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Abstract. Let Tn(F2) be the ring of n× n upper triangular matrices over the Galois field F2
of two elements. In this paper we characterize strong commutativity preserving additive maps
 : Tn(F2) → Tn(F2) on invertible matrices for n = 2 and n � 5 . This result completes a recent
result obtained by Chooi et al. in [14] and yields a comprehensive structural characterization of
strong commutativity preserving additive maps on rank k upper triangular matrices over division
rings. Some irregular forms are included to exemplify the complexity in structure of strong
commutativity preserving additive maps  : Tn(F2) → Tn(F2) on invertible matrices for n = 3
and 4 .

1. Introduction and results

Let R be a ring and let S be a nonempty subset of R . For any x,y ∈ R ,
we denote by [x,y] = xy− yx the commutator of x and y . A map  : R → R is
called commutativity preserving on S if [(x),(y)] = 0 whenever [x,y] = 0 for all
x,y ∈ S . Watkins’ pioneering result on commutativity preserving linear maps [33]
inspired several analogous results for rings, matrix spaces and operator algebras; see
[4, 5, 9, 12, 28, 32] and references therein. In particular, Bell and Mason [3] introduced
the notion of strong commutativity preserving maps in 1992. A map  : R →R is said
to be strong commutativity preserving on S if [(x),(y)] = [x,y] for all x,y ∈ S .
A strong commutativity preserving map is commutativity preserving, but the converse
is not true in general. Subsequently, Bell and Daif [2] proved that a semiprime ring
R admitting a strong commutativity preserving derivation on R must necessarily be
commutative. Following this, Brešar and Miers [8] characterized strong commutativity
preserving additive maps  : R → R on semiprime rings R and proved that  is of
the form

(x) = x+ (x) (1)

for all x ∈ R , where  is an element in the extended centroid C of R satisfying
 2 = 1 and  : R → C is an additive map. The significance of this structural result
has attracted considerable attention and there has been remarkable progress in the study

Mathematics subject classification (2020): 15A03, 15A04, 15A27, 15A86, 16R60.
Keywords and phrases: Strong commutativity preserving map, upper triangular matrix, the Galois field

of two elements, functional identity, linear preserver problem.
∗ Corresponding author.

c© � � , Zagreb
Paper OaM-19-07

101

http://dx.doi.org/10.7153/oam-2025-19-07


102 W. L. CHOOI, L. Y. TAN AND Y. N. TAN

of strong commutativity preserving maps on various rings and algebras, as evidenced
in [1, 10, 11, 15, 18,20–23, 25, 27, 30, 31, 34].

Let n � 2 be an integer and let Mn(F) be the ring of n×n matrices over a field F .
Motivated by the elegant and astounding results obtained in addressing linear preserver
problems [19,29] on matrices, Franca [16,17] initiated the study of functional identities
[6,7] on matrices, in particular, commuting additive maps on subsets of Mn(F) that are
not closed under addition such as invertible matrices, singular matrices and rank k
matrices. In light of this, Liu [24] characterized strong commutativity preserving maps
on the subset of invertible (respectively, singular) matrices of Mn(D) over division rings
D and showed that these maps conform to the standard form (1). In a later development,
Liu et al. [26] extended this result to the set of all rank k matrices of Mn(D) for some
fixed integer 1 � k � n .

Let Tn(D) denote the ring of n×n upper triangular matrices over a division ring
D . Most recently, Chooi et al. [14] obtained a complete structural characterization of
strong commutativity preserving additive maps  : Tn(D)→ Tn(D) on rank k matrices,
where 1 � k � n is a fixed integer such that k �= n when D is the Galois field F2 of
two elements. They showed that such additive maps  are of the standard form (1)
when D is a noncommutative division ring, but there are some irregular nonstandard
forms when D is a field. Inspired by these results, in this paper, we complete the study
in [14] by addressing a characterization of strong commutativity preserving additive
maps  : Tn(F2) → Tn(F2) on invertible matrices, i.e., additive maps  satisfying
[(A),(B)] = [A,B] for all invertible matrices A,B ∈ Tn(F2) , in Theorem 1.1 for
n � 5 and Theorem 1.2 for n = 2. It is worth pointing out that the structural result of
these maps is quite different from the result in [14]. For instance, the following additive
map

A �→ A+
n


i=1

aiiXi

for all A = (ai j) ∈ Tn(F2) , where X1, . . . ,Xn ∈ Tn(F2) are some fixed matrices such
that X1 + · · ·+Xn = 0, is strong commutativity preserving on invertible triangular ma-
trices over F2 . Furthermore, there are many irregular forms of strong commutativity
preserving additive maps  : Tn(F2) → Tn(F2) on invertible matrices for both n = 3
and n = 4. We include a selection of irregular forms for n = 3 and n = 4 in Examples
2.2 and 2.3 below. Because of the complexity of these mappings, a full characterization
of strong commutativity preserving maps on invertible matrices may be an intractable
problem for n = 3 and n = 4.

Here and subsequently, F2 is the Galois field of two elements, In is the n× n
identity matrix and Ei j ∈ Tn(F2) denotes the standard matrix unit whose (i, j) th entry
is one and zero elsewhere. One sees immediately that Ei jEst =  jsEit for Ei j,Est ∈
Tn(F2) , where  js is the Kronecker delta, and [A,B] = [B,A] for all A,B ∈ Tn(F2) .

We are now ready to present the main results in the study.

THEOREM 1.1. Let n � 5 be an integer. Then  : Tn(F2) → Tn(F2) is a strong
commutativity preserving additive map on invertible matrices if and only if there exist
scalars , , ∈ F2 , additive maps  ,  : Tn(F2) → F2 and matrices X1, . . . ,Xn ∈
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Tn(F2) satisfying X1 + · · ·+Xn = 0 such that

(A) = A+ (A)In +(A)E1n +
n


i=1

aiiXi + , ,(A)

for all A = (ai j) ∈ Tn(F2) , where  , , : Tn(F2) → Tn(F2) is the additive map defined
by

 , ,(A) = (a12 +an−1,n)E1,n−1 +(a12 + an−1,n)E2n

for all A = (ai j) ∈ Tn(F2) .

THEOREM 1.2. An additive map  : T2(F2) → T2(F2) is strong commutativity
preserving on invertible matrices if and only if there exists an additive map  : T2(F2)→
F2 and matrices X1,X2 ∈ T2(F2) satisfying X1 +X2 = 0 such that either

(A) = A+ (A)I2 +a11X1 +a22X2 +
(

0 a11 +a12

0 a11 +(+1)a12

)

for all A = (ai j) ∈ T2(F2) , where , , ∈ F2 are some fixed scalars, or

(A) = A+ (A)I2 +a11X1 +a22X2 +
(

0 a11

0  (a11 +a12)

)

for all A = (ai j) ∈ T2(F2) , where , ∈ F2 are some fixed scalars.

2. Examples

In this section, we address some examples of strong commutativity preserving
additive maps  : Tn(F2) → Tn(F2) on invertible matrices.

EXAMPLE 2.1. Let n � 3 be an integer. Let  : Tn(F2) → Tn(F2) be the additive
map defined by

(A) = A+ (A)In +(A)E1n +
n


i=1

aiiXi + , ,(A)

for all A = (ai j) ∈ Tn(F2) , where  ,  : Tn(F2) → F2 are additive maps, X1, . . . ,Xn ∈
Tn(F2) are matrices satisfying X1 + · · ·+Xn = 0, and  , , : Tn(F2) → Tn(F2) is the
additive map defined by

 , ,(A) = (a12 +an−1,n)E1,n−1 +(a12 + an−1,n)E2n

for all A = (ai j)∈ Tn(F2) , where , , ∈F2 are fixed scalars in which  = 2 when
n = 3. We will show that  is a strong commutativity preserving additive map on
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invertible matrices. Let A = (ai j) , B = (bi j) ∈ Tn(F2) be invertible. Then aii = 1 = bii

for i = 1, . . . ,n , and thus n
i=1 aiiXi = 0 = n

i=1 biiXi and

[(A),(B)]=[A+ (A)In +(A)E1n + , ,(A),
B+ (B)In +(B)E1n + , ,(B)]

=[A,B]+[A, , ,(B)]+[ , ,(A),B]+[ , ,(A), , ,(B)].

We note that [ , ,(A), , ,(B)] = ( +2)(a12b23+b12a23)E13 = 0 when n = 3,
and [ , ,(A), , ,(B)] = 0 when n � 4. Also, one easily sees that

[A, , ,(B)] = (a12(bn−1,n +b12)+ (b12 +bn−1,n)an−1,n)E1n,

[ , ,(A),B] = ((a12 +an−1,n)bn−1,n +b12(an−1,n +a12))E1n.

It follows that [(A),(B)] = [A,B] for all invertible matrices A,B∈Tn(F2) as claimed.

We now list a selection of some irregular forms of strong commutativity preserving
additive maps  : T4(F2) → T4(F2) on invertible matrices.

EXAMPLE 2.2. Let  : T4(F2) → F2 be an additive map. Let X1,X2,X3,X4 ∈
T4(F2) be such that 4

i=1 Xi = 0. Consider the additive map  : T4(F2) → T4(F2)
defined by

(A) = A+ (A)I4 +
4


i=1

aiiXi

for all A = (ai j) ∈ T4(F2) . In view of Example 2.1, we see that  is a strong com-
mutativity preserving additive map on invertible matrices. Let  : T4(F2) → F2 be an
additive map and , , ∈ F2 . For each i = 1,2,3,4,5, let i : T4(F2) → T4(F2) be
the additive map defined by

1(A) = (A)+

⎛
⎜⎜⎝

0 0 a12 +a34 (A)
0 0 0 a12 + a34

0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ for all A = (ai j) ∈ T4(F2),

2(A) = (A)+

⎛
⎜⎜⎝

0 a13 0 a14

0 0 0 0
0 0 a23 a24

0 0 0 a23

⎞
⎟⎟⎠ for all A = (ai j) ∈ T4(F2),

3(A) = 2(A)+

⎛
⎜⎜⎝

0 a12 a12 +a13 0
0 0 a23 a24 +a34

0 0 0 a34

0 0 0 0

⎞
⎟⎟⎠ for all A = (ai j) ∈ T4(F2),

4(A) = 2(A)+

⎛
⎜⎜⎝

0 0 a12 +a13 0
0 0 a23 a24 +a34

0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ for all A = (ai j) ∈ T4(F2),



STRONG COMMUTATIVITY PRESERVING MAPS ON INVERTIBLE TRIANGULAR MATRICES 105

5(A) = 2(A)+

⎛
⎜⎜⎝

0 a12 a12 0
0 0 0 a34

0 0 0 a34

0 0 0 0

⎞
⎟⎟⎠ for all A = (ai j) ∈ T4(F2).

Firstly, by Example 2.1, 1 is a strong commutativity preserving additive map on in-
vertible matrices. Next, we claim that 2 is strong commutativity preserving on invert-
ible matrices. We set

(X) =

⎛
⎜⎜⎝

0 x13 0 x14

0 0 0 0
0 0 x23 x24

0 0 0 x23

⎞
⎟⎟⎠ for all X = (xi j) ∈ T4(F2).

Let A = (ai j) , B = (bi j) ∈ T4(F2) be invertible. Then aii = 1 = bii , i = 1, . . . ,4. We
see that [(A),(B)] = (a14b23 +b14a23)E14 , and

[A,(B)] =

⎛
⎜⎜⎝

0 0 a13b23 +b13a23 a13b24 +b13a24 +a14b23

0 0 a23b23 a23b24 +a24b23

0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ,

[(A),B] =

⎛
⎜⎜⎝

0 0 a13b23 +b13a23 a13b24 +b13a24 +b14a23

0 0 b23a23 b23a24 +b24a23

0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ .

It follows that [2(A),2(B)] = [(A) + (A),(B) + (B)] = [A,B] + [A,(B)] +
[(A),B]+ [(A),(B)] = [A,B] for all invertible matrices A,B ∈ T4(F2) .

We show that 3 is a strong commutativity preserving additive map on invertible
matrices. Set

(X) =

⎛
⎜⎜⎝

0 x12 + x13 x12 + x13 x14

0 0 x23 x24 + x34

0 0 x23 x24 + x34

0 0 0 x23

⎞
⎟⎟⎠

for all X = (xi j) ∈ T4(F2) . Let A = (ai j) , B = (bi j) ∈ T4(F2) be invertible matrices.
We see that [(A),(B)] = (a14b23 +b14a23)E14 , and

[A,(B)] =

⎛
⎜⎜⎜⎜⎝

0 0
(a12 +a13)b23

+(b12 +b13)a23

(a12 +a13)(b24 +b34)+
(b12 +b13)(a24 +a34)+a14b23

0 0 a23b23 a23(b24 +b34)+b23(a24 +a34)
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎟⎠ ,

[(A),B] =

⎛
⎜⎜⎜⎜⎝

0 0
(b12 +b13)a23

+(a12 +a13)b23

(b12 +b13)(a24 +a34)+
(a12 +a13)(b24 +b34)+b14a23

0 0 b23a23 b23(a24 +a34)+a23(b24 +b34)
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎟⎠ .
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Then [3(A),3(B)] = [(A)+(A),(B)+(B)] = [A,B] for all invertible matrices
A,B ∈ T4(F2) . Likewise, it can be verified by direct computations that 4 and 5 are
strong commutativity preserving maps on invertible matrices.

The following example provides a selection of some irregular forms of strong com-
mutativity preserving additive maps  : T3(F2) → T3(F2) on invertible matrices.

EXAMPLE 2.3. Let  : T3(F2) → F2 be an additive map and let X1,X2,X3 ∈
T3(F2) be such that X1 +X2 +X3 = 0. We define the additive map  : T3(F2)→ T3(F2)
by

(A) = A+ (A)I3 +
3


i=1

aiiXi

for all A = (ai j) ∈ T3(F2) . For each i = 1, . . . ,6, let i : T3(F2) → T3(F2) be the
additive map defined by

1(A) = (A)+

⎛
⎝0 a12 +a23 (A)

0 0 a12 + a23

0 0 0

⎞
⎠ for all A = (ai j) ∈ T3(F2),

where  : T3(F2)→ F2 is an additive map and , , ∈ F2 are scalars satisfying  =
2 , and

2(A) = (A)+

⎛
⎝0 0 a13

0 0 0
0 0 a23

⎞
⎠ for all A = (ai j) ∈ T3(F2),

3(A) = (A)+

⎛
⎝0 0 a13

0 a12 0
0 0 a12

⎞
⎠ for all A = (ai j) ∈ T3(F2),

4(A) = (A)+

⎛
⎝0 0 a13 +a23

0 0 a23

0 0 a12

⎞
⎠ for all A = (ai j) ∈ T3(F2),

5(A) = (A)+

⎛
⎝0 a23 a13

0 a12 +a23 0
0 0 a12 +a23

⎞
⎠ for all A = (ai j) ∈ T3(F2),

6(A) = (A)+

⎛
⎝0 a12 +a13 a13 +a23

0 a13 a23

0 0 a12

⎞
⎠ for all A = (ai j) ∈ T3(F2).

Since  = 2 , it follows from Example 2.1 that 1 is a strong commutativity
preserving map on invertible matrices. We now claim that 2 is strong commutativity
preserving on invertible matrices. We set

(X) =

⎛
⎝0 0 x13

0 0 0
0 0 x23

⎞
⎠
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for every X = (xi j) ∈ T3(F2) . Let A = (ai j) , B = (bi j) ∈ T3(F2) be invertible. We see
that [(A),(B)] = [A,B] , [(A),(B)] = (a13b23 +b13a23)E13 ,

[A,(B)] =

⎛
⎝0 0 a13b23

0 0 a23b23

0 0 0

⎞
⎠ ,

[(A),B] =

⎛
⎝0 0 b13a23

0 0 b23a23

0 0 0

⎞
⎠ .

Then [2(A),2(B)] = [(A)+(A),(B)+(B)] = [A,B]+ [A,(B)]+ [(A),B]+
[(A),(B)] = [A,B] for all invertible matrices A,B ∈ T3(F2) .

Next, we show that 6 is a strong commutativity preserving map on invertible
matrices. Set

(X) =

⎛
⎝0 x12 + x13 x13 + x23

0 x13 x23

0 0 x12

⎞
⎠

for all X = (xi j) ∈ T3(F2) . Let A = (ai j) , B = (bi j) ∈ T3(F2) be invertible. A direct
verification gives

[(A),(B)] =

⎛
⎝0 a12b13 +b12a13 a13(b12 +b23)+b13(a12 +a23)

0 0 a23(b12 +b13)+b23(a12 +a13)
0 0 0

⎞
⎠

= [A,(B)]+ [(A),B].

Thus [6(A),6(B)] = [(A)+(A),(B)+(B)] = [A,B] for all invertible matrices
A,B ∈ T3(F2) . In the same manner we can verify that 3 , 4 and 5 are strong
commutativity preserving maps on invertible matrices.

3. Proofs

We begin with the following observation.

LEMMA 3.1. Let n � 2 be an integer. Then  : Tn(F2) → Tn(F2) is an additive
map such that (A) = A for all invertible matrices A ∈ Tn(F2) if and only if there exist
X1, . . . ,Xn ∈ Tn(F2) satisfying X1 + · · ·+Xn = 0 such that

(A) = A+
n


i=1

aiiXi

for all A = (ai j) ∈ Tn(F2) .

Proof. For the sufficiency, let A = (ai j) , B = (bi j) ∈ Tn(F2) . Then

(A+B) = (A+B)+
n


i=1

(aii +bii)Xi = (A)+(B).
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Hence  is an additive map. Let A = (ai j) ∈ Tn(F2) be invertible. Then aii = 1 for all
i , and thus (A) = A+n

i=1 Xi = A as desired.
We consider the necessity. Let  : Tn(F2) → Tn(F2) be the additive map defined

by
(A) = (A)+A

for all A∈ Tn(F2) . Let B∈ Tn(F2) be invertible. Then (B) = 0, and so [(B),B] = 0.
We infer that  is a commuting additive map on invertible matrices that vanishes on
invertiblematrices. By [13, Lemma 2.6], there exist X1, . . . ,Xn ∈Tn(F2) satisfying X1+
· · ·+Xn = 0 such that (A) = n

i=1 aiiXi for all A = (ai j) ∈ Tn(F2) , which completes
the proof. �

We first characterize strong commutativity preserving additive maps  : T2(F2)→
T2(F2) on invertible matrices.

Proof of Theorem 1.2. Note that if H,K ∈ T2(F2) are invertible, then H = I2 +
aE12 and K = I2 +bE12 for some a,b∈ F2 . Thus [H,K] = 0. We prove the sufficiency.
Let  : T2(F2) → F2 be an additive map and let X1,X2 ∈ T2(F2) be matrices satisfying
X1 +X2 = 0. We first consider the additive map  : T2(F2) → T2(F2) of the form

(A) = A+ (A)I2 +a11X1 +a22X2 +
(

0 a11 +a12

0 a11 +(+1)a12

)
(2)

for all A = (ai j)∈ T2(F2) , where , , ∈ F2 are some fixed scalars. Let A,B∈ T2(F2)
be invertible. Then A = I2 +aE12 and B = I2 +bE12 for some a,b∈ F2 . It follows that
(A) = A+(A)I2 +(+a)E12 +( +(+1)a)E22 by (2). Since [xE12,X ] = 0 for
any x ∈ F2 and invertible matrix X ∈ T2(F2) ,

[(A),(B)] = [A+( +(+1)a)E22, B+( +(+1)b)E22]
+ [( +(+1)a)E22,( +b)E12]
+ [(+a)E12,( +(+1)b)E22].

Since [A,B] = 0, [(+(+1)a)E22,(+b)E12]+[(+a)E12,(+( +1)b)E22] =
 (a+b)E12 , [A,(+(+1)b)E22] = a(+(+1)b)E12 and [(+(+1)a)E22,B]
= b( +(+1)a)E12 , it follows that

[(A),(B)] =  (a+b)E12 +a( +(+1)b)E12 +b( +(+1)a)E12 = 0.

Then [(A),(B)] = 0 = [A,B] for all invertible matrices A ∈ T2(F2) when  is of
form (2).

We consider the additive map  : T2(F2) → T2(F2) of the form

(A) = A+ (A)I2 +a11X1 +a22X2 +
(

0 a11

0  (a11 +a12)

)
(3)

for all A = (ai j) ∈ T2(F2) , where , ∈ F2 are some fixed scalars. Likewise, if A =
I2 +aE12 and B = I2 +bE12 for some a,b ∈ F2 , then

[(A),(B)] = [A+( +a)E22,B+( +b)E22]+ (a+b)E12.
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Since [A,( +b)E22] = a( +b)E12 and [( +a)E22,B] = b( +a)E12 ,
we have

[(A),(B)] = a( +b)E12 +b( +a)E12 + (a+b)E12 = 0 = [A,B].

Hence  is strong commutativity preserving on invertible matrices when  is of form
(3).

For the necessity, we denote

(I2) =
(

f11 f12

0 f22

)
, (4)

(E12) =
(

g11 g12

0 g22

)
(5)

for some fixed scalars fi j,gi j ∈ F2 , 1 � i � j � 2. Since  is strong commutativity
preserving on invertible matrices, it follows that [(I2),(I2 +E12)] = [I2, I2 +E12] =
0, which in turn gives [(I2),(E12)] = 0. By (4) and (5),

( f11 + f22)g12 = f12(g11 +g22). (6)

We argue in the following two cases:
Case 1: g12 = 0. We first consider f12 = 1. Then g11 = g22 by (6). Let 1 =

f11 + f22 ∈ F2 . By (4) and (5), (I2) = f11I2 +1E22 +E12 and (E12) = g11I2 . So,
for A = (ai j) ∈ {I2,E12} ,

(A) = a11( f11I2 +1E22 +E12)+a12g11I2

= A+(a11 f11 +a12g11 +a11)I2 +
(

0 a11 +a12

0 1a11

)
.

Let 1 : T2(F2) → F2 be the additive map defined by 1(A) = a11 f11 + a12g11 + a11

for all A = (ai j) ∈ T2(F2) . Then, by the additivity of  , we have

(A) = A+ 1(A)I2 +
(

0 a11 +a12

0 1a11

)
(7)

for all invertible matrices A = (ai j) ∈ T2(F2) . Consider now f12 = 0. Let 1 = g11 +
g22 ∈ F2 . By (4) and (5), we get (E12) = g11I2 + 1E22 and (I2) = f11I2 +1E22 ,
with 1 = f11 + f22 . For A = (ai j) ∈ {I2,E12} ,

(A) = a11( f11I2 +1E22)+a12(g11I2 + 1E22)

= A+(a11 f11 +a12g11 +a11)I2 +
(

0 a12

0 1a11 + 1a12

)
.

By the additivity of  , we have

(A) = A+ 1(A)I2 +
(

0 a12

0 1a11 + 1a12

)
(8)
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for all invertible matrices A = (ai j) ∈ T2(F2) . Together with (7) and (8), there exists
1 ∈ F2 such that

(A) = A+ 1(A)I2 +
(

0 1a11 +a12

0 1a11 +(1 +1)1a12

)

for all invertible matrices A = (ai j) ∈ T2(F2) . Let  : T2(F2) → T2(F2) be the additive
map defined by

(A) = (A)+ 1(A)I2 +
(

0 1a11 +a12

0 1a11 +(1 +1)1a12

)
(9)

for all A = (ai j) ∈ T2(F2) . Then (A) = A for all invertible matrices A ∈ T2(F2) .
It follows from Lemma 3.1, there exist X1,X2 ∈ T2(F2) , with X1 + X2 = 0, such that
(A) = A+a11X1 +a22X2 for all A = (ai j) ∈ T2(F2) . By (9), we thus obtain

(A) = A+ 1(A)I2 +a11X1 +a22X2 +
(

0 1a11 +a12

0 1a11 +(1 +1)1a12

)

for all A = (ai j) ∈ T2(F2) .
Case 2: g12 = 1. Let 2 = f12 ∈ F2 and 2 = g11 + g22 ∈ F2 . Then f11 =

f22 +22 by (6). In view of (4) and (5), (I2) = ( f22 +22)I2 +2E12 +22E22

and (E12) = g11I2 +E12 +2E22 . For A = (ai j) ∈ {I2,E12} ,

(A) = a11(( f22 +22)I2 +2E12 +22E22)+a12(g11I2 +E12 +2E22)

= A+(a11(1+ f22 +22)+a12g11)I2 +
(

0 2a11

0 2(2a11 +a12)

)
.

Let 2 : T2(F2) → F2 be the additive map defined by 2(A) = a11(1+ f22 +22)+
a12g11 for all A = (ai j) ∈ T2(F2) . By the additivity of  , we have

(A) = A+ 2(A)I2 +
(

0 2a11

0 2(2a11 +a12)

)

for all invertible matrices A = (ai j) ∈ T2(F2) . We now apply a similar argument as in
Case 1 and use Lemma 3.1 to obtain matrices Y1,Y2 ∈ T2(F2) , with Y1 +Y2 = 0, such
that

(A) = A+ 2(A)I2 +a11Y1 +a22Y2 +
(

0 2a11

0 2(2a11 +a12)

)

for all A = (ai j) ∈ T2(F2) . This completes the proof. �

We move on to obtain a complete description of strong commutativity preserving
additive maps  : Tn(F2) → Tn(F2) on invertible matrices for n � 5. For any integer
n � 2, it follows immediately from the Jacobi identity that if  : Tn(F2)→ Tn(F2) is an
additive map satisfying [(A),(B)] = [A,B] for all invertible matrices A,B ∈ Tn(F2) ,
then

[(A), [B,C]]+ [(B), [C,A]]+ [(C), [A,B]] = 0 (10)

for all invertible matrices A,B,C ∈ Tn(F2) .
Our study starts with some preliminary results.
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LEMMA 3.2. Let n � 3 be an integer and let  : Tn(F2) → Tn(F2) be a strong
commutativity preserving additive map on invertible matrices. Then

(i) [(In),(Epq)] = 0 for all integers 1 � p < q � n.

(ii) [(In),Epq] = 0 for all integers 1 � p � n−2 and p+2 � q � n.

(iii) [(Epq),(Est)] = qsEpt for all integers 1 � p < q � n and 1 � s < t � n with
p � s.

Proof. (i) Let 1 � p < q � n be integers. Since [(In), (In)] = 0 = [(In),(In+
Epq)] , it follows that [(In),(Epq)] = [(In), (In + In + Epq)] = [(In), (In)] +
[(In),(In +Epq)] = 0.

(ii) Let p and q be integers such that 1 � p � n− 2 and p+ 2 � q � n . Setting
A = In , B = In +Ep,p+1 and C = In +Ep+1,q in (10), we get

0 = [(In), [In +Ep,p+1, In +Ep+1,q]] = [(In), [Ep,p+1,Ep+1,q]] = [(In), Epq].

(iii) Consider integers 1 � p < q � n and 1 � s < t � n with p � s . By (i), we
obtain [(In)+(Epq), (In)+(Est)] = [(Epq), (Est)] . Then

[(Epq), (Est)] = [(In +Epq), (In +Est)] = [In +Epq, In +Est ] = qsEpt .

This completes the proof. �

LEMMA 3.3. Let n � 5 be an integer and let  : Tn(F2) → Tn(F2) be a strong
commutativity preserving additive map on invertible matrices. Then the following hold.

(i) For each pair of integers 1 � s < t � n satisfying (s,t) �= (1,2) and s �= 2 ,
[(Est),E1k] = 0 for all integers 3 � k � n with k �= s.

(ii) For each pair of integers 1 � s < t � n satisfying (s,t) �= (n−1,n) and t �= n−1 ,
[(Est),Ekn] = 0 for all integers 1 � k � n−2 with k �= t .

(iii) For each integer 3 � t � n, [(E2t),E1k]+ 3t [(E13),E2k] = 0 for all integers
4 � k � n.

(iv) For each integer 1 � s � n−2 , [(Es,n−1),Ekn]+s,n−2[(En−2,n), Ek,n−1] = 0
for all integers 1 � k � n−3 .

(v) [(Est),Etq]+ [(Epq),Esp] = 0 for all integers 1 � s < t < p < q � n.

Proof. (i) Let 1 � s < t � n and 3 � k � n be integers such that (s, t) �= (1, 2) ,
s �= 2 and k �= s . Setting A = In +Est , B = In +E12 , C = In +E2k in (10) gives [(In +
Est), E1k] = 0. Since [(In), E1k] = 0 by Lemma 3.2 (ii), we have [(Est), E1k] = 0.

(ii) Let 1� s < t � n and 1� k � n−2 be integers such that (s, t) �= (n−1, n) , t �=
n−1 and k �= t . Taking A = In +Est , B = In +Ek,n−1 , C = In +En−1,n in (10), we get
[(In +Est), Ekn] = 0. By Lemma 3.2 (ii), [(In), Ekn] = 0, and thus [(Est), Ekn] = 0.
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(iii) Let 3 � t � n and 4 � k � n be integers. Set A = In + E2t , B = In + E13 ,
C = In + E3k in (10). We obtain [(In + E2t),E1k] + [(In + E13),3tE2k] = 0. The
desired result follows from Lemma 3.2 (ii).

(iv) Let 1 � s � n− 2 and 1 � k � n− 3 be integers. Setting A = In + Es,n−1 ,
B = In +Ek,n−2 , C = In +En−2,n in (10) yields [(In +Es,n−1),Ekn]+ [(In +En−2,n),
s,n−2Ek,n−1] = 0. The result follows from Lemma 3.2 (ii).

(v) Let s, t, p,q be integers with 1 � s < t < p < q � n . Taking A = In + Est ,
B = In +Etp , C = In +Epq in (10), we get [(Est), Etq]+[(Epq), Esp] = 0 by Lemma
3.2 (ii). �

The following technical lemma gives a structural result of strong commutativity
preserving additive maps on the identity matrix and strictly upper triangular matrices.

LEMMA 3.4. Let n � 5 be an integer and let  : Tn(F2) → Tn(F2) be a strong
commutativity preserving additive map on invertible matrices. Then there exist , , ∈
F2 and additive maps  ,  : Tn(F2) → F2 such that

(A) = A+ (A)In +(A)E1n + , ,(A)

for all strictly upper triangular matrices A ∈ Tn(F2) and A = In , where  , , : Tn(F2)
→ Tn(F2) is the additive map defined by

 , ,(A) = (a12 +an−1,n)E1,n−1 +(a12 + an−1,n)E2n

for all A = (ai j) ∈ Tn(F2) .

Proof. For each pair of integers 1 � s < t � n , we denote

(Est) = 
1�i� j�n

(st)
i j Ei j, (11)

(In) = 
1�i� j�n

i jEi j (12)

for some fixed scalars (st)
i j ,i j ∈ F2 , 1 � i � j � n . Our first claim is that

(In) = 11In +
2


i=1

n


j=n−1

i jEi j. (13)

Let 3 � p � n be an integer. By Lemma 3.2 (ii), [(In), E1p] = 0. It follows from (12)
that


1�i� j�n

i jEi jE1p + 
1�i� j�n

i jE1pEi j = 0.

This yields (11 +pp)E1p +n
j=p+1p jE1 j = 0. It is understood that n

j=p+1p jE1 j

vanishes when p = n . Then for every 3 � p � n ,

pp = 11, (14)
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p j = 0 for j = p+1, . . . ,n. (15)

Likewise, for each integer 1 � p � n− 2, we get [(In), Epn] = 0 by Lemma 3.2 (ii).

By (12), we have (pp +nn)Epn +p−1
i=1 ipEin = 0. Then for every 1 � p � n−2,

pp = nn, (16)

ip = 0 for i = 1, . . . , p−1. (17)

Substituting (14) – (17) into (12) yields (In) =11In +2
i=1

n
j=n−1i jEi j as claimed.

We now study the structure of (Est) for every 1 � s < t � n . The argument will
be divided into three cases.

Case I-1 : s = 1. Let 3 � p,q � n be integers. By Lemma 3.3 (i), [(E1q), E1p] =
0. We thus obtain from (11) that ((1q)

11 +(1q)
pp )E1p +n

j=p+1
(1q)
p j E1 j = 0. Then for

every 3 � p,q � n ,

(1q)
pp = (1q)

11 , (18)

(1q)
p j = 0 for j = p+1, . . . ,n. (19)

Next consider integers 1 � p � n− 2 and 2 � q � n , with p �= q and q �= n− 1.

By Lemma 3.3 (ii), we see that [(E1q), Epn] = 0. It follows from (11) that ((1q)
pp +

(1q)
nn )Epn +p−1

i=1 (1q)
ip Ein = 0. Then for every 1 � p � n− 2 and 2 � q � n , with

p �= q and q �= n−1,

(1q)
pp = (1q)

nn , (20)

(1q)
ip = 0 for i = 1, . . . , p−1. (21)

Substituting (18) – (21) into (11), we obtain

(E1n) = (1n)
11 In +

2


i=1

n


j=n−1

(1n)
i j Ei j. (22)

Let 3 � p < q � n be integers. By Lemma 3.3 (v), we get [(E12), E2q]+[(Epq),
E1p] = 0. It follows from (11) that 2

i=1
(12)
i2 Eiq + n

j=q
(12)
q j E2 j + (pq)

11 E1p +

n
j=p

(pq)
p j E1 j = 0. Thus

((pq)
11 +(pq)

pp )E1p +((pq)
pq +(12)

12 )E1q +((12)
qq +(12)

22 )E2q

+
n


j=q+1

(12)
q j E2 j +

n


j=p+1, j �=q

(pq)
p j E1 j = 0.

Then for every 3 � p < q � n ,

(pq)
pq = (12)

12 , (23)

and for every 4 � p � n ,

(12)
pp = (12)

22 , (24)
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(12)
p j = 0 for j = p+1, . . . ,n. (25)

Substituting (20), (21), (24) and (25) into (11), we get

(E12) = (12)
11 In +(12)

12 E12 +
3


i=1

n


j=n−1

(12)
i j Ei j. (26)

Now consider integers 3 � t � n− 2 and t < p < q � n . Then [(E1t), Etq] +
[(Epq), E1p] = 0 by Lemma 3.3 (v), and thus

((pq)
pq +(1t)

1t )E1q + ((pq)
11 +(pq)

pp )E1p +((1t)
tt +(1t)

qq )Etq

+
t−1


i=2

(1t)
it Eiq +

n


j=q+1

(1t)
q j Et j +

n


j=p+1, j �=q

(pq)
p j E1 j = 0.

Then for every 3 � t � n−2 and t < p < q � n ,

(1t)
it = 0 for i = 2, . . . ,t−1, (27)

(pq)
pq = (1t)

1t . (28)

Taking (p,q) = (n−1,n) in (28), together with (23), we obtain

(1t)
1t = (n−1,n)

n−1,n = (12)
12 for t = 3, . . . ,n−2. (29)

Substituting (18) – (21), (27) and (29) into (11), we get

(E1t) = (1t)
11 In +(12)

12 E1t +
2


i=1

n


j=n−1

(1t)
i j Ei j (30)

for t = 3, . . . ,n−2. Finally, we claim that

(E1,n−1) = (1,n−1)
11 In +

2


i=1

n


j=n−2

(1,n−1)
i j Ei j. (31)

Let 1 � p � n−3 be an integer. Since 1,n−2 = 0, it follows from Lemma 3.3 (iv) that

[(E1,n−1),Epn] = 0. By (11), ((1,n−1)
pp +(1,n−1)

nn )Epn +p−1
i=1 (1,n−1)

ip Ein = 0. Then
for every 1 � p � n−3, we get

(1,n−1)
pp = (1,n−1)

nn , (32)

(1,n−1)
ip = 0 for i = 1, . . . , p−1. (33)

Substituting (18), (19), (32) and (33) into (11), we prove (31) as desired.
Case I-2 : s = 2. Then 3 � t � n . Consider integer 4 � p � n . By Lemma

3.3 (iii), we see that [(E2t), E1p]+ 3t [(E13), E2p] = 0. Since (13)
12 = 0 by (21), it

follows from (11) that

((2t)
11 +(2t)

pp )E1p + 3t(
(13)
22 +(13)

pp )E2p +
n


j=p+1

(2t)
p j E1 j + 3t

n


j=p+1

(13)
p j E2 j = 0.



STRONG COMMUTATIVITY PRESERVING MAPS ON INVERTIBLE TRIANGULAR MATRICES 115

Then for every 3 � t � n and 4 � p � n ,

(2t)
pp = (2t)

11 , (34)

(2t)
p j = 0 for j = p+1, . . . ,n. (35)

We now consider integers 3 � t � n and 1 � p � n− 2, with t �= n− 1 and p �= t .

It follows from Lemma 3.3 (ii) that [(E2t), Epn] = 0. By (11), ((2t)
pp +(2t)

nn )Epn +

p−1
i=1 (2t)

ip Ein = 0. Then for every 3 � t � n and 1 � p � n−2, with t �= n− 1 and
p �= t ,

(2t)
pp = (2t)

nn , (36)

(2t)
ip = 0 for i = 1, . . . , p−1. (37)

Next, consider integers 3 � t � n− 2 and t < p < q � n . Then [(E2t), Etq] +
[(Epq), E2p] = 0 by Lemma 3.3 (v). We infer from (11) that

((2t)
tt +(2t)

qq )Etq + ((2t)
2t +(pq)

pq )E2q +(pq)
12 E1p +((pq)

22 +(pq)
pp )E2p

+
t−1


i=1,i�=2

(2t)
it Eiq +

n


j=q+1

(2t)
q j Et j +

n


j=p+1, j �=q

(pq)
p j E2 j = 0.

Then for every 3 � t � n−2 and t < p < q � n ,

(pq)
pq = (2t)

2t , (38)

(2t)
qq = (2t)

tt , (39)

(2t)
it = 0 for i = 1,3, . . . ,t−1. (40)

Taking (p,q) = (n−1,n) in (38), together with (23), we get

(2t)
2t = (n−1,n)

n−1,n = (12)
12 for t = 3, . . . ,n−2. (41)

Substituting (34) – (37) and (39) – (41) into (11), we obtain

(E2t) = (2t)
11 In +(12)

12 E2t +
3


i=1

n


j=n−1

(2t)
i j Ei j (42)

for t = 3, . . . ,n−2.
We next consider t = n−1. Let 1 � p � n−3 be an integer. Note that 2,n−2 = 0.

Then [(E2,n−1),Epn] = 0 by Lemma 3.3 (iv). By (11), ((2,n−1)
pp +(2,n−1)

nn )Epn +

p−1
i=1 (2,n−1)

ip Ein = 0. Then for every 1 � p � n−3,

(2,n−1)
pp = (2,n−1)

nn , (43)

(2,n−1)
ip = 0 for i = 1, . . . , p−1. (44)
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Next, setting A = In +E2,n−1 , B = In +E12 , C = In +E23 in (10), together with Lemma
3.2 (ii), we obtain [(E2,n−1), E13]+ [(E23), E1,n−1] = 0. It follows from (11) that

((2,n−1)
11 +(2,n−1)

33 )E13 +
(
(23)

11 +(23)
n−1,n−1 +(2,n−1)

3,n−1

)
E1,n−1

+
(
(23)

n−1,n +(2,n−1)
3n

)
E1n +

n−2


j=4

(2,n−1)
3 j E1 j = 0.

We thus obtain
(2,n−1)

33 = (2,n−1)
11 , (45)

(2,n−1)
3 j = 0 for j = 4, . . . ,n−2, (46)

and (23)
11 +(23)

n−1,n−1+(2,n−1)
3,n−1 = 0 and (23)

n−1,n +(2,n−1)
3n = 0. Since (23)

11 =(23)
n−1,n−1

by (34), and (23)
n−1,n = 0 by (35), it follows that

(2,n−1)
3,n−1 = 0 and (2,n−1)

3n = 0. (47)

Substituting (34), (35) and (43) – (47) into (11) yields

(E2,n−1) = (2,n−1)
11 In +

2


i=1

n


j=n−2

(2,n−1)
i j Ei j. (48)

Now, letting A = In + E2n , B = In + E12 , C = In + E23 in (10), together with
Lemma 3.2 (ii), we get [(E2n),E13]+ [(E23),E1n] = 0. It follows from (11) that

(
(2n)

11 +(2n)
33

)
E13 +

(
(23)

11 +(23)
nn +(2n)

3n

)
E1n +

n−1


j=4

(2n)
3 j E1 j = 0.

Then
(2n)

3 j = 0 for j = 4, . . . ,n−1, (49)

and (23)
11 = (23)

nn +(2n)
3n . Since (23)

11 = (23)
nn by (34), we get

(2n)
3n = 0. (50)

Substituting (34) – (37), (49) and (50) into (11), we obtain

(E2n) = (2n)
11 In +

2


i=1

n


j=n−1

(2n)
i j Ei j. (51)

Case I-3 : 3 � s � n− 1. Recall that s < t � n . Let p be an integer such that
3 � p � n , with p �= s . Then [(Est), E1p] = 0 by Lemma 3.3 (i). From (11), we get

((st)
11 +(st)

pp )E1p +n
j=p+1

(st)
p j E1 j = 0. Then for every 3 � s < t � n and 3 � p � n ,

with p �= s ,

(st)
pp = (st)

11 , (52)
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(st)
p j = 0 for j = p+1, . . . ,n. (53)

Next, consider integers p and q with 1 � p < q < s < t � n . It follows from Lemma
3.3 (v) that [(Est),Eps]+ [(Epq),Eqt ] = 0. By (11), we have

((st)
pp + (st)

ss )Eps +((pq)
pq +(st)

st )Ept +((pq)
qq +(pq)

tt )Eqt +
p−1


i=1

(st)
ip Eis

+
q−1


i=1, i�=p

(pq)
iq Eit +

n


j=s+1, j �=t

(st)
s j Ep j +

n


j=t+1

(pq)
t j Eq j = 0.

Then for every 3 � s < t � n and 1 � p � s−2,

(st)
pp = (st)

ss , (54)

(st)
s j = 0 for j = s+1, . . . ,n, with j �= t, (55)

(st)
ip = 0 for i = 1, . . . , p−1, (56)

and (pq)
pq +(st)

st = 0 for all 1 � p < q < s . Taking (p,q) = (1,2) gives

(st)
st = (12)

12 . (57)

Taking (s, t) = (n−1,n) and substituting (52) – (54), (56) and (57) into (11), we obtain

(En−1,n) = (n−1,n)
11 In +(12)

12 En−1,n +
2


i=1

n


j=n−2

(n−1,n)
i j Ei j. (58)

We now consider s < t � n , with t �= n− 1 and (s,t) �= (n− 1,n) . By Lemma

3.3 (ii), we have [(Est),Epn] = 0 for all 1 � p � n−2, with p �= t . By (11), ((st)
pp +

(st)
nn )Epn +p−1

i=1 (st)
ip Ein = 0. Then for every 3 � s < t � n and 1 � p � n−2, with

(s,t) �= (n−1,n) , t �= n−1 and p �= t ,

(st)
pp = (st)

nn , (59)

(st)
ip = 0 for i = 1, . . . , p−1. (60)

In view of Lemma 3.3 (v) that [(Est),Etq]+ [(Epq),Esp] = 0 for all t < p < q � n .
By (11),

((st)
tt +(st)

qq )Etq + ((st)
st +(pq)

pq )Esq +((pq)
ss +(pq)

pp )Esp +
t−1


i=1, i�=s

(st)
it Eiq

+
s−1


i=1

(pq)
is Eip +

n


j=q+1

(st)
q j Et j +

n


j=p+1, j �=q

(pq)
p j Es j = 0.
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Then for every 3 � s < t � n−2,

(st)
it = 0 for i = 1, . . . ,t−1, with i �= s. (61)

Substituting (52), (53), (55), (57) and (59) – (61) into (11), we have

(Est) = (st)
11 In +(12)

12 Est +
2


i=1

n


j=n−1

(st)
i j Ei j (62)

for every 3 � s < t � n , with (s,t) �= (n−1,n) and t �= n−1.
Next consider t = n− 1. Then 3 � s � n− 2. By Lemma 3.3 (iv), we obtain

[(Es,n−1),Epn]+ s,n−2[(En−2,n),Ep,n−1] = 0 for all 1 � p � n−3. It follows from
(11) that(

(s,n−1)
pp +(s,n−1)

nn + s,n−2
(n−2,n)
n−1,n

)
Epn + s,n−2(

(n−2,n)
n−1,n−1 +(n−2,n)

pp )Ep,n−1

+
p−1


i=1

(s,n−1)
ip Ein + s,n−2

p−1


i=1

(n−2,n)
ip Ei,n−1 = 0.

Note that (n−2,n)
n−1,n = 0 by (53). Then for every 3 � s � n−2 and 1 � p � n−3,

(s,n−1)
pp = (s,n−1)

nn , (63)

(s,n−1)
ip = 0 for i = 1, . . . , p−1. (64)

Substituting (52) – (55), (57), (63) and (64) into (11), we obtain

(Es,n−1) = (s,n−1)
11 In +(12)

12 Es,n−1 +
2


i=1

n


j=n−2

(s,n−1)
i j Ei j (65)

for s = 3, . . . ,n−2.
Denote  = (12)

12 ∈ F2 . We claim that

 = 1. (66)

To see this, let 3 � p � n−2 be an integer. Then [(E12),(E2p)] = E1p by Lemma

3.2 (iii). By (26) and (42),
[
E12+3

i=1
n
j=n−1

(12)
i j Ei j, E2p+3

i=1
n
j=n−1

(2p)
i j Ei j

]
= E1p . Thus

( 2+1)E1p+
(
(2p)

2,n−1E1,n−1+(2p)
2n E1n+3p

(12)
3,n−1E2,n−1+3p

(12)
3n E2n

)
= 0 (67)

for all 3 � p � n−2. Then  2 = 1, and hence  = 1 as claimed.
We now further simplify the structure of (E12) and (En−1,n) in (26) and

(58), respectively. Let 3 � p � n−2 be an integer. Lemma 3.2 (iii) gives [(Ep,n−1),
(En−1,n)] = Epn . It follows from (58), (65) and (66) that

(p,n−1)
1,n−1 E1n +(p,n−1)

2,n−1 E2n + p,n−2

(
(n−1,n)

1,n−2 E1,n−1 +(n−1,n)
2,n−2 E2,n−1

)
= 0.



STRONG COMMUTATIVITY PRESERVING MAPS ON INVERTIBLE TRIANGULAR MATRICES 119

By taking p = n−2, we have

(n−1,n)
1,n−2 = (n−1,n)

2,n−2 = 0, (68)

and for every 3 � p � n−2,

(p,n−1)
1,n−1 = (p,n−1)

2,n−1 = 0. (69)

Next, [(E12),(En−1,n)] = 0 by Lemma 3.2 (iii). It follows from (26), (58), (66) and

(68) that
[
E12 +3

i=1
n
j=n−1

(12)
i j Ei j, En−1,n +2

i=1n
j=n−1

(n−1,n)
i j Ei j

]
= 0. Then

(n−1,n)
2,n−1 E1,n−1 +((n−1,n)

2n +(12)
1,n−1)E1n +(12)

2,n−1E2n +(12)
3,n−1E3n = 0.

Consequently, (n−1,n)
2,n−1 = (12)

2,n−1 = (12)
3,n−1 = 0 and (n−1,n)

2n = (12)
1,n−1 . Taking p = 3 in

(67) gives (12)
3n = 0. Combining these results with (26), (58), (66) and (68), we thus

conclude that

(E12) = (12)
11 In +E12 +(12)

1,n−1E1,n−1 +(12)
1n E1n +(12)

2n E2n, (70)

(En−1,n) = (n−1,n)
11 In +En−1,n +(n−1,n)

1,n−1 E1,n−1 +(n−1,n)
1n E1n +(12)

1,n−1E2n. (71)

Denote X = {(1,n− 1),(1,n),(2,n− 1),(2,n)} . We next show that for every
1 � s < t � n , with (s,t) /∈ X ∪{(1,2),(n−1,n)} ,

(Est) = (st)
11 In +Est +(st)

1n E1n. (72)

The proof will be divided into three cases.
Case II-1 : 1 � s < t � n , with (s,t) /∈ X ∪{(1,2),(n− 1,n)} , s �= 2 and t �=

n−1. It follows from (30), (62) and (66) that

(Est) = (st)
11 In +Est +

2


i=1

n


j=n−1

(st)
i j Ei j. (73)

By Lemma 3.2 (iii), we have [(E12),(Est)] = 0. Together with (70), we obtain

[
E12 +(12)

1,n−1E1,n−1 +(12)
1n E1n +(12)

2n E2n, Est +
2


i=1

n


j=n−1

(st)
i j Ei j

]
= 0.

Since s, t /∈ {2,n− 1} , we have (st)
2,n−1E1,n−1 +(st)

2n E1n = 0. Then for every 1 � s <

t � n , with (s, t) /∈ X ∪{(1,2),(n−1,n)} , s �= 2 and t �= n−1,

(st)
2,n−1 = (st)

2n = 0. (74)

On the other hand, we have [(Est),(En−1,n)] = 0 by Lemma 3.2(iii). Using a similar

argument and applying (71), we obtain (st)
1,n−1E1n +(st)

2,n−1E2n = 0. Then for every
1 � s < t � n , with (s,t) /∈ X ∪{(1,2),(n−1,n)} , s �= 2 and t �= n−1,

(st)
1,n−1 = 0. (75)
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Substituting (74) and (75) into (73) yields (Est) = (st)
11 In +Est +(st)

1n E1n as claimed.
Case II-2 : s = 2 and 3 � t � n−2. By (42) and (66), we have

(E2t) = (2t)
11 In +E2t +

3


i=1

n


j=n−1

(2t)
i j Ei j (76)

By Lemma 3.2 (iii), we see that [(E13),(E2t)] = 0. It follows from (30), (66) and

(76) that (2t)
3,n−1E1,n−1 +(2t)

3n E1n = 0. Then for every 3 � t � n−2,

(2t)
3,n−1 = (2t)

3n = 0. (77)

Next, we see that [(E2t),(En−1,n)] = 0 by Lemma 3.2 (iii). Applying (71) and (76),

we obtain (2t)
1,n−1E1n +(2t)

2,n−1E2n +(2t)
3,n−1E3n = 0. Then for every 3 � t � n−2,

(2t)
1,n−1 = (2t)

2,n−1 = 0. (78)

Moreover, in view of (67), we see that for every 3 � t � n−2,

(2t)
2n = 0. (79)

Substituting (77), (78) and (79) into (76) yields (E2t) = (2t)
11 In + E2t +(2t)

1n E1n as
desired.

Case II-3 : 3 � s � n−2 and t = n−1. By (65) and (66), we get

(Es,n−1) = (s,n−1)
11 In +Es,n−1 +

2


i=1

n


j=n−2

(s,n−1)
i j Ei j. (80)

Note that Lemma 3.2 (iii) gives [(Es,n−1),(En−2,n)] = 0. Together with (62), (66)

and (80), we obtain (s,n−1)
1,n−2 E1n +(s,n−1)

2,n−2 E2n = 0. Then for every 3 � s � n−2,

(s,n−1)
1,n−2 = (s,n−1)

2,n−2 = 0. (81)

Likewise, by Lemma 3.2 (iii), we get [(E12),(Es,n−1)] = 0. It follows from (70),

(80) and (81) that (s,n−1)
2,n−1 E1,n−1 +(s,n−1)

2n E1n = 0. Then for every 3 � s � n−2,

(s,n−1)
2,n−1 = (s,n−1)

2n = 0. (82)

Moreover, in view of (69), we see that (s,n−1)
1,n−1 = 0 for 3 � s � n−2. Combining

this result with (80), (81) and (82) gives (Es,n−1) = (s,n−1)
11 In +Es,n−1 +(s,n−1)

1n E1n ,
which completes the proof of (72).

We continue to refine the structure of (In) in (13) as well as (Est) , (s,t) ∈X ,
in (22), (31), (48) and (51). To do this, we first note that [(In),(E12)] = 0 by Lemma
3.2 (i). It follows from (13) and (70) that 2,n−1E1,n−1 +2nE1n = 0. Then

2,n−1 = 2n = 0. (83)
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By Lemma 3.2 (i), [(In),(En−1,n)] = 0. It follows from (13), (71) and (83) that
1,n−1E1n = 0, and so 1,n−1 = 0. Together with (13) and (83), we obtain

(In) = 11In +1nE1n. (84)

Next, by Lemma 3.2 (iii), we get [(E1i),(E12)] = 0, i = n − 1,n . It follows

from (22), (31) and (70) that (1,n−1)
2,n−2 E1,n−2 +(1,n−1)

2,n−1 E1,n−1 +(1,n−1)
2n E1n = 0 and

(1n)
2,n−1E1,n−1 +(1n)

2n E1n = 0. Consequently,

(1,n−1)
2,n−2 = (1,n−1)

2,n−1 = (1,n−1)
2n = 0, (85)

(1n)
2,n−1 = (1n)

2n = 0. (86)

By Lemma 3.2 (iii), we have [(Ein),(En−1,n)] = 0, i = 1,2. It follows from (22),

(51) and (71) that (in)
1,n−1E1n +(in)

2,n−1E2n = 0 for i = 1,2. Then

(sn)
1,n−1 = (sn)

2,n−1 = 0 for s = 1,2. (87)

One sees immediately from (22), (86) and (87) that

(E1n) = (1n)
11 In +(1n)

1n E1n. (88)

In view of Lemma 3.2 (iii), we see that [(E12),(E2i)] = E1i , i = n−1,n . It follows

from (48), (51) and (70) that E1,n−1+n
j=n−2

(2,n−1)
2 j E1 j = 0 and E1n+n

j=n−1
(2n)
2 j E1 j

= 0. Then
(2,n−1)

2,n−1 = (2n)
2n = 1, (89)

(2,n−1)
2,n−2 = (2,n−1)

2n = 0. (90)

We infer from (51), (87) and (89) that

(E2n) = (2n)
11 In +E2n +(2n)

1n E1n. (91)

Let 1 � p � 2 be an integer. Setting A = In+Ep,n−1 , B = In+En−2,n−1 , C = In+En−1,n

in (10), together with Lemma 3.2 (ii), we obtain [(Ep,n−1),En−2,n]+[(En−2,n−1),Epn]
= 0. It follows from (31), (48) and (72) that (p,n−1)

1,n−2 E1n +(p,n−1)
2,n−2 E2n = 0. Then

(s,n−1)
1,n−2 = (s,n−1)

2,n−2 = 0 for s = 1,2. (92)

In addition, we have [(Ei,n−1),(En−1,n)] = Ein , i = 1,2, by Lemma 3.2 (iii). We

then see from (31), (48) and (71) that (i,n−1)
1,n−1 E1n +(i,n−1)

2,n−1 E2n = Ein , i = 1,2, which

in turn gives (1,n−1)
1,n−1 = 1 and (2,n−1)

1,n−1 = 0. Combining these results with (31), (48),
(85), (89), (90) and (92), we conclude that

(Es,n−1) = (s,n−1)
11 In +Es,n−1 +(s,n−1)

1n E1n (93)
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for s = 1,2. We are done.
Let  ,  : Tn(F2) → F2 be the additive maps defined by

(A) = a11(11 +1)+ 
1�i< j�n

ai j
(i j)
11 ,

(A) = a111n +a1n + 
1�i< j�n

ai j
(i j)
1n

for all A = (ai j) ∈ Tn(F2) . We denote  = (12)
1,n−1 ∈ F2 ,  = (n−1,n)

1,n−1 ∈ F2 and  =

(12)
2n ∈ F2 . Let  , , : Tn(F2) → Tn(F2) be the additive map defined by

 , ,(A) =
(
a12 +an−1,n

)
E1,n−1 +

(
a12 + an−1,n

)
E2n

for all A = (ai j) ∈ Tn(F2) . Note that (In) =11 +1, (In) =1n and  , ,(In) = 0.
By (84),

(In) = In + (In)In +(In)E1n + , ,(In).

Moreover, in view of (70) – (72), (88), (91) and (93), together with the additivity of  ,
we see that for every strictly upper triangular matrix A =1�i< j�n ai jEi j ∈ Tn(F2) ,

(A) = 
1�i< j�n

(ai jEi j)

= a12
(12)
1,n−1E1,n−1 +a12

(12)
2n E2n +an−1,n

(n−1,n)
1,n−1 E1,n−1

+an−1,n
(12)
1,n−1E2n + 

1�i< j�n,(i, j) �=(1,n)
ai jEi j + 

1�i< j�n

ai j
(i j)
11 In

+ 
1�i< j�n

ai j
(i j)
1n E1n

= a12E1,n−1 +a12E2n +an−1,nE1,n−1 + an−1,nE2n

+ 
1�i< j�n

ai jEi j + 
1�i< j�n

ai j
(i j)
11 In +

(
a1n + 

1�i< j�n

ai j
(i j)
1n

)
E1n

= A+ (A)In +(A)E1n + , ,(A).

Consequently, (A) = A+ (A)In +(A)E1n + , ,(A) for every strictly upper tri-
angular matrix A ∈ Tn(F2) and A = In . This proves the lemma. �

We are in a position to prove the main result of this section.

Proof of Theorem 1.1. The sufficiency follows immediately from Example 2.1.
We now prove the necessity. By Lemma 3.4, there exist , , ∈ F2 , additive maps
 ,  : Tn(F2) → F2 such that

(A) = A+ (A)In +(A)E1n + , ,(A)

for all strictly upper triangular matrices A ∈ Tn(F2) and A = In . Let  : Tn(F2) →
Tn(F2) be the additive map defined by

(A) = (A)+ (A)In +(A)E1n + , ,(A)



STRONG COMMUTATIVITY PRESERVING MAPS ON INVERTIBLE TRIANGULAR MATRICES 123

for all A ∈ Tn(F2) . It is easily verified that (A) = A for all invertible matrices A ∈
Tn(F2) . By Lemma 3.1, there exist matrices X1, . . . ,Xn ∈ Tn(F2) satisfying X1 + · · ·+
Xn = 0 such that (A) = A+n

i=1 aiiXi for all A = (ai j) ∈ Tn(F2) . We thus obtain

(A) = A+ (A)In +(A)E1n +
n


i=1

aiiXi + , ,(A)

for all A = (ai j) ∈ Tn(F2) , which completes the proof. �
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