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JACOBSON’S LEMMA FOR THE OPERATORS

ADMITTING SAPHAR DECOMPOSITIONS

MIRJANA D. ŠIKULJAK

(Communicated by M. S. Moslehian)

Abstract. We extend Jacobson’s lemma to the operators of Saphar type and the operators admit-
ting the generalized Saphar decomposition and the generalized Saphar-Riesz decomposition.

1. Introduction and notations

Let L(X) denote the Banach algebra of all bounded linear operators acting on an
infinite-dimensional Banach space X . We denote by N (N0 ) the set of all positive
(non-negative) integers and by C the set of all complex numbers. If K ⊂ C , we denote
by accK the set of all accumulation points of K .

We say that an operator T is completely reduced by the pair (M,N) , denoted
by (M,N) ∈ Red(T ) , if there exist two closed, T -invariant subspaces M and N such
that M + N = X and M ∩N = {0} , or M ⊕N = X for short. In this case we write
T = TM ⊕ TN and say that T is the direct sum of TM and TN . A closed subspace
M of X is said to be complemented if there is a closed subspace N of X such that
X = M⊕N .

For T ∈ L(X) we use N(T ) and R(T ) , respectively, to denote the null-space and
the range of T . It is well-known that T ∈ L(X) is left invertible if and only if T is
injective and R(T ) is a complemented subspace of X. Meanwhile, T ∈ L(X) is right
invertible if and only if T is onto and N(T ) is a complemented subspace of X . We use
Gl(X) and Gr(X) , respectively, to denote the semigroups of left and right invertible
operators on X and l(T ) and r(T ) to denote left and right spectrum of T ∈ L(X) .
An operator T is invertible if it is left and right invertible and by (T ) we denote the
spectrum of T .

Nullity of T ∈ L(X) is defined by (T ) = dimN(T ) in case of a finite dimensional
null-space and by (T ) =  when N(T ) is infinite dimensional. Similarly, defect of
T is defined as  (T ) = dimY/R(T ) = codimR(T ) if Y/R(T ) is finite dimensional,
and  (T ) =  otherwise. An operator T ∈ L(X) is called upper semi-Fredholm if
(T ) <  and R(T ) is closed, while T is called lower semi-Fredholm if  (T ) <  .
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We say that an operator is Fredholm if it is both upper and lower semi-Fredholm and by
(X) we denote the set of all Fredholm operators T ∈ L(X) . If either (T ) or  (T )
is finite, we define the index of T by i(T ) = (T )− (T) . We say that T ∈ L(X) is a
Weyl operator and write T ∈W (X) , if it is a Fredholm operator with index equal to 0.

An operator T ∈ L(X) is relatively regular (or g -invertible) if there exists S∈ L(X)
such that TST = T . An operator T ∈ L(X) is left Fredholm, or T ∈ l(X) for short,
if T is relatively regular upper semi-Fredholm. Also, T ∈ L(X) is right Fredholm, or
T ∈ r(X) , if T is relatively regular lower semi-Fredholm. An operator T ∈ L(X) is
left (right) Weyl if T is left (right) Fredholm operator with non-positive (non-negative)
index. We use Wl(X) (Wr(X)) to denote the set of all left (right) Weyl operators. An
operator T ∈ L(X) is left (right) Browder if it is left (right) Fredholm and 0 /∈ accl(T )
(0 /∈ accr(T )). We use Bl(X) (Br(X)) to denote the set of all left (right) Browder
operators.

We denote the left Fredholm, the right Fredholm, the Fredholm, the left Weyl, the
right Weyl, the Weyl, the left Browder and the right Browder spectrum of T ∈ L(X) by
l (T ) , r(T ) , (T ) , Wl (T ) , Wr(T ) , W (T ) , Bl (T ) and Br(T ) .

We say that T ∈ L(X) is Saphar if it is relatively regular and N(T ) ⊂ R(Tn) for
every n ∈ N . An operator T ∈ L(X) is nilpotent if there exists some n ∈ N such
that Tn = 0. We say that T ∈ L(X) is quasinilpotent if  I−T is invertible for every
nonzero  ∈ C . If  I−T is Fredholm for every nonzero  ∈ C , then T ∈ L(X) is a
Riesz operator. It is known that if a Riesz operator T commutes with some operator
S ∈ L(X) , then ST is also Riesz.

If for T ∈L(X) there exists a pair of subspaces (M,N) such that (M,N)∈Red(T ) ,
TM is Saphar and TN is nilpotent, we say that T is of Saphar type [19]. If TN is
quasinilpotent or Riesz, we will say that T admits a generalized Saphar decomposition
(GSD) [3] or a generalized Saphar-Riesz decomposition (GSRD) [17], respectively. In
that case we write T ∈ GSD(M,N) or T ∈ GSRD(M,N) , for short. We denote the
Saphar type spectrum, the generalized Saphar spectrum and the generalized Saphar-
Riesz spectrum of T by St(T ) , gS(T ) and gSR(T ) , respectively.

Jacobson’s lemma states that for operators A,B ∈ L(X) , I−AB is invertible if and
only if I−BA is invertible. Equivalently, we can write this in terms of operator spectra:

(AB)∪{0}= (BA)∪{0}.

This lemma has been extended for other parts of the spectrum, some of which we gather
in the following theorems.

THEOREM 1. Let A,B ∈ L(X) . Then for each H ∈ {Gl,Gr,l ,r,,Wl ,Wr,W,
Bl,Br} we have that

H(AB)∪{0}= H(BA)∪{0}.

THEOREM 2. Let A,B ∈ L(X) . Then I −AB is Saphar if and only if I −BA is
Saphar.

These and other results can be found, for example, in [1] and [18].
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An operator T ∈ L(X) is Drazin invertible [4] if there exists S∈ L(X) that satisfies

ST = TS, STS = S and T −TST is nilpotent.

Koliha [11] generalized this concept by replacing a request for a nilpotent operator with
a quasinilpotent one, thus defining a generalized Drazin inverse of T .

Jacobson’s lemma has been extended to these classes of operators in various set-
tings (see for example [12, 16]). It also holds for numerous generalizations of the
Drazin and the generalized Drazin invertible operators, some of which have been ex-
plored in [2, 9, 10].

Corach et al. [2] generalized the Jacobson’ lemma to the operators AC and BA by
showing that I−AC is invertible if and only if I−BA is invertible, where A,B,C∈ L(X)
satisfy the condition ABA = ACA . Further generalizations ensued and Yan and Fang
[13, 14] explored the spectral properties of operators AC and BD , where A,B,C,D ∈
L(X) satisfy the conditions ACD = DBD and DBA = ACA . On the other hand, Yan
et al. [15] introduced the conditions BAC = BDB and CDB = CAC and in [9, 10, 15]
were given extensions of Jacobson’s lemma to several classes of operators.

In this paper we show the new extensions of Jacobson’s lemma for the operators
of Saphar type and the operators admitting the generalized Saphar decomposition and
the generalized Saphar-Riesz decomposition. Section 2 contains some preliminary re-
sults that will be referred to in the later work. In Section 3 we prove that I−AB is of
Saphar type if and only if I−BA is of Saphar type. As a corollary we get the extensions
of Jacobson’s lemma for all the classes of operators defined in [19]. Furthermore, we
generalize some of these results to the operators AC and BD , under various conditions.
In Section 4 we show the analogue of Jacobson’s lemma for the operators AB and BA
admitting generalized Saphar decomposition, which are defined in [5, 3]. Section 5 is
dedicated to the observations of these problems for the operators satisfying general-
ized Saphar-Riesz decompositions and the left and the right generalized Drazin-Riesz
invertible operators, all recently defined in [17].

2. Preliminaries

The following results are well known for operators A,B,C,D ∈ L(X) satisfying
conditions BAC = BDB and CDB = CAC , and they can be found in [9] and [15]. Sim-
ilarly, they also hold under conditions ACD = DBD and DBA = ACA as we state them
here.

THEOREM 3. Let A,B,C,D ∈ L(X) satisfy ACD = DBD and DBA = ACA. If
N(I − AC) is complemented in X and P ∈ L(X) is the projection onto N(I −AC) ,
then N(I −BD) is complemented in X and for an arbitrary T ∈ L(X) , the operator
Q ∈ L(X) defined by

Q = BPT (I−BD)+BPD

is the projection onto N(I−BD) .
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Proof. Follows similarly to the proof of [9, Theorem 3.3]. �

THEOREM 4. Let A,B,C,D ∈ L(X) satisfy ACD = DBD and DBA = ACA. If
R(I −AC) is complemented in X and P ∈ L(X) is a projection onto R(I −AC) , then
R(I−BD) is complemented in X and for an arbitrary T ∈ L(X) , an operator Q∈ L(X)
defined by

Q = I−BACPD− (I−BD)TPD

is a projection onto R(I−BD) .

Proof. Follows similarly to the proof of [9, Theorem 3.5]. �

THEOREM 5. Let A,B,C,D ∈ L(X) satisfy ACD = DBD and DBA = ACA. Then
for every n ∈ N

(i) N((I −AC)n) is complemented in X if and only if N((I −BD)n) is comple-
mented in X ,

(ii) R((I −AC)n) is complemented in X if and only if R((I −BD)n) is comple-
mented in X .

Proof. By repeating the procedure in the proof of [14, Corollary 2.8] and using
Theorems 3 and 4, we acquire the desired results. �

For T ∈ L(X) and n ∈ N0 we define

cn(T ) = dimR(Tn)/R(Tn+1) = codim(R(T )+N(Tn)),

c′n(T ) = dimN(Tn+1)/N(Tn) = dim(N(T )∩R(Tn)).

The ascent and the descent of T are defined as asc(T ) = inf{n ∈ N0 : c′n(T ) =
0}= inf{n∈N0 : N(Tn) = N(Tn+1)} and dsc(T ) = inf{n∈ N0 : cn(T ) = 0}= inf{n∈
N0 : R(Tn) = R(Tn+1)} . The essential ascent and the essential descent of T are defined
as ae(T ) = inf{n ∈ N0 : c′n(T ) < } and de(T ) = inf{n ∈ N0 : cn(T ) < } .

THEOREM 6. Let A,B,C,D ∈ L(X) satisfy ACD = DBD and DBA = ACA. Then
(i) asc(I−AC) = asc(I−BD) ,
(ii) dsc(I−AC) = dsc(I−BD) ,
(iii) ae(I−AC) = ae(I−BD) ,
(iii) de(I−AC) = de(I−BD) .

Proof. (i) Let p = asc(I−AC) <  . Define the function

 : N((I−BD)p+1)/N((I−BD)p) → N((I−AC)p+1)/N((I−AC)p)


(
x+N((I−BD)p)

)
= Dx+N((I−AC)p), for every x ∈ N((I −BD)p+1).

By [14, Lemma 2.1], this it is well defined.
The rest of the proof follows analogously to the proof of [15, Theorem 4.1(1)].
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(ii) Let q = dsc(I−AC) <  . Define the function

 : R((I−BD)q)/R((I−BD)q+1) → R((I−AC)q)/R((I−AC)q+1)


(
x+R((I−BD)q+1)

)
= Dx+R((I−AC)q+1), for every x ∈ R((I−BD)q).

It is well defined by [14, Lemma 2.1].
The rest of the proof follows analogously to the proof of [15, Theorem 4.1(2)].
(iii) Follows from the definition of essential ascent and [14, Lemma 2.3].
(iv) Follows from the definition of essential descent and [14, Lemma 2.4]. �

3. Saphar type operators

THEOREM 7. Let A,B∈ L(X) . Then I−AB is of Saphar type if and only if I−BA
is of Saphar type.

Proof. If we put T = I−AB and S = I−BA , it is easy to see that BT = SB and
TA = AS . Moreover, the first equality implies that for each n ∈ N , BTn = SnB stands.

Suppose that T is of Saphar type. According to [7, Theorem 4.4], there exists a
projection P∈ L(X) commuting with T , such that T +P is Saphar and TP is nilpotent.
Therefore, I−TP is invertible and we can define Q = BP(I−TP)−1A∈ L(X) . We will
show that Q is the projection commuting with S , such that S+Q is Saphar and SQ is
nilpotent.

Q2 = BP(I−TP)−1ABP(I−TP)−1A

= BP(I−TP)−1(I−T )P(I−TP)−1A

= BP(I−TP)−1(I−TP)P(I−TP)−1A

= BP(I−TP)−1PA = BP(I−TP)−1A = Q.

Using the equations BT = SB and TA = AS we can simply see that S and Q
commute. Indeed,

SQ = SBP(I−TP)−1A = BTP(I−TP)−1A

= BP(I−TP)−1TA = BP(I−TP)−1AS = QS.

We have that

S+Q = I−BA+BP(I−TP)−1A

= I−B(I−P(I−TP)−1)A.

Since

I−AB(I−P(I−TP)−1) = I− (I−T )(I−P(I−TP)−1)

= I− I +T +(I−T )P(I−TP)−1

= T +P
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and T +P is Saphar, from Theorem 2 we conclude that S+Q is also Saphar.
Let n ∈ N be such that (TP)n = 0. Then TnP = 0 and

(SQ)n = SnQ = SnBP(I−TP)−1A = BTnP(I−TP)−1A = 0,

so SQ is nilpotent. From [7, Theorem 4.4] we conclude that S = I−BA is of Saphar
type.

The converse holds by symmetry. �
The degree of stable iteration of T ∈ L(X) is defined as

dis(T ) = inf{n ∈ N0 : m � n, m ∈ N =⇒ R(Tn)∩N(T ) = R(Tm)∩N(T )}.
An operator T ∈ L(X) is left Drazin invertible [8] if p = asc(T ) <  and the

subspace R(T )+N(T p) is complemented in X , while T is right Drazin invertible if
q = dsc(T ) <  and the subspace N(T )∩R(Tq) is complemented in X .

Živković-Zlatanović and Djordjević [19] introduced the concepts of the essentially
left and right Drazin invertible operators and the left and right Weyl-Drazin invert-
ible operators. An operator T ∈ L(X) is said to be essentially left Drazin invertible
if ae(T ) <  and the subspace R(T ) + N(T dis(T)) is complemented. If de(T ) < 
and N(T )∩R(T dis(T )) is a complemented subspace, than the operator T is essentially
right Drazin invertible. Moreover, T is said to be left Weyl-Drazin invertible if it is
essentially left Drazin invertible and

dim(N(T )∩R(T dis(T ))) � codim(R(T )+N(T dis(T ))).

Analogously, T is right Weyl-Drazin invertible if it is essentially right Drazin invertible
and

codim(R(T )+N(T dis(T ))) � dim(N(T )∩R(T dis(T ))).

We denote by lD(T ) , rD(T ) ,  e
lD(T ) ,  e

rD(T ) , DWl (T ) and DWr(T ) the left
Drazin spectrum, the right Drazin spectrum, the essentially left Drazin spectrum, the
essentially right Drazin spectrum, the left Weyl-Drazin spectrum and the right Weyl-
Drazin spectrum of T .

THEOREM 8. Let A,B ∈ L(X) . Then
(i) St(AB)∪{0} = St(BA)∪{0} ,
(ii) for each ∗ ∈ {lD,rD, e

lD, e
rD,DWl ,DWr} we have that

∗(AB)∪{0}= ∗(BA)∪{0}.
Proof. (i) Follows from Theorem 7.
(ii) From part (i), [19, Corollary 5.3] and Theorem 1 we get that

 e
lD(AB)∪{0}=

(
St(AB)∪{0}

)
∪

((
accl (AB)

)∪{0}
)

=
(
St(BA)∪{0}

)
∪

((
accl (BA)

)∪{0}
)

=  e
lD(BA)∪{0}.

The rest of the proof follows analogously from [19, Corollaries 5.4 and 5.5]. �
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EXAMPLE 1. Let H be a complex Hilbert space and let T = U |T | be the polar

decomposition of T ∈ L(H) , where |T | = (T ∗T )
1
2 . The Althunge transform of T is

given by T̃ = |T | 1
2U |T | 1

2 . If we set A = U |T | 1
2 and B = |T | 1

2 , then AB = T and
BA = T̃ . Therefore,

∗(T )∪{0}= ∗(T̃ )∪{0},

for each ∗ ∈ {St ,lD,rD, e
lD, e

rD,DWl ,DWr} .

We are able to generalize some of the results of Theorem 8 to the cases of operators
AC and BD , where A,B,C,D ∈ L(X) satisfy certain conditions. In the following we
explore several such conditions.

THEOREM 9. Let A,B,C,D ∈ L(X) satisfy ACD = DBD and DBA = ACA. Then
for each ∗ ∈ {lD,rD, e

lD, e
rD} we have that

∗(AC)∪{0}= ∗(BD)∪{0}.

Proof. Firstly, we show the equality lD(AC)∪{0} = lD(BD)∪{0} . It suffices
to prove that I−AC is left Drazin invertible if and only if I−BD is left Drazin invert-
ible. From [6, Theorem 2.5] we know that I−AC is left Drazin invertible if and only if
asc(I−AC) <  and the subspaces N((I −AC)n) and R((I −AC)n) are topologically
complemented for each n � asc(I−AC) . By Theorem 6, asc(I −AC) = asc(I−BD) .
Therefore, Theorem 5 shows that the subspaces N((I −AC)n) and R((I −AC)n) are
topologically complemented for each n � asc(I − AC) if and only if the subspaces
N((I−BD)n) and R((I−BD)n) are topologically complemented for each n � asc(I−
BD) . Applying again [6, Theorem 2.5] we acquire the desired equivalence.

The proof for the cases ∗ ∈ {rD, e
lD, e

rD} follows analogously, by using [6,
Theorems 3.2, 3.5 and 3.6] respectively. �

COROLLARY 1. Let A,B,C ∈ L(X) satisfy ABA = ACA. Then for each ∗ ∈
{lD,rD, e

lD, e
rD} we have that

∗(AC)∪{0}= ∗(BA)∪{0}.

THEOREM 10. Let A,B,C,D∈ L(X) satisfy BAC = BDB and CDB =CAC. Then
for each ∗ ∈ {lD,rD, e

lD, e
rD} we have that

∗(AC)∪{0}= ∗(BD)∪{0}.

Proof. The proof can be acquired by repeating the procedure from the previous
theorem and applying the appropriate results from [9]. �

It remains a question whether the equality ∗(AC)∪{0} = ∗(BD)∪{0} holds
for ∗ ∈ {St ,DWl ,DWr} , under the previously observed sets of conditions.
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4. Operators admitting a generalized Saphar decomposition

We will show that the analogue of Jacobson’s lemma also holds for the classes of
operators admitting generalized Saphar decomposition. However, it remains an open
question wether these results can be extended to the operators AC and BD , where
A,B,C,D ∈ L(X) satisfy certain sets of conditions.

We will need the following theorem.

THEOREM 11. Let T ∈ L(X) . Then T admits a GSD if and only if there exists a
projection P ∈ L(X) , commuting with T , such that TP is quasinilpotent and T +P is
Saphar.

Proof. Assume that T admits a GSD, and that M and N are closed, T -invariant
subspaces such that (M,N) ∈ Red(T ) , where TM is Saphar and TN is quasinilpotent.
Let P ∈ L(X) be the projection for which R(P) = N and N(P) = M . Since (M,N) ∈
Red(T ) we have that T and P commute. It is obvious that (M,N) ∈ Red(TP) and
(M,N) ∈ Red(T + P) . Now from TP = (TP)M ⊕ (TP)N = 0⊕ TN we have that TP
is quasinilpotent. Observe that T + P = (T + P)M ⊕ (T + P)N = TM ⊕ (TN + IN) and
TN + IN is invertible. From [19, Lemma 3.11] we conclude that T +P is Saphar.

Conversely, let P ∈ L(X) be the projection commuting with T , such that TP is
quasinilpotent and T + P is Saphar. If we set M = N(P) and N = R(P) , having in
mind the commutativity of T and P , we know that M and N are closed, T -invariant
subspaces, such that (M,N) ∈ Red(T ) . Furthermore, TN = (TP)N is quasinilpotent as
a reduction of the quasinilpotent operator TP . Since T +P is Saphar, again from [19,
Lemma 3.11] it follows that TM = TM +PM = (T +P)M is Saphar. Therefore, T admits
a GSD. �

THEOREM 12. Let A,B∈ L(X) . Then I−AB admits a GSD if and only if I−BA
admits a GSD .

Proof. Put T = I −AB and S = I−BA and suppose that T admits a GSD. Ac-
cording to Theorem 11, there exists a projection P ∈ L(X) , commuting with T , such
that TP is quasinilpotent and T +P is Saphar. Then I−TP is invertible and it is easy
to see that BT = SB and TA = AS .

Set Q = BP(I−TP)−1A ∈ L(X) . By repeating the part of the proof of Theorem 7
we acquire that Q is the projection commuting with S , such that S+Q is Saphar. We
show now that SQ is quasinilpotent.

Notice that

I−SQ = I−SBP(I−TP)−1A

= I−BTP(I−TP)−1A

= I−BP(TP)(I−TP)−1A

= I−BP(I− (I−TP))(I−TP)−1A

= I−BP((I−TP)−1− I)A.
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On the other hand,

I−A[BP((I−PT )−1− I)] = I− (I−T)P((I−PT )−1− I)

= I− (I−T)P(I−PT)−1 +(I−T )P
= I−P+P−TP = I−TP

and this operator is invertible since TP is quasinilpotent. From Jacobson’s lemma we
get that I−SQ = I− [BP((I−PT)−1− I)]A is also invertible, so we conclude that SQ
is quasinilpotent. Thus, according to Theorem 11, we have shown that the operator
S = I−BA admits a GSD.

The converse holds by symmetry. �

The quasinilpotent part of an operator T ∈ L(X) is defined by

H0(T ) = {x ∈ X : lim
n→

‖Tnx‖1/n = 0}.

The analytical core of T , denoted by K(T ) , is the set of all x ∈ X for which there exist
 > 0 and a sequence (un)n in X satisfying

Tu1 = x, Tun+1 = un and ‖un‖ � cn‖x‖ for all n ∈ N.

In [5], the authors have defined the left generalized Drazin invertible operators as
those operators T ∈ L(X) for which H0(T ) is closed and for which there exists a closed
subspace M of X such that (M,H0(T )) ∈ Red(T ) and that T (M) is a complemented
subspace of M . If K(T ) is closed and there exists a closed subspace N of X such that
N ⊂ H0(T ) and (K(T ),N) ∈ Red(T ) , and K(T )∩N(T ) is complemented in K(T ) ,
then T is called the right generalized Drazin invertible operator.

Dimitrijević and Živković-Zlatanović [3] generalized this concept by defining the
essentially left and right generalized Drazin invertible operators and the left and right
Weyl-g-Drazin invertible operators. An operator T ∈ L(X) is essentially left general-
ized Drazin invertible if there exists (M,N) ∈ Red(T ) such that N ⊂H0(T ) , N(T )∩M
is finite-dimensional and T (M) is complemented in M , while T is essentially right
generalized Drazin invertible if there exists (M,N) ∈ Red(T ) such that N ⊂ H0(T ) ,
M ⊃ K(T ) , R(T )∩M is of finite codimension in M and N(T )∩M is complemented
in M . If T is both essentially left and right generalized Drazin invertible then we say
that T is Fredholm-g-Drazin invertible.

We say that T is left Weyl-g-Drazin invertible if there exists (M,N) ∈ Red(T )
such that N ⊂ H0(T ) , T (M) is complemented in M and N(T )∩M is of finite di-
mension no greater than the dimension of M/T (M) . The operator T is right Weyl-
g-Drazin invertible if there exist closed subspaces N ⊂ H0(T ) and M ⊃ K(T ) such
that (M,N) ∈ Red(T ) , N(T )∩M is complemented in M and R(T )∩M is of finite
codimension in M , no greater then the dimension of N(T )∩M . We say that T is
Weyl-g-Drazin invertible if it is both left and right Weyl-g-Drazin invertible.

For H ∈ {Gl,Gr,l ,r,,Wl ,Wr,W} we denote by gDH(T ) the left generalized
Drazin spectrum, the right generalized Drazin spectrum, the essentially left generalized
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Drazin spectrum, the essentially right generalized Drazin spectrum, the Fredholm-g-
Drazin spectrum, the left Weyl-g-Drazin spectrum, the right Weyl-g-Drazin spectrum
and the Weyl-g-Drazin spectrum of T .

THEOREM 13. Let A,B ∈ L(X) . Then
(i) gS(AB)∪{0} = gS(BA)∪{0} ,
(ii) for each H ∈ {Gl,Gr,l ,r,,Wl ,Wr,W} we have that

gDH(AB)∪{0}= gDH(BA)∪{0}.

Proof. (i) Follows from Theorem 12.
(ii) From the proof of [3, Theorem 4.4] we have that gDH(T )=gS(T )∪accH(T )

for an arbitrary T ∈ L(X) and for each H ∈ {Gl,Gr,l ,r,,Wl ,Wr,W} . From part
(i) and Theorem 1 we get that

gDH(AB)∪{0}=
(
gS(AB)∪{0}

)
∪

((
accH(AB)

)∪{0}
)

=
(
gS(BA)∪{0}

)
∪

((
accH(BA)

)∪{0}
)

= gDH(BA)∪{0}. �

From Theorem 13 we can see that for the operators T and T̃ in Example 1 we can
also conclude that

gS(T )∪{0}= gS(T̃ )∪{0} and gDH(T )∪{0}= gDH(T̃ )∪{0},
for each H ∈ {Gl,Gr,l ,r,,Wl ,Wr,W} .

5. Operators admitting a generalized Saphar-Riesz decomposition

The concept of generalized Saphar-Riesz decomposition was defined recently in
[17], alongside the classes of left and right generalized Drazin-Riesz invertible op-
erators. An operator T ∈ L(X) is left generalized Drazin-Riesz invertible if there is
S ∈ L(X) such that

TST = ST 2, S2T = S, T −TST is Riesz.

Analogously, T is right generalized Drazin-Riesz invertible if there is S ∈ L(X) such
that

TST = T 2S, TS2 = S, T −TST is Riesz.

By  l
gDR(T ) and  r

gDR(T ) we denote the left generalized Drazin-Riesz spectrum and
the right generalized Drazin-Riesz spectrum of T .

In this section we will show that I−AB admits a GSRD if and only if I−BA ad-
mits a GSRD. We will see that this extends to the left and right generalized Drazin-Riesz
invertible operators, not just for the operators AB and BA , but also for the operators AC
and BD under various conditions.
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LEMMA 1. [1, Corollary 2.151] Let A,B ∈ L(X) . Then AB is Riesz if and only if
BA is Riesz.

THEOREM 14. Let A,B ∈ L(X) . Then I − AB admits a GSRD if and only if
I−BA admits a GSRD .

Proof. Put T = I−AB and S = I−BA and suppose that T admits GSRD. Accord-
ing to [17, Theorem 4.2], there exists a projection P ∈ L(X) commuting with T , such
that T +P is of Saphar type and TP is Riesz. From the commutativity of T , P and
AB it follows that TP(I +AB) is Riesz. Therefore, we can find a suitable  ∈ C\ {0}
such that  I−TP(I +AB) is invertible and we have the representation

( I−TP(I +AB))−1 =



n=0

−n−1(TP(I +AB))n = P



n=0

−n−1(I− (AB)2)n.

From

P



n=0

( I− (AB)2)n−n−1 = P



n=0

n


k=0

(
n
k

)
( −1)k(I− (AB)2)n−k−n−1

we can see that L = P



n=0

( I− (AB)2)n−n−1 is well defined bounded linear operator.

Moreover, L commutes with P , T and AB and PL = LP = L . Also,

L(AB)2 = P



n=0

( I− (AB)2)n−n−1(AB)2

= P



n=0

( I− (AB)2)n−n−1( I− ( I− (AB)2))

= P



n=0

( I− (AB)2)n−n−P



n=0

( I− (AB)2)n+1−n−1 = P.

Let Q = BLABA . Firstly, as Q2 = BLABABLABA = BPLABA = BLABA = Q we
know that Q is the projection. It is easy to see that BT = SB and TA = AS , so we get
that

SQ = SBLABA = BTLABA = BLABTA = BLABAS = QS. (1)

Observe that

S+Q = I−BA+BLABA = I−B[(I−LAB)A]

and that

I− [(I−LAB)A]B = I−AB+L(AB)2 = T +P.

As T +P is of Saphar type, from Theorem 7 we conclude that S+Q is also of Saphar
type.
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We can see from (1) that SQ = BLABTA . Hence, SQ = BLABTA = BLPABTA =
BLABTPA . From the commutativity of TP and ABLAB , and the fact that TP is Riesz
we have that ABLABTP is also Riesz. Now, Lemma 1 allows us to deduce that SQ =
BLABTPA is Riesz and from [17, Theorem 4.2] we acquire that S = I −BA admits a
GSRD.

The converse holds by symmetry. �

THEOREM 15. Let A,B ∈ L(X) . Then
(i) gSR(AB)∪{0}= gSR(BA)∪{0} ,
(ii)  l

gDR(AB)∪{0}=  l
gDR(BA)∪{0} ,

(iii)  r
gDR(AB)∪{0}=  r

gDR(BA)∪{0} .

Proof. (i) Follows from Theorem 14.
(ii) From part (i), [17, Corollary 6.3] and Theorem 1 we get that

 l
gDR(AB)∪{0}=

(
gSR(AB)∪{0}

)
∪

((
accBl (AB)

)∪{0}
)

=
(
gSR(BA)∪{0}

)
∪

((
accBl (BA)

)∪{0}
)

=  l
gDR(BA)∪{0}.

(iii) Follows analogously to part (ii). �
From Theorem 15 we can see that for the operators T and T̃ in Example 1 we can

also conclude that

∗(T )∪{0} = ∗(T̃ )∪{0}
for each ∗ ∈ {gSR, l

gDR, r
gDR} .

The following results generalize Theorem 15 parts (ii) and (iii) to the operators AC
and BD under the conditions observed in the earlier sections. However, it remains to
be seen wether the equality gSR(AC)∪{0} = gSR(BD)∪{0} can be acquired under
any set of conditions.

THEOREM 16. Let A,B,C,D ∈ L(X) satisfy ACD = DBD and DBA = ACA.
(i) I −BD is left generalized Drazin-Riesz invertible if and only if I−AC is left

generalized Drazin-Riesz invertible.
(ii) I −BD is right generalized Drazin-Riesz invertible if and only if I −AC is

right generalized Drazin-Riesz invertible.

Proof. (i) Suppose that S′ ∈ L(X) is left generalized Drazin-Riesz inverse of S =
I−BD . From [17, Theorem 5.5] the following holds:

SS′S = S′S2

S′2S = S′ = S′SS′

S−SS′S is Riesz.
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Operator S = I−S′S is a projection commuting with S and S′ , such that S′S =
SS′ = 0 and SS = SS is Riesz. From the commutativity of S , S and BD , we get
that SS(I +BD) is Riesz. Similarly as in the proof of Theorem 14, we conclude that

L = S



n=0

( I− (BD)2)n−n−1 is a bounded operator.

Set T = I−AC and let

T ′ = (I−DLBAC)(I +AC)+DS′BAC.

We will prove that T ′ satisfies the conditions

TT ′T = T ′T 2

T ′2T = T ′

T −TT ′T is Riesz.

It is easily seen that from the conditions ACD = DBD and DBA = ACA we have

(I±AC)D = D(I±BD),
BAC(I±AC) = (I±BD)BAC.

Observe that

L(BD)2 = S



n=0

( I− (BD)2)n−n−1(BD)2

= S



n=0

( I− (BD)2)n−n−1( I− ( I− (BD)2))

= S



n=0

( I− (BD)2)n−n−S



n=0

( I− (BD)2)n+1−n−1

= S +S



n=0

( I− (BD)2)n+1−n−1−S



n=0

( I− (BD)2)n+1−n−1

= S .

Therefore,

T ′T = I− (AC)2−DLBAC(I− (AC)2)+DS′BAC(I−AC)

= I−DBAC−DL(I− (BD)2)BAC+DS′(I−BD)BAC

= I−DBAC−DLBAC+DSBAC+D(I−S)BAC

= I−DLBAC.

Since L commutes with BD , we get the equality

TT ′T = (I−AC)(I−DLBAC) = I−AC− (I−AC)DLBAC

= I−AC−D(I−BD)LBAC = I−AC−DL(I−BD)BAC

= I−AC−DLBAC(I−AC) = (I−DLBAC)(I−AC) = (T ′T )T

= T ′T 2.



82 M. D. ŠIKULJAK

Having in mind that SS′ = S′S = 0 and using the previous observations we
acquire the equality

T ′2T = T ′(I−DLBAC) = T ′ − (I−DLBAC)(I +AC)DLBAC−DS′BACDLBAC

= T ′ − (I +AC)DLBAC+(I +AC)DLBACDLBAC−DS′BACDLBAC

= T ′ − (I +AC)DLBAC+(I +AC)DL(BD)2LBAC−DS′(BD)2LBAC

= T ′ − (I +AC)DLBAC+(I +AC)DLBAC−DS′PBAC

= T ′.

Observe that

T −TT ′T = (I−AC)DLBAC =
(
DL(I−BD)

)
BAC.

On the other hand,

BAC
(
DL(I−BD)

)
= (BD)2LS = SS

and since SS is a Riesz operator we conclude that T − TT ′T is Riesz. Thus we
have proved that I −AC is left generalized Drazin-Riesz invertible, with T ′ as its left
generalized Drazin-Riesz inverse.

Conversely, suppose that T = I −AC is left generalized Drazin-Riesz invertible
with T ′ as its left generalized Drazin-Riesz inverse. Analogously, we can prove that
T = I−T ′T is a projection commuting with T , such that TT  is Riesz, and that

S′ =
(

I−BACT



n=0

( I− (AC)2)n−n−1D

)
(I +BD)+BACT ′D

is well defined and is the left generalized Drazin-Riesz inverse of I−AC .
(ii) Follows from [17, Theorem 5.6], analogously to the proof of part (i). �

COROLLARY 2. Let A,B,C ∈ L(X) satisfy ABA = ACA. Then I − BA is left
(right) generalized Drazin-Riesz invertible if and only if I −AC is left (right) gener-
alized Drazin-Riesz invertible.

THEOREM 17. Let A,B,C,D ∈ L(X) satisfy BAC = BDB and CDB = CAC.
(i) I −BD is left generalized Drazin-Riesz invertible if and only if I−AC is left

generalized Drazin-Riesz invertible.
(ii) I −BD is right generalized Drazin-Riesz invertible if and only if I −AC is

right generalized Drazin-Riesz invertible.

Proof. (i) Using the same annotations as in the proof of Theorem 16, the proof
follows analogously if we set

T ′ =
(

I−ACDS



n=0

( I− (BD)2)n−n−1B

)
(I +AC)+ACDS′B

and

S′ =
(

I−BT



n=0

( I− (AC)2)n−n−1ACD

)
(I +BD)+BT ′ACD. �
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Faculty of Sciences and Mathematics

University of Niš
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