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COMPACT WEIGHTED COMPOSITION–DIFFERENTIATION

OPERATORS OF ORDER n ON THE HARDY SPACE

MAHSA FATEHI AND MAHMOOD HAJI SHAABANI ∗

(Communicated by G. Misra)

Abstract. The weighted composition–differentiation operator of order n is denoted by D,,n .
In this paper, we investigate some basic properties of compact weighted composition–differentiation
operators of order n on the Hardy space. Moreover, we obtain the upper estimate on the norm
of the operator D,,n , in the case that ‖‖ < 1 .

1. Preliminaries

Let D be the open unit disk in the complex plane C . The algebra A(D) consists
of all continuous functions on the closure of D which are analytic on D . The space H

is the set of bounded analytic functions f on D with ‖ f‖ = sup{| f (z)| : z ∈ D} . The
Hardy space H2 is the Hilbert space of all analytic functions f on D such that

‖ f‖2 =
(

sup
0<r<1

∫
D

∣∣ f (r )
∣∣2dm( )

)1/2

= lim
r→1

1
2

∫ 2

0
| f (rei )|2d < ,

where m is the normalized arc-length Lebesgue measure. Note that there is a unitary
isomorphism between this space and the Hilbert space {x ∈ L2(T,d ) : x̂(n) = 0, n <
0} , where x̂ is the Fourier coefficient of x . The unitary map is explicitly realized via
the boundary values of f ∈ H2 , namely, f �→ f ∗ , where f ∗ is the boundary value of
f which always exists and belongs to the L2(T,d ) , see [3, Theorem 2.2]. The inner
product of H2 is defined as follows

〈 f ,g〉 =
1
2

∫ 2

0
f (ei )g(ei )d .

Let H be a Hilbert space of analytic functions. For each w ∈ D , the linear func-
tional for evaluation at w is denoted by ew , that is ew( f ) = f (w) for f ∈ H . If ew is a
bounded linear functional, then by Riesz Representation Theorem, there exists a unique
function Kw in H that 〈 f ,Kw〉 = f (w) . The functions Kw are called the reproducing
kernels and a functional Hilbert space which the linear functionals ew are bounded is
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called the reproducing kernel Hilbert space (see [3, p. 3]). The Hardy space is the re-
producing kernel Hilbert space with reproducing kernels Kw(z) = (1−wz)−1 and note
that ‖Kw‖2 = Kw(w) = 1

1−|w|2 (see [3, Theorem 2.10] and [3, Corollary 2.11]). For ev-

ery w∈D and non-negative integer n , the evaluation of the n -th derivative of functions

in H2 at the point w is a bounded linear functional, so there is a unique function K[n]
w

in H2 such that 〈 f ,K[n]
w 〉 = f (n)(w) , where f (n) is the n -th derivative of f . For each

z ∈ D , the function K[n]
w is given by K[n]

w (z) = n!zn

(1−wz)n+1 with

∥∥K[n]
w
∥∥2 =




j=n

(|w|2) j−n
(

j!
( j−n)!

)2

.

Note that in the case of n = 0, the function K[0]
w is the reproducing kernel Kw (see [3,

Theorem 2.16]).
For  an analytic self-map of D , the composition operator C is defined for ana-

lytic functions f on D by C( f ) = f ◦ . Every composition operator C is bounded
on H2 (see [3, Corollary 3.7]).

For  an analytic self-map of D , let D be the composition–differentiation oper-
ator so that D ( f ) = f ′ ◦ for any f ∈ H2 . The study of operators D was initially
addressed by Hibschweiler, Portnoy, and Ohno (see [8] and [11]) and has been noticed
by many researchers ([4], [5], [6], [10], and [14]). Ohno [11] characterized bounded
and compact operators D on H2 . For each positive integer n , we write D,n to de-
note the operator on H2 given by the rule D,n( f ) = f (n) ◦ . For an analytic function
 : D → C , the weighted composition–differentiation operator of order n on H2 is
defined by the rule

D,,n( f ) =  · ( f (n) ◦).
To simplify notation, we write D, to denote D,,1 and we call it a weighted compo-
sition–differentiation operator. In [4], the first author investigated the spectrum of
D,,n . She characterized the spectrum of some compact operators D,,n . Moreover,
under some conditions, she found the set containing the point spectrum of D,,n .

An analytic self-map  of D has an angular derivative at  on the unit circle if
there is  on the unit circle so that ((z)−)/(z−  ) has a finite nontangential limit
as z →  . This limit is denoted by  ′( ) in case it exists as a finite complex number.
By the Julia-Carathéodory Theorem (see, e.g., [3, Theorem 2.44] or [13, Chapter 4]),

| ′( )| = liminf
z→

1−|(z)|
1−|z| ,

where the liminf is taken as z approaches  unrestrictedly in D . Moreover, the value
| ′( )| is strictly greater than 0 (see [3, p. 50]).

An elliptic automorphism of D is the one-to-one analytic map of the unit disk onto
itself with one fixed point in the unit disk and a second fixed point in the complement
of the closed disk. For an analytic self-map  of D , a point  ∈ D is called a fixed
point of  if limr→1(r ) =  . For every analytic self-map  of D that is neither the
identity nor an elliptic automorphism of D , there exists a unique point w ∈ D so that
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the iterates n of  converges to w uniformly on compact subsets of the unit disk. The
point w called the Denjoy-Wolff point of  is a fixed point of  .

2. Compactness of D,,n

In this section, we will study the basic results on the compactness of the weighted
composition–differentiation operator of order n on the Hardy space. Although recent
literature has been published on weighted composition–differentiation operators, none
of them has studied the compactness of these operators on the Hardy space, as far as we
know. First, we state the following lemma which will be used in the proof of Proposition
2:

LEMMA 1. [10, Lemma 2.3] If an operator D,,n is bounded on H2 , then

D∗
,,n(Kw) = (w)K[n]

(w).

We say that a function  is bounded away from zero near the unit circle if there
are  > 0 and  > 0 such that |(z)| >  for  < |z| < 1.

The following result shows that the boundedness of D,,n leads to  having no
angular derivatives a.e on D in case  is not identically zero:

PROPOSITION 2. Suppose D,,n is bounded on H2 . If liminfr→1 |(r )| > 0
for some  on the unit circle, then the angular derivative of  at  does not exist. In
addition, if  is not identically zero, then  does not have the angular derivative a.e.
on D . Moreover, if  is bounded away from zero near the unit circle, then  has
the angular derivative nowhere and the Denjoy-Wolff point of  is inside the open unit
disk.

Proof. Suppose that D,,n is bounded on H2 . For  ∈ D , we can see that

∥∥D,,n
∥∥2 �

∥∥∥∥D∗
,,n

Kr

‖Kr‖
∥∥∥∥

2

= |(r )|2
∥∥K[n]

(r )

∥∥2

‖Kr‖2 (2.1)

by Lemma 1. Observe that

∥∥K[n]
(r )

∥∥2 =



j=n

(|(r )|2) j−n
(

j!
( j−n)!

)2

=



j=0

(
( j +n)( j +n−1) . . .( j +1)

)2(|(r )|2) j

� 1
(2n)!




j=0

( j +2n) . . .( j +1)
(|(r )|2) j

=
1(

1−|(r )|2)2n+1 (2.2)
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(note that it is easy to see that 
j=0

( j+2n)!
j! x j = (2n)!

(1−x)2n+1 for |x| < 1). We infer from
(2.1) and (2.2) that

∥∥D,,n
∥∥2 �

∣∣(r )
∣∣2 1−|r |2(

1−|(r )|2)2n+1 . (2.3)

If liminfr→1 |(r )| > 0 for some  on the unit circle, then  does not have the
angular derivative at  by (2.3) and [3, Theorem 2.44]. Since D,,n is bounded and
 is not identically zero, the map  belongs to H2 and also limr→1(r ) exists and
is nonzero for almost all  ∈ D (see [12, Theorem 17.18]). Hence  does not have
the angular derivative a.e. on D . If  is bounded away from zero near the unit
circle, then the angular derivative of  cannot exist anywhere and so  cannot have its
Denjoy-Wolff point on the unit circle. Therefore, the Denjoy-Wolff point of  must be
inside the open unit disk. �

REMARK 3. Note that for a bounded operator D,,n , by substituting w for r
in (2.1) and (2.2), we obtain

sup
w∈D

∣∣(w)
∣∣2 1−|w|2(

1−|(w)|2)2n+1 < . (2.4)

Now suppose that D,,n is compact on H2 . As the fact that
{

Kw
‖Kw‖

}
tends to zero

weakly as |w| → 1− , we obtain

lim
|w|→1−

∥∥∥∥D∗
,,n

Kw

‖Kw‖
∥∥∥∥

2

= 0.

By the similar ideas used in the proofs of (2.1) and (2.2), we have

lim
|w|→1−1

|(w)|2 1−|w|2(
1−|(w)|2)2n+1 = 0. (2.5)

As a consequence of Proposition 2, for a compact operator D,,n with a nonzero
function  , the function  does not have the angular derivative a.e. on the unit circle.
This result will be improved in the next proposition, which makes  send the unit circle
to the unit disk almost everywhere:

PROPOSITION 4. Suppose that  is not identically zero. If D,,n is compact on
H2 , then | | < 1 a.e. on D .

Proof. Suppose that there is a measurable set E ⊆ D with m(E) > 0 so that
|( )| = 1 for each  ∈ E . Since D,,n is compact and the sequence {zm} converges
weakly to 0 as m →  , we have

∥∥D,,n
(
zm
)∥∥→ 0 as m →  . Observe that

∥∥D,,n
(
zm)∥∥2 =

∫ 2

0
m2 . . .(m−n+1)2

∣∣(ei)∣∣2(∣∣(ei)∣∣2)m−n d
2

�
∫

E

∣∣( )
∣∣2dm( )



COMPACT WEIGHTED COMPOSITION–DIFFERENTIATION OPERATORS 315

for each m > n . Since
∥∥D,,n

(
zm
)∥∥→ 0 as m→ , we can see that

∫
E |( )|2dm( )

must be zero. It follows that  is identically zero (note that  ∈ H2 and see [12,
Theorem 17.18]), which is a contradiction. �

The next result gives a condition under which the operator D,,n is compact:

THEOREM 5. Suppose that D,n is bounded on H2 and  ∈ H2 . If

lim
→0+

(
esssup{|()|2 :  ∈ D, |()| � 1− })= 0, (2.6)

then D,,n is compact.

Proof. Let {hm} be a sequence in H2 converging weakly to zero. The sequence
{hm} is bounded in norm and converges to zero uniformly on compact subsets of D by
[2, Proposition 8.15, p. 130]. Without loss of generality, we assume that ‖hm‖ � 1 for
each m . Since (2.6) holds, for arbitrary  > 0, we can choose  > 0 so that

esssup
{|()|2 :  ∈ D, |()| � 1− 

}
< . (2.7)

Let A = { :  ∈ D, |()| � 1− } . We can see that

‖D,,nhm‖ =
∫

A

∣∣()h(n)
m (())

∣∣2dm()

+
∫
Ac


∣∣()h(n)
m (())

∣∣2dm().

We can see that ∫
A

∣∣()h(n)
m (())

∣∣2dm() � ‖D,n(hm)‖
� ‖D,n‖. (2.8)

Since {hm} converges to zero uniformly on compact subsets of D , we observe that

{h(n)
m } converges to zero uniformly on all compact subsets of D by [1, Theorem 2.1, p.

151]. Then there is a sufficiently large integer N , such that for n � N , we obtain∫
Ac


∣∣()h(n)
m (())

∣∣2dm() � ‖‖2. (2.9)

From (2.8) and (2.9), we conclude that ‖D,,nhm‖→ 0 as m →  , so D,,n is com-
pact. �

If  is a map in H2 , then for almost all 

(ei ) = lim
r→1

(rei ) (2.10)

exists (see [3, Theorem 2.2]). In the following corollary, we assume that for all  ,
(ei ) exists:
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COROLLARY 6. Suppose that  is an analytic self-map of D which is defined on
the unit circle as (2.10). Assume that  is continuous on D , | | < 1 a.e. on D , and
 ∈ A(D) . Let A = { ∈ D : |( )| = 1} . Suppose that D,n is bounded on H2 . If
( ) = 0 for each  ∈ A, then D,,n is compact on H2 .

Proof. Suppose that ( ) = 0 for each  ∈ A . Note that N = esssup{|( )|2 :
 ∈ D, |( )| � 1− } decreases as  → 0+ . If lim→0+ N = 0, then Theorem 5
implies that D,,n is compact. Suppose that

lim
→0+

N = a (2.11)

for some a > 0. Since  is continuous on D , there is 0 <  < 1 so that |(x)−
(y)| < a/4 if x,y ∈ D and |x− y| <  . There is an open set V ⊆ D such that
A ⊆V and m(V ) <  because m(A) = 0. Hence V =

⋃
j=1Vj , where for each j , Vj is

an open arc and Vj
⋂

A �= /0 . Therefore, |(x)|< a/4 for any x ∈V . By (2.11), there is
̃ > 0 such that N > a/2 for each  < ̃ . Let n = ̃/n . Then there exists n ∈ D \V
such that |(n)| � 1−n and |(n)|2 > a/2. We can see that |(n)| → 1. There is
a subsequence {nk} so that nk → 0 for some 0 ∈ D \ V . The continuity of  on
D shows that |(0)| = 1. Then 0 ∈V , which is a contradiction. �

Now we give an example for the previous corollary:

EXAMPLE 7. Let

(z) =
(z)

1
2n+1 −1

(z)
1

2n+1 +1

where (z) = 1+z
1−z . We know that  is an analytic self-map of D which fixes the points

1 and −1 and sends all points of D into D (see [13, p. 27]). By [11, Examples], we

have 1−|(z)|2 ≈ |1− z| 1
2n+1 for z near 1. Therefore, supw∈D

1−|w|(
1−|(w)|

)2n+1 < . We

conclude that D,n is bounded and noncompact from [9, Corollary 2.3]. Let (z) =
1− z2 . We infer from Corollary 6 that D,,n is compact on H2 .

3. The upper estimate on the norm of D,,n

In this section, as an application of Section 2, we estimate the upper bound on the
norm of a class of compact operators D,,n . We begin with a few easy observations
that help us in the proof of Theorem 10. Throughout this section, we assume that
00 = 1.

LEMMA 8. Let n be a positive integer, and k > 0 for each 0 � k � n. Then for
0 � x < 1 , the following statements hold:

(a) n
k=0

kx
k

(1−x)n+k+1 � n
k=0k

(1−x)2n+1 .

(b) There exists a positive number  such that n
k=0

kx
k

(1−x)n+k+1 � 
(1−x)2n+1 .
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Proof. (a) We can see that

n


k=0

kxk

(1− x)n+k+1 =
n

k=0kxk(1− x)n−k

(1− x)2n+1 .

Since 0 � x < 1 and k > 0, we conclude that n
k=0kxk(1−x)n−k �n

k=0k. Hence,
the conclusion follows.

(b) We have

(1− x)2n+1
n


k=0

kxk

(1− x)n+k+1 =
n


k=0

kx
k(1− x)n−k > 0.

Because n
k=0kxk(1− x)n−k is a continuous function on [0,1] , there exists a positive

number  such that n
k=0kxk(1− x)n−k �  . Consequently, the result follows. �

LEMMA 9. Let n be a positive integer. Then




m=n

[
m(m−1) . . .(m−n+1)

]2
xm−n =

(
n!
)2 n


k=0

(n+ k)!(
k!
)2(n− k)!

xk

(1− x)n+k+1

for 0 � x < 1 .

Proof. See [14, Lemma 1] and the general Leibniz rule. �

Let A be a linear operator on a separable Hilbert space H . The Hilbert-Schmidt
norm of A is given by

‖A‖HS =

(



n=1

‖Aen‖2

)1/2

, (3.1)

where {en} is an orthonormal basis of H . The Hilbert-Schmidt norm is independent
of the choice of the basis and ‖A‖HS � ‖A‖ .

In the next theorem, we find the upper bound for the norm of D,,n by using the
previous lemmas and the fact that the Hilbert-Schmidt norm of an operator is greater
than or equal to the norm of that operator:

THEOREM 10. Suppose that D,,n is a bounded operator with ‖‖ < 1 and
 is not identically zero. Then

‖D,,n‖ < 1/2 ‖‖(
1−‖‖2


) 2n+1

2

,

where  = n
k=0

(n!)2(n+k)!
(k!)2(n−k)! . Moreover, if  ≡ p for some p ∈ D , then ‖D,,n‖ =

‖‖‖K[n]
p ‖ .
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Proof. Lemmas 8 and 9, and [12, Theorem 1.27] imply that

‖D,,n‖2
HS =




m=0

∥∥D,,nz
m
∥∥2

=



m=n

∥∥m(m−1) . . .(m−n+1)m−n
∥∥2

=



m=n

lim
r→1

1
2

∫ 2

0

∣∣m(m−1) . . .(m−n+1)(rei)m−n(rei )
∣∣2d

= lim
r→1




m=n

1
2

∫ 2

0

∣∣m(m−1) . . .(m−n+1)(rei)m−n(rei )
∣∣2d

= lim
r→1

1
2

∫ 2

0




m=n

∣∣m(m−1) . . .(m−n+1)(rei)m−n(rei )
∣∣2d

= lim
r→1

1
2

∫ 2

0

n


k=0

(
n!
)2(n+ k)!(

k!
)2(n− k)!

∣∣(rei )
∣∣2∣∣(rei )

∣∣2k
d(

1− ∣∣(rei )
∣∣2)n+k+1

� lim
r→1

1
2

∫ 2

0

|(rei )|2d(
1− ∣∣(rei )

∣∣2)2n+1 , (3.2)

where  =n
k=0

(n!)2(n+k)!
(k!)2(n−k)! (note that the interchange of limit and summation is justified

by [3, Corollary 2.23] and using Lebesgue’s Monotone Convergence Theorem with
counting measure). Since ‖D,,n‖� ‖D,,n‖HS , we have ‖D,,n‖�1/2‖‖/(1−
‖‖2


) 2n+1

2 by (3.2). Now suppose that ‖D,,n‖=1/2‖‖/(1−‖‖2

) 2n+1

2 for some
functions  and  . Due to (3.2), we obtain ‖D,,n‖= ‖D,,n‖HS . Because ‖‖ <
1 and  ∈ H2 , Theorem 5 dictates that the operator D,,n is compact. We have

0 = ‖D,,n‖e < ‖D,,n‖ = ‖D,,n‖HS.

It follows immediately from [7, Proposition 2.2] that there exists a function f with
‖ f‖ = 1 so that ‖D,,n f‖ = ‖D,,n‖ . There is a basis {em : m ∈ N} for H2 that
e1 = f . Since ‖D,,n‖ = ‖D,,n‖HS , we can see that D,,nem = 0 for each m > 1
by (3.1). Then D,,n is of rank 1, which can occur if and only if  is a constant
function. Suppose that  ≡ p for some p ∈ D . We obtain

‖D,,n‖ = sup
{‖D,,ng‖ : ‖g‖ = 1

}
= sup

{∣∣g(n)(p)
∣∣‖‖ : ‖g‖ = 1

}
= ‖‖‖K[n]

p ‖

= ‖‖
[ 


j=n

(|p|2) j−n
(

j!
( j−n)!

)2]1/2

= ‖‖n!

[ n


k=0

(n+ k)!
(k!)2(n− k)!

(|p|2)k(
1−|p|2)n+k+1

]1/2

(3.3)
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by Lemma 9. Assume that p �= 0. We obtain

|p|2k(
1−|p|2)n+k+1 <

1(
1−|p|2)2n+1 (3.4)

for each k that 0 � k � n . Hence (3.3) and (3.4) imply that ‖D,,n‖ < 1/2‖‖/(1−
|p|2)(2n+1)/2

. Therefore,  must be the zero function, and we infer from (3.3) that
‖D,,n‖ = n!‖‖ < 1/2‖‖ , which is a contradiction. �

In the following example, we show that for some operators D,,n , the upper
estimate on the norm of D,,n found in Theorem 10 is less than the other estimates
given in the previous literature (see [4, Proposition 3.6] and [5, Proposition 4]):

EXAMPLE 11. Suppose that (z) = 1
mz + a− 1

m , where m is a positive integer
and that 1

m < a < 1. We can see that ‖‖ = a . On the one hand, by [5, Proposition

4], we obtain ‖D‖ �
√

2am−1� 1
1−a�a�

1
1−a �−1 , where �·� denotes the greatest inte-

ger function, but on the other hand, Theorem 10 dictates that ‖D‖ <
√

3
(1−a2)3/2 . For

sufficiently large m , we can see that Theorem 10 gives the better upper estimate on the
norm of D . Similarly, since ‖‖ � ‖‖ for each  ∈ H , Theorem 10 makes a
more precise upper bound for ‖D,‖ than [4, Proposition 3.6], when  was defined
as above.

4. Further question

In the case that  ≡ 1, it is worth noting that for a univalent self-map  , (2.4) and
(2.5) are the necessary and sufficient conditions for D,n to be bounded and compact,
respectively (see [9, Corollary 2.3] and [11, Corollary 3.2]). In view of Remark 3, we
conclude with a question for further consideration:

QUESTION. Which maps  and  make (2.4) or (2.5) be the necessary and suf-
ficient conditions for the boundedness and compactness of D,,n , respectively?
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