-negative quantities X and Y when-
ever there is a constant C > 0 (independent of the parameters in X and Y) such that
X < CY. Similarly, we write X ~Y if X <Y and Y < X.

For one fixed non-negative integer m, in the rest of the paper we simply write

Kn(z,w) = K (W) = K(z,w), kin(z,w) = k;(w) = k(z,w),
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) — Km (Z,W)
(K (zw)[|”

If T is a linear operator (not necessarily bounded) on F> whose domain contains
the set of all finite linear combinations of reproducing kernel functions in F> , then
the Berezin transform of 7T is defined by

where ky,(z,w

T(z) = (Tk,,k;), zeC".

If f is a Lebesgue measurable function on C satisfying

/c £ [l [ Ko (2, ) eF dv(w) <
then the Berezin transform of f is defined by

f~(Z) = <kaakZ>ma (S (Cn7
or explicitly,

7(&) = @2 [ SO k)P w2 o).

Actually, f: S if f is an entire function.
It is shown in [6] that f € FP™(C") if and only if the function z*f(z) is in F?
for all multi-indices o with |a| = m, then the norm in FP" is defined by

N
LS115.m = ©p.mn /@ ||2I"[f(2)|e” T |Pdv(z),

where
p\EH (n—1)!
Opmin = (2) (B +n)

is a normalizing constant so that the constant function 1 has norm 1 in F7"™. Specially,
F?™ is a Hilbert space with the inner product

<f7 >m—W2mn/ f ‘Z|2m _‘Zl dV( ), f7gEF27m.
In what follows, we give some lemmas which will be used to prove our main result.

LEMMA 1. [6] Given f € F?>", z,w € C". Then

31l
eZ

@S I e gy

and
1
e3P Lw)? — Lz —w|?
(1+[z|[w])™

K (2, W) S
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More specifically, there is a positive constant € such that

Ko (2, w)|e™ 20 HM (14 2120 (1 4 [w]?) 8

2 |Kn(z,2) e 1 (14 [2%)"
=1

whenever |z —w| < €.

The above lemma implies that each point evaluation is a bounded linear functional
on F2m,

REMARK 1. Lemma 1 shows that if a nonvanishing function f isin F?""(C") for
1 < p <o, then f = ¢4, where ¢ is a complex polynomial with deg(q) < 2.

The following result derives from [6], which is a basic auxiliary.

LEMMA 2. [6] Given p >0, b >0, and a > 0. Then there exists a constant
C =C(a,b) > 0 such that

Jo e < [ 17l petee st

Jor all entire functions f on C".

In what follows, we give a relationship between the function in F2™(C") and its
Berezin transform.

LEMMA 3. Suppose f € F>™. Then

)17 S22
Sforall z € C".

Proof. 1t follows from the Cauchy-Schwarz inequality that

PP S [ Oz e av(w) [ 1l ) PeF v

=If*(2).
It ends the proof. [

For Sarason’s Toeplitz product problem on Fock-Sobolev space F2"(C"), Chen-
Wang in [7] gave a complete solution as the following.
LEMMA 4. [7] Suppose that f and g are two nonzero functions in the Fock-

Sobolev space F*™(C"). Then the following conditions are equivalent:

(i) The Toeplitz product Ty Ty is bounded on F>™(C").
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(ii) There exists a complex linear polynomial q(z) on C" such that f = e9 and g =
Ce™ 1, where C is a nonzero complex constant.

(iii) The product |f|*|g|? is a bounded function on the complex space C".

The next lemma is a key ingredient in our proof of the main theorem.
LEMMA 5. Suppose that f € F>"(C"). Then

|H &P = [2) ~ [f @I, zeC.

Proof. For any f € F>"(C") and z € C", we have Hzk; = (I — P)(fk,) =
(f — f(2))k,. Then
HH,?szz :<‘f_m|2kmkz>
(1 Phecskes) + (If (2)Phecs k)
—(f(@) ek = (F(2) fhes )
=/ - /@)

ey

This ends the proof. [

The identity (1) above will be freely used in the next section without being explic-
itly mentioned. It directly yields the following result.

COROLLARY 1. Suppose f is a linear polynomial and g is a constant function.
Then for all z € C"
@(fug)(z) = C”kaZ”za

where C is a complex constant.

Qin-Wang gave the following result for F2(C").

LEMMA 6. (Proposition 3.4 in [16]) Given f,g € F>™(C"). Then 2(f,g) is boun-
ded on C" if and only if one of the following conditions holds.

(a) f is constant.
(b) g is identically zero.
(¢) f is alinear polynomial, and g is a nonzero constant.

(d) There are a nonzero constant C and a constant B, and there is a linear polyno-
mial g such that
f=Ce’+B, g=e1.

We also need the following additional lemma to study the compactness of the
Haplitz products.
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LEMMA 7. [16] Given f,g € F>™(C"). Then the following conclusions are
equivalent.

(a) H];Tg is compact.

(¢) f is constant or g = 0.

3. Bounded Haplitz products

In this section we will show that Sarason’s conjecture is true for the Haplitz prod-
ucts on Fock-Sobolev space FP"(C") when 1 < p < eo.

Firstly, we introduce some corresponding basic knowledge which will be used in
this section. For any positive parameter 7, the weighted Gaussian measure is d;(z) =
e dv(z), and the reproducing kernel for F?2 is K;(z,w) = e/*. Let L™ denote the
space of Lebesgue measurable functions f on C” such that the function |z|” f(z) is in
L7(C" e % dv(z)). And the corresponding Fock-Sobolev spaces F™ consists of
all entire functions in L™ . The orthogonal projection B, : L™ — E™ is given by

me(W) = W2 n,myt /(C" f(Z)KmJ (w’ Z)e*l|2\2 |Z‘2de(Z),

where Ky, (z,w) = Kin(tz,w) is the reproducing kernel of th’m. Let k. denote the
normalization of the kernel K; ;. Then for any z € C",t > 0, we define

% (1,8) () = 18@)PIfPE) — 7)),

Where f(Z) = <fk[7z,k[7z>m.
The following lemma describes that ||H.k|| is bounded when f is a linear poly-
il f

nomial.

LEMMA 8. Given t >0, y# 0 and f=2". If |y| =1, then |Hzk:|2m; is
bounded. ‘

2 . . .
Proof. Note that 2 5/ fon |w|*"e ™" dv(w) = 1, and a simple calculation gives
pmtn

that W2 mnt = m
kernel k;, we have that

. By the definition of I-I];kZ and the properties of reproducing

1H 713 s

=0ums [ LF09) = 1) Pl o0) P~ ()

:tm+n ( > 3w (mEm=—1)(n+k—1)! (n+1-1)! (lod ot 1125
K.(2) k:OkzlaU:Ol:‘Bl(n—1)!a!(n+k+m—1)!ﬁ!(n+l+m—1)!nn

></ [wi —21|2Wawﬁ|w|2meftlwlzdv(w)
(Cn
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tm+n - n+m—1) (n+k—1) (n—|—l—1) |O‘\ o ‘BI_B
_ t* 7% Pz
(S5 S i e

in/ rznfldr/\rﬁy ‘2 2mtk+1 7tr25 éﬁd()'(é)>

Kz( k=0 k=|or|I=0/= IB\ ”—1 'a'(n+k+m—l)'ﬁ'(n+l+m—1)'71”

></O r2n+k+l+2m71671r dr/s (V2|§y\2—ﬁr§y—21rgy+\lez)gagﬁda(§)>

g i (n+m—1)!n+k—1)! (n+k+m)(al+l)t2k|zoc‘2
K.\ 2Ty (=Dl (n+ k+m—1)! (n+k)
iz (n+m—Dln+k—1)! al(n+k+m_1)t2k|za‘2
(n—Dlal(n+k+m—1)!  (n+k—1) '

k=0k=|ct|

R (n+m—Dln+k—1)! %22
S0 (n—Dla!(n+k+m—1)!

(n+m—Dln+k—1)! 2K,002), 12

+ 2Pz )
kz{)k o (n—Nal(n+k+m—1)!

:t’”” & y (n+m—1)n+k—1)! |
K.(2) k=0k=\oc|( —D!al(n+k+m—1)!
((n+k+m)(a1+1)_al(n+k+m—1)>
(n+k) (n+k—1)
L & (n+m—1Dn+k—1)! 2K
K. (2) (n—a!(n+k+m—1)! 1

k=0k=|a|

X <(OC] +l)(l+ik)—al(l+%)>
& (n+m—1)n+k—1)! m(n+k—oy—1)
_KZ(Z) k:()kg‘;ﬂ (n—Dlal(n+k+m—1)! 2k| ‘ <1+(n+k—l)(n+k)>

" (i m— 1) (n+k—1)! m(n+k—oy—1)
KGO -0 22 k- PO+ )

2

where the above equation yields from the fact that T'(s) = [5"x*"'e *dx and ['(n+1) =
n!. Since

m(n+k—ocl—1)<l+ m <1im,

1<1 <
P k= Dk Ak S

then (2) shows that

" (n4m—1)! & (n+k—1)!
K. (z) (n—1) k:Ok:\a|a'("+k+m 1)!

||H7kZH2< 2]“2 ‘ (1+m). (3)
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Note that

(n+m—1)' i 2 (n+k—1)‘ [2k|za‘2
_— | 4 .

K:(z) = 1)1 alln+k+m—1)!

k=0k=|a|

Thus (3) shows that
HkaZH%,m,t < tm+n(1 +m>7

which implies that ||Hzkc||2,m, is bounded. [J
Similar to the proof of Lemma 3.4 in [16], we get the following conclusion.

PROPERTY 1. Givent >0 and f,g € Ez’m(C”). Then Z,(f,g) is bounded on C"
if and only if one of the following conditions holds:

(a) f is constant.
(b) g is identically zero.

(¢) f is alinear polynomial, and g is a nonzero constant.

(d)
f:el]’ g:C67q7

where C is a nonzero complex constant and q is a complex linear polynomial.

Proof. 1t is obvious that Z,(f,g)(z) = 0 if (a) or (b) holds. From Lemma 5 and
Corollary | and Lemma 8, we have (c) implies that Z;(f,g) is bounded on C". Assume
f(z) =€) g(z) = e 9. Givenany r > 0. By Lemma 1, for any z,w € C” it is easily
seen that

sl 4 Lw)? — glz—wf? s

, Kne(2,2) = — . 4
Qv G @

K (z,w)] S
Then by a simple calculation, we have that
FPE = P =2 [ 169 = e P k() w27 dv()
g‘eq(Z)F/@ =100 — 12e =31 gy (w),
where the last equality yields from Lemma | and (4). It is easily got that
. lea0v) — 1|Ze_%‘w‘2dv(w) < oo,

then - N
fP2) = 1f @) S 1@
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By the same way, we get that
18P (2) =@nnns [ 170 Plk o) Pfme " av(o)

Sl [ e~ 1Pe A av()
Sle .
Then o N
PSP~ FQP) S [Pl O <o

Moreover, Lemma 3 implies that |g(z)[> < |g|2( ). Then

Z(f,8)(2) =@ P (1P () — )
SleP @) (P ~ £ )P
<oo,

Thus Z,(f,g) is bounded on C" if (d) holds.
The proof of the necessity is completely the same as Lemma 6 which was proved
in [16]. It ends the proof. [J

From Lemma 2, for the pointwise estimates of the functions in th’m, we get the
following result, as one would expect.

PROPERTY 2. Givent >0 and 0 < p <eo. If f is an entire function, then

r\ 12

I ()|N||pr’nt(1+| |)

holds for any z € C".

Proof. From the subharmonicity of the function w — |f(z+w)e ®*|?, we have
that

/ Flz+w)e ™ e T gy(w)
wl<r
:eTIZ\Z/ |f(W)|p€_%|w|2dV(W).
[w—z|<r
As |z] < r+|w| for |w—z| < r, wehave
@+ [elyme 5FF <c LI (L 7+ )P 2 dy(w)
[w—z|<r

< / LFO)[P (1 [w])Pme™ 21 dv(w) (5)
[w—z|<r

< [+ e E ),
(Cn
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where the suppressed constant depends only m,r. Since (1+ |w|)P™ < C(1+ |w|P™),
then it yields from (5) and Lemma 2 that

QI+ FE 5 [ pmireF o avn)

+ [ e E P v

<Cr [, 1)l hole 1 av()
(C)l

G [ ron) 7 wirme EPav()

<Cs [ oI wlme 8 Pav ),
(Cn
where C3 = max{C,C,}. This implies that

_p2
F@PA+[2)P"e™ T S 1 f ]l pms-

Then the desired result follows that

/\z\z

./ ()\Nllf\\pm,(l+| Wk

It ends the proof. [

Moreover, the following lemma gives a relationship between that the norm of func-
tions in L”™ and the norm of functions in L,z’m.

PROPERTY 3. Given 1 < p < oo. Then there exist 0 <t <1 and t, > 1 such that

S Hf||2mt17 fanm'

Proof. For any ¢ > 0, Proposition 2 implies that the following pointwise estimate

r\ \2

@S W2y

for any entire function f. Then, it follows that

_kP
Wy, p.m /(C” HZ|m‘f(Z)|€ 2 |pdV(Z)
Pf 2
7l plz

a)n,Pm/ Hf”zmt 1_|_| |)mp ‘Z|mPe —rdv()
|z| (=1)pls 2
SOnpnll 11,0, [

mp d

1_’_‘ |) e V(Z)
(=D)plz|~ l)I’H

§wn,p7me||§,m,,/C dv(z),

(6)
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where the second inequality yields from Lemma 2. Take 0 <#; =¢ < 1, then

(11=1)plel?
/ P dv(z) < oo,

which coupled with (6) imply that

o o R
AN m =wn,p,m/(cn|\1| |f(2)le” T [Pdv(z)

Thus it yields that there exist 0 < #; < 1 and a positive constant C; > 0 such that

Hf”pm <G

for all entire functions f.
Moreover, using Proposition 2 again, we also have that

2
@z [ 12" £(2) Pe " av(z)

) el
<wn2m/ 2| meHp, 22

S [, e av(o)

e 2 v (z)

Taking 7, > 1, then [r, e ™" )P dv(z) < oo. Thus

<C2||pr~,m~

This ends the proof.

The following result follows directly from Proposition 3.

COROLLARY 2. If 1 < p < oo, then there exist 0 <t} <1 and t, > 1 such that
2.m R 2.m
R C P C R

Using Lemma 4, we have the following result for Sarason’s Toeplitz product prob-
lem on Fock-Sobolev space F?"(C").

PROPERTY 4. Supposethat f and g are two nonzero functions in the Fock-Sobolev
space FP™(C"). Then the Toeplitz product TyTy is bounded on FP™(C") if and only
if there exists a complex linear polynomial q on C" and a nonzero complex scalar C
such that f =e9 and g = Ce™ 1.
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Proof. Tf T;Ty is bounded on FP"(C"), then the Berezin transform TyTy(z) is
also bounded on C". 1t is easily seen that Tf* = T7. More specially, for any given

function f which belongs to the Fock-Sobolev space F2"(C"), we have that

TTKZ(W) :(Tsz,Kw>m
=(Kz, Ty Ky )m )
=(K, K:)m
:ﬁKz(W)

Then it follows that
TfTZ’(Z) :<TfT§kZa kz>m
:g(Z) <ka7 kz>m

=f(2)8(2).

Since each k; is a unit vector, it follows from the Cauchy-Schwartz inequality that

1£(2)8(2)| < || Ty Tl

for all z € C". Then Liouville’s theorem shows that there exists a constant C such that
fg = C. Since neither f nor g is identically zero, we have C # 0. Then, both f and g
are non-vanishing. By Remark 1, there exists a complex polynomial g(z) on C" with
deg(q) <2 such that f =e? and g = Ce 9. We claim that deg(g) < 1. Indeed, if
we assume deg(q) = 2, then we can write g(z) = bz> + az+ ¢ for convenience, where
b # 0. In the following we hope that we can reach a contradiction.

By the boundedness of T;Tz on F7"(C"), the function

<TfT§Kz»KW>m

T(Z7W) =
K:(2)/Kw(w)
is also bounded on C" x C". Then we will show that this is impossible when deg(g) =
2. Combining the fact that T;‘ = T7 with (7), we have that

(Ty Ky, Kw)m = f(w)g(2) (Kzs Kiw)m-

Thus,
IT(e,w)| = |C[et0) 00| K00
K, (Z) K, (W)

Therefore, from the above equality and the properties of reproducing kernel, there exists
a constant & > 0 independent of z,w such that for any z,w € C" satisfying |w—z| < &
we have

T (z,w)| = |e‘1(W)—q(z)"
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Moreover, in view of homogeneous property of b # 0, we let ¢»(z) = bz> and
q1(z) = az+ c. Fix two points { and 7 in the unit sphere of C", then b{-n # 0. Let
z=r{ and w=r{ + %n, where r is any real positive number. It follows that

() — &\, 2
a2(w) — q2(2) —b<Z+ 21’]) bz
en’
<

Then we have that there exists a positive constant L dependent & but not r such that

=br80C N+

190" -4G)| = L-exp(bregd - 1)

The fact that b -1 # 0 implies that 7' (z,w) cannot be a bounded function on C* x C"
as r — oo. Then the contradiction demostrates that b = 0 and deg(q) < 1. Thus the
polynomial ¢ must be linear.

Moreover, by a simple calculation, it is easily yielded that 775 is bounded on
FPM(C") if f=e¢?and g=Ce 9. O

COROLLARY 3. Suppose f=e9 and g = e~ with q is a complex linear polyno-

mial. Then the Haplitz product HJ;Tg is bounded on FP™(C").

Proof. Itis easily seen that f,g € FP'. We begin with the identity

* — o pi
HHy =Ty = 15Ty

which is well-known (see [26] for example) and can be verified easily. An application
of this identity gives

(H7T) Hy Ty =T HyH7 Ty
=T(Ty7 — T;Tp)Ty
=T, T Ty — Ty T
=(T5Tg) Ty Ty — T T

®)

Since fg =1, then it follows that Ty, and T%, are bounded as they are identity op-
erators on F7"(C"). Moreover, Proposition 4 implies that T;T; is also bounded on
FP™(C"). Hence, together with (8) we conclude that H;T; is bounded on F pm(Cm).
This ends the proof. [

Next, let us prove our main theorem, which will give the result of Haplitz product
on FP"(C") for 1 < p < oo

THEOREM 2. Given 1 < p < oo and f,g € FP"(C"). Then the Haplitz product
H ];Té—, is bounded on FP"™(C") if and only if one of the following conditions holds.

(a) f is constant.
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(b) g is identically zero.
(¢) f is alinear polynomial, and g is a nonzero constant.

(d) There exist a nonzero complex constant C and a complex linear polynomial q
such that
f=el g=Ce™1.

Proof. That condition (a) or (b) implies Hj—ch is bounded on FP™ follows from
the fact that Hy=0 for constant functions f and H- Tg =0 for g = 0. From Corollary
8.6 in [26], we have that (c) implies that H T is bounded Moreover, Corollary 3
shows that (d) implies that H ;T is bounded.

8
Finally, it is sufficient for us to prove the necessity. We divide it into two cases.

Assume H;Tg is bounded on FP" (C") for 1 < p<2. As K, € FP"(C"), thus for all
7€ C" we have k, € FP'™(C"), then

[y Tgke | pm < oo ©)
It follows from the fact that F7""(C") C F2"(C") for 1 < p <2 that
VT2 < 1Tk | (10)

Therefore, HH;Té—,kZ |l2,m < oo directly follows from (9) and (10). On the other hand, (7)
shows that Tsz = f(z)k; for any z € C". These together with Lemma 5 show that

1H;Tek:|* =g () Hpk: | = |g(2) | Hyk |

—g@P[fP ()~ 17 @)
=2(f,8)(2)

<oo,

Then Lemma 6 implies that (a) or (b) or (c) or (d) holds.
Assume that Haplitz product HTg is bounded on F PM(C") for 2 < p < oo, As

k, € FP™(C") for all z € C", then HH;T;,kZH p.m is bounded. Proposition 3 and Corol-
lary 2 show that there exists 7, > 0 such that

||Hj_c7:?kz||2,m7t2 < CZHHfET’kz”PM <%0

which implies that || H7Tgk:||2,ms, < e°. Combining Lemma 5 with (7), we can get that

| Tkt ell2me, = |8 Hkey <[> = [8(2) Pk |

—1e@PI/P@) - 1F @)
—9,(f.8)(2)

<oo,
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Then %, (f,g)(z) < eo. Thus Proposition 1 implies that (a) or (b) or (c) or (d) holds.
Hence the necessity is proved. This completes the proof. [
The following result about the compactness of H ng follows from Lemma 7.

COROLLARY 4. Given 1 < p <ecoand f,g € FP'". Then the following conditions
are equivalent:

(a) H];Tg is compact.
(b) HJ;T,; =0.
(¢) f is constant or g =0.

Inspired by the result of Theorem 2, we can generalize the result to the correspond-
ing Haplitz product problem on the Fock-Sobolv spaces F/"™(C") forany 1 < p < o
and any ¢ > 0. It is obvious that Theorem 2 is the special case that 1 = 1. Moreover,
similar to the above analysis process for Theorem 2, we can also give the explicit char-
acterization for the Haplitz product problem on F”"™(C") for 1 < p < e, which is
stated as follows.

COROLLARY 5. Givent>0and 1 <p <o, f,g€F'"(C"). Then the following
conditions are equivalent:

(i) The Haplitz product HyTg is bounded on F/™™(C").
(ii) At least one of the following conditions holds:

(a) f is constant.

(b) g is identically zero.

(¢) f is alinear polynomial, and g is a nonzero constant.

(d) There exist a nonzero complex constant C and a complex linear polynomial q
such that

f=el, g=Ce 1.

4. Further results

If we generalize the above conclusions to a more general situation when its weight
becomes a more general weight, we have the following results.

Let dA be the Lebesgue area measure on the complex plane C. Suppose ¢ €
C?(C) is a real-valued function and there are two positive numbers M; and M, such
that

Miwy < dd ¢ < My,



PRODUCTS OF TOEPLITZ AND HANKEL OPERATORS 65

where wg = dd°|z|?, d° = @(5— d). For 1 < p < oo, the space LP(@) is the family
of all Lebesgue measurable functions f on C such that

1
P

1710 = ( L If(Z)e“"(Z)I”dV(Z)> <o

For 0 < p <o, LP(@) =LP(C,e P?dA). Moreover, (L?(¢), |- | »,) is a Banach space
for 1 < p < oo, and a quasi-Banach space for 0 < p < 1.

We consider the one-dimensional situation here. Let H(C) be the set of all holo-
morphic functions on C. The weighted Fock space [12] is defined to be

FP(@) =L"(p)NH(C)

with the norm || - [|(, o). Notice that F7(¢) is a closed subspace of LF(¢), and F”(¢)
is a Banach space for 1 < p < o. This type of weighted Fock spaces was studied by
many authors, see [10, 11,20] and the references therein. If ¢(z) = $|z[*,a > 0, the
standard Fock space is obtained. And when ¢(z) = —mIn(A + |z|*) +|z|> with some
suitable A > 0 and positive integer m, F?(¢) is just the Fock-Sobolev space F>"".

Let K, be the reproducing kernel of F2(¢), and let k, be the normalized repro-
K()

ducing kernel, that is k;(-) = m From [20], the following conclusions hold on
FP(g):
(1) There exist C and 0 > 0 such that
K (z,w)|e"?@ e ) < Com 01
for z,w € C.
(ii) There exists some » > 0 such that
K (z,w)|e @ e 00 ~ |
whenever w € B(z,r) and z € C.
(iii) For 1 < p < oo,

1K () p.p ~ e?¥ ~ \/K(z,2), z€C.

The orthogonal projection P from L?(¢) to F?(¢) can be represented as

Pf(z) = /C FONK(zw)e 200 dA (),

With this expression, P can be extended to a bounded linear operator from L”(¢)) to
FP(@) for 1 < p <eo. Moreover, Pf = f forall f € FP(¢). The set span {K,:z€ C}
is dense in FP(¢) for 1 < p < oo. See [20] for more details.

Similar to Corollary 2, for any 1 < p < oo, it yields that there exist 0 <#; < 1 and
1, > 1 such that F(¢) C FP(¢) C F2(¢). Then the following result holds.
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THEOREM 3. Given 1 < p <eo and f,g € FP(¢)(C). Then the following condi-

tions are equivalent.

(i) The Haplitz product H;T; is bounded on FP()(C).

(ii) At least one of the following conditions holds:

(a) f is constant.

(b) g is identically zero.

(¢) f is alinear polynomial, and g is a nonzero constant.

(d) There are constants a, b, ¢, and A such that
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