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THE BEREZIN RADIUS AND THE BEREZIN NORM
ASSOCIATED WITH THE TENSOR PRODUCT

MOJTABA BAKHERAD* AND MUBARIZ GARAYEV

(Communicated by R. Curto)

Abstract. The Berezin range of a bounded operator A acting on a reproducing kernel Hilbert

space ./ is the set Ber(A) := {(Aky, k) : T € @}, where k. is the normalized reproducing ker-

nel for .77 at T € ©. The Berezin radius (number) and the Berezin norms of an operator A are

defined by ber (A) := sup|(A/A<,,/A<,> s N1Allper.1 := sup }<AIA€T712H> cand [|A[pepn = supHA/%,H
7€O T,UEO 7€O

respectively. In this paper, we obtain some Berezin radius upper bounds for Hilbert space op-
erators involving the tensor product. Moreover, the obtained upper bounds have been compared
with the previously known bounds to demonstrate their reliability.

1. Introduction

Let (J7,(-,-)) be a complex Hilbert space, and let . () be the C*-algebra
of all bounded linear operators defined on 7. In the case, when dim.Js7 = n, we
identify . (2¢) with the matrix algebra M, (C) of all n x n matrices with entries in the
complex field. An operator A € £ () is called positive if (Ax,x) > 0 for all x € J#
and in this case we write A > 0. For self-adjoint operators A,B € £ (), wesay B> A
if B—A > 0. For an operator A € £ (), the operator |A| = (A*A)% is the absolute
value of A. For a bounded linear operator A on a Hilbert space .7, the numerical range
W (A) is defined by W (A) = {(Ax,x) : x € S & ||x|| = 1}. Moreover, the numerical
radius is defined by w (A) = sup | [{Ax, x)|.

The tensor product 77 ® ¢ of a Hilbert space .77 is the completion of the inner
product space consisting of elements of the form Y, x; ® y; with x;,y; € 7 for any
n > 1 under the inner product (x®u,y@v) = (x,y)(u,v) forall x,y,u,v € 7. Let A
and B be bounded linear operators on a Hilbert space 7. The tensor product of A and
B is denoted by A® B on % ® 7 and is defined by (A® B)(x®y) = Ax® By for
every x,y € . Furthermore, for operators A,B,C,D € £ (), the tensor product
has the following properties:

() {(A@B)(x®u),(y®v)) = (Ax,y)(Bu,v) forall x,y,u,v € 7,
(2) (A®B)(C®D)=AC®BD:;
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3) (A®B)* =A*®B*;

4) [A®B|=|A|®|Bl;

(5) lA® B[ = ||AllBIl;

(6) If A and B are positive, then (A® B)" =A"® B" forall r > 0;
(7) If A and B are invertible, then (A®B) "' =A"l@B~!.

From the property (1), it is clear that the tensor product of positive operators is positive.
Utilizing the propersties (6) and (7) of the tensor product, we have (A® B)" = A" ®
B" for all positive invertible operators A and B and r € R. Especially important are
the operators A| ® Ay ® --- ® A,, which are k-fold tensor product of operators A; €
Z(A) (1 <i<n). Such a product will be written more briefly as ®?_,A;. For more
information about the tensor product, see [4, 26] and references therein.

A functional Hilbert space is the Hilbert space of complex-valued functions on
some set ® C C such that the evaluation functionals ¢ (f) = f (1), T € ©, are con-
tinuous on 7. Then, by the Riesz representation theorem, there is a unique element
ke € S such that f(T) = (f,k¢) forall f € 5 and every T € ©. The function k on
© x O defined by k(z,T) = k¢ (z) is called the reproducing kernel of .77, see [1]. It was

shown that k; (z) can be represented by k;(z) = X e, (7)e,(z) for any orthonormal
n=1
basis {e,},>1 of . For example, for the Hardy-Hilbert space /#2 = 77 (D) over
the unit disc D = {z€ C: |z] < 1}, {Z"}n>1 is an orthonormal basis. Therefore, the
reproducing kernel of #72 is the function k; (z) = ¥ " = (1—7z) ', € D. Let
n=1

ke = HI;_:H be the normalized reproducing kernel of the space .77 (RKHS). For a given
bounded linear operator A on .77, the Berezin symbol (or Berezin transform) of A is
the bounded function A on © defined by A (7) = (Ak¢ (z),k¢ (2)), T € ©. An impor-
tant property of the Berezin symbol is that for all A,B € £ (), if A(t) = B(1) for
all 7 € ©, then A = B (at least when .7Z consists of analytic functions, see Zhu [27]).
For more details, see [14, 19, 20]. So, the map A — A is injective [12]. The Berezin
set (range), the Berezin radius (number), and the Berezin norms of an operator A are
defined, respectively, by

Ber(A) := {{Aks,k;) : T €O}, ber (A) := sup| (Aky, k)

T€®

HAHber,l ‘= sup |<A7‘r»f‘u>|7 and ||A||ber72 = SUPHA/ACTH~
T,Uc® T€O

)

Clearly, by the above definition and the Cauchy-Schwartz inequality, we have
ber(A) < ”AHber,l < ”AHber,Z < ”AH for A€ g(%) (1)

Moreover, for A,B € £ (), itis clear from the above definitions of the Berezin radius
and the Berezin norms that the following properties hold:
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(1) ber(AA) = |A|ber(A) forall A € C;

(2) ber(A+ B) < ber(A)+ber(B);

() AT llpers = AT [lperi (= 1,2) forall A € C;
@) [[A+Bllyeri < lAllperi + 1Bllpers (0 =1,2);

(5) ber(A) =ber(A") and [|A||pers = [|[A"[Iper, -

For all positive operators A € £ (), we have ber(A) = [|A[|py, » see [5].

It is clear that the Berezin transform A is the bounded function on ® whose values
lie in the numerical range of the operator A, and hence Ber(A) C W(A) and ber(A) <
w(A) forall A € (). Karaev [21] showed that for A =S® S € Z(#?), where S is
the shift operator defined by Sf(z) = zf(z) on the Hardy-Hilbert space /#2 = /#2(DD)
over the unit disc D = {z € C: |z| < 1}, we have A(A) = |A|>(1—|A|?). and thus
Ber(A) = [0,1] & [0,1] = W(A) and ber(A) = I < 1 =w(A). For more information
about the Berezin radius and the Berezin norm, see [11, 16, 20, 23] and references
therein.

Recently, the authors [16, Theorem 2.5] presented the following Young type in-
equality

1
ber” (A*B) < E H |A|2r+ |B|2erer,1 )

forall A,B € £ () and all r > 1, which is associated with the Berezin radius and
the Berezin norm and involves the product of operators. Moreover, we have

1
ber” (A) < E H ‘A‘2rs+ |A*|2r(1—s)

3)

ber,1

for 0 <s< 1 and r > 1, see [2]. There are several generalizations and refinements of
the inequahtles (2) and (3), that have been proven recently, see [2, 15, 18, 25].

For operators A, B € (%), the authors [2] showed that some refinements of the
inequality (2) as follows

ber’(A*B) ber r(i—p) A B |||A|2 + ‘B‘ Hber 1
1
+ = ) ————ber"” A B H|A|2+|B| Hberl
S 2 ’|‘A‘2r+|B|2erer,l @)

and

1 1
ber’(A*B) <~/O —ber ri-#) A B H‘A‘z ‘B‘ ||ber1 < §H|A|2r+‘B‘2erer,l

&)
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forall 1 <r<2, u,velo,1],and p,q >0 with %—i— L — 1. Also, in the same work,
they showed that

]

ber? (A )

< zor—ber! =M (A%) |||A]? + |A*]?

2,U.+l 53— ber" A2 ||‘A‘2+‘A ‘ ||ber1

‘ Hberl 22 v
+ZH|A|2+|A*| Hber,l
1

< LIAF +1A ©

for w,v €10,1] and p,q > 0 with %+§:1.

In the present paper, we establish some Berezin radius upper bounds for Hilbert
space operators involving the tensor product. Moreover, the obtained upper bounds
have been compared with the previously known bounds to demonstrate their reliability.

2. Main results

In this section, some inequalities involving the tensor product of operators. To
prove our Berezin radius inequalities, we need several known lemmas. The first lemma
is McCarthy’s inequality for positive operators.

LEMMA 1. [9] (McCarthy’s inequality) Let A € £(.3) be positive. Then for all
unit vectors x € A, we have

(Ax,x)" < (A"x,x),
where r > 1. This inequality is reversed for 0 <r < 1.

In the following lemma, we give the mixed Schwarz inequality, which can be
found in [22].

LEMMA 2. Let A € £L() and let x,y € F. Then
[(Ax,y)|* < <|A|2Sx,x>< \A*\2(17‘v)y,y> Sorall 0 <s< 1.

LEMMA 3. [2] Let A€ £ (). Then
(1) If A is positive and r > 1, then [|A||per 1 < [A|[ber,1;

(2) If A is positive and 0 < r < 1, then [|A"[|ber,1 < [|A[lper; -

REMARK 1. For the operator norm, we have ||A”|| = ||A||" for all positive opera-
tors A and r > 0. In contrast to the the operator norm, the 1-Berezin norm dose not
have this property. For instance, let {e 1,€ 1} be the standard orthonormal basis for C?
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as a RKHS on the set © = {1,2}. If we put the positive-definite matrix A = ﬁ :1;} .

Then we have
HA”lz)er,l =9 § HAszer,l =10

VIAlbers 1.73 = [[VA||bera = 1.7013.

REMARK 2. For the operator norm, we have || |A| || = ||A|| for all operators A. In
contrast to the the operator norm, the 1-Berezin norm dose not have this property. For
instance, let {ehel} be the standard orthonormal basis for C2 as a RKHS on the set

and

© = {1,2}. Then for the matrix A = [1 3

5 _1} , we have

[Allbern =3 = [[|Alllper,1 = 3.15,
11

and for the matrix A = [% ‘1‘] , we have
52

”AHbenl =05 ; H ‘A‘ ||ber71 ~0.49.

Therefore, ||Allper,1 and || |A| ||lber,1 are not comparable in general.

REMARK 3. The Berezin radius and the Berezin norm have several properties that
are similar to the numerical radius and the operator norm, respectively. In contrast to
the numerical radius, the Berezin radius is not weakly unitarily invariant, i.e., there exist
an operator A € .Z(s#) and a unitary operator U € £ () such that ber(U*AU) #
ber(A). For instance, let {el,el} be the standard orthonormal basis for C2 as a RKHS

21 V2 V2
ontheset®:{1,2}.IfweputA:[50} and U = _%é , then

ber(U*AU) = 4 # ber(A) = 2.

Moreover, the operator norm is unitarily invariant, i.e., ||[U*AV|| = ||A|| for all A €
Z () and all unitary operators U,V € Z(). In contrast to the operator norm,

the Berezin norm dose not have this property. To see this, consider A = [2 5} , U=

70
‘éi NG ,and V=1= [O 1] . Then we have

9.89 ~ | U*AV ||per,1 7 ||Allber,1 = 7.
For more information, see [2] and [3] and references therein.

In the following proposition, we have a result for the 1-Berezin norm and the
2-Berezin norm.



326 M. BAKHERAD AND M. GARAYEV

PROPOSITION 1. Let A € £(.). Then

(D H ‘A‘ ”benl < HA”ber.Q;
1
@) [|Allber2 = AP | ey, -

Proof. Applying Proposition 3(1), we have

AT l[Ber1 < I[AF [[ber,1 = ber(JA[*) = sup (|A]ke, ke ) = supl|Ake||* = [|A][per,2-
T€O T€O

Hence, we have the first result. For the second result, we have
||AH2ber72 = SuP”Ai‘er = sup <AIA¢T7AIACT> = sup <|A|2i¢r7i€r>
T€O T€O T€EO

=ber(|A) = [ |A] [pers- O

Let us consider the finite dimensional setting. Let z = (z1,...,2,) € C" and © =
{1,...,n}. We can consider C" as the set of all functions mapping ® — C by z(i) =z;.
Letting ¢; be the ith standard basis vector for C" under the standard inner product, we
can view C" as an RKHS with kernel k(i,j) = (e;,e;). Note that k; = k; for every
i=1,...,n. Forany n x n complex matrix A = (a;;)i<i j<n, We have (Ae;,e;) = a;;.
Thus, the Berezin range, the Berezin radius, and the Berezin norms of A are simply by

BCP(A) = {a,-,- = 1, ce ,l’l}, ber(A) = max \a,-,-|,

I<i<

A = i i d ||A =
” Hber,l lg}f}énmlj‘ an H ||ber2 maX <2|au|> y

respectively, see [7] and references therein. Let us consider {e;}} , be the standard
basis for C" under the standard inner product as an RKHS with kernel k(i, j) = (e}, ;).
Then, {¢;®e;};_, is basis for C" @ C" as the RKHS. Hence, for two matrices A =

(aij)i<ij<n and B = (bjj)1<i j<n, We have
(A®B)(ei®ej),(ei@e;)) = (Aej,ei)(Bej,ej) = ajibj; forall 1 <i,j<n.
Therefore, we have
Ber(A®B) = {{(A®B)(e;®ej),(ei®e;)) : 1 <i, j<n}
= {(Aej,e; <Bej7ej> 1<i,j<n}
={aibjj: 1<i,j<n}

C Ber(A)Ber(B)

for two arbitrary matrices A,B € M,(C). As a consequence of the above equation,
we have the Berezin radius and the Berezin norms for k-fold tensor product of A; €
M, (C) (1 < i< n) as follows.
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PROPOSITION 2. Let A; € M[,(C) (1 <i< n). Then
(1) ber (2 A;) <TI\ ber(A;);
@) (|2 Ai e,y < T Aillber.15
3) ||®?=1Ai||ber,2 < I ||Ai||ber,2-

Proof. We have

ber (9141) = sup (i1 A1) (@] er), (S )

&_1e

= sup [(®Aie;, Q1 €;)]
@@

= sup H [(Ajei,e;) (by the property (1) of the tensor product)
@ eii=

< Hsup|<A,~e,~,e,~>\ = [Jver(A
i=1 e i=1

Hence, we have the first result. The proof of the second result is similar to part (1). For
part (3), we have

1@ 1Aillper = sup (@A) (@ )|

l 16

= sup [|®L Aie; ||
O

= sup H 1Aie: |

®l 16ii=

n
= HsupHAiei ” < H”Ai”ber,2' g
i=1 € i=1

In the next result, we have an upper bound for the Berezin radius of the tensor
product.

PROPOSITION 3. Let A,B € .Z(5¢). Then

ber’ (AB® BA) < ber ‘=W (AB® BA) |||AP @ B + |B** ® |A*2 Hbe”

2

+2( 7 ber" (AB® BA) |||A] ® |B]* + |B*|* ® |A*|? ||ber1
< AP @ I8P+ 18P A,

forall 1 <r<2,u,vel0,1],and p,g >0 with %+}1:1.
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Proof. Assume that 1 <r <2, u,v€[0,1],and p,q > 0 with %+ L — 1. Then
we have

ber’ (AB®@ BA) =ber ((A® B)(B®A))

]

——ber’ "M ((A®B)(B®A))|||A® B+ |(B®A)*

2r,u.p ‘ ||ber1

+ ber(A® B)(B®A))|[|[A® B +|(B&A)*[? Hberl

1
2r(1=v) q
(by the first inequality in (4))

2m ber!~*)(AB® BA) [IA]? @B+ |B|* @ |A*]? Hberl

1
+2(7)ber (AB@BA) |||A]* @ B>+ |B*] @ |A*[? Hberl

(by the properties of the tensor product)

—|||A®B|2’+\(B®A VP lber.s

(by the second inequality in (4))

1
:5H|A|2r®‘B‘2r+|B*‘2r®‘A*‘2r 0

Hber,l'

Taking r=2and u=v = % in Proposition 3, we have the next result.

COROLLARY 1. Let A,B € L (). Then

ber’(AB® BA) < ber(AB® BA) |||A* @ B>+ |B** @ |A* ||y r.s

1
<5 Ao B +[B @ A" e, -

PROPOSITION 4. Let A,B € £ (). Then

1]
ber' (AB®BA) < | =—ber" "W (AB@BA)|[|A ® |B]* + B ® |A* || 5., du
0 27H er,
1
< 5 |||A|2r® ‘B‘2r+ ‘B*‘2r® ‘A*|2r||ber71

forall 1 <r<2.

Proof. Assume that 1 < r < 2. Using the inequality (5), we have
ber’ (AB®@ BA) =ber’ (A®B)(BRA))

1
1— 2
g/o Zwber( (A0 B)(BA))|IA® B+ |(BoA) Pk, du

_/ Zwber 1-(AB @ BA) ||AP © B>+ B @ A%, | du

< E H|A|2r® |B|2r+ |B*|2r® |A*‘2erer’1 ,
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as required. [J

Recall that if X = U|X| be the polar decomposition of X € £ (.5), then for 0 <
v < 1, the v-Aluthge transform is defined by X, = [X|U|X|'~V. As a consequence
of Proposition 4, we have the following result for the Aluthge transform

COROLLARY 2. Let X € £(). Then
ber’ (X @5(:)

i

d
ber,1 H

1
S/O 2mber r(1— “)(X®X H|X|21 Y ®‘X‘2V+‘X‘2V®|X*‘2l v)

1
< E H |X|2r(1—v) ® ‘X‘2rv + |X|2rv® ‘X*‘2r(l—v)

ber,1
forall 0<v<1land 1 <r<2.

Proof. Assume that X = U|X| be the polar decomposition of X. Putting A =
U|X|'~V and B = |X|¥, in Proposition 4. Then AB =X, BA = X,, |B]> = |B*|> =
|X|?V. Using the properties of the polar decomposition [8, p.58], we have

‘A |2 U‘X‘2l V) ‘X ‘21 V) and |A|2 ‘X‘l VU U|X|l vV ‘X‘21 V)

Hence, we get

ber’(X®5(vv)
ri
/ Jiber 00w X)X PO @ X e e
er,1
<= H|X|2r (1-v) ® ‘X‘2rv+ |X|2rv® ‘X*‘2r (1-v)
2 ber,1
forall 1 <r <2 asrequired. [J
THEOREM 1. Let A,B € £(H). Then
ber?(A ® B) < H\A\‘”@\B\“SHA [401-9) @ | B [4(1=)

ber,1
+ Eber (9{( |A|2s ‘A*|2(17.\') ® |B|2S‘B*‘2(l_s))>

for 0 < s < 1. In particular,

* * 1 * *
ber’(A@ B) < 2| [AP ® B+ |A"[* @ B |lber.1 + 5 [R(A[|A"| @ |BI|B"]) Iber. 1
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Proof. Assume that k; € /# ® 4 is the normalized reproducing kernel. Then,
utilizing Lemma 2, we have
{(A®B)ke.ke)| < (JA® B ke k)2 (|(A0 BY P9 ir e
< H(MeBP 4140 B0k ke)

(by the arithmetic geometric inequality).

D=

Hence,
[{(A®Bke,ke)|” < ((JA@BP + (A B)* P ke, ke )’

< —((|A® B +|(A®B)* P "9) &k, kr )
(by Lemma 1)

4;|~4>|~

l * Ky
Z<(|A|4S®|B|4S+‘A ‘41 s) ®‘B ‘41 )kr7kr>
(by the property (6) of the tensor product)

+ 3 (ROAP AP @ BB PO ke, ke)

N =

1
Zber(|A|45®\B\45+|A ‘41 s ®|B*‘41 s)

—_

- ( (|A|2S|A| (1— s®‘B‘2s‘B*|21 S))

N

1
:ZH| |4S®‘B‘4S+|A |41 s ®|B*|41 s)

1 25 | 4 %12(1=s) 25| p# 12(1—5)
+ Sber (R(JAP 14" PO @ BB 1) )

(since ber(X) = || X||per,1 for all positive operators X ).

ber,1

Then, by taking the supremum over all k; € .7 ® . , we get the first inequality. For
the second inequality, it is enough to put s = % in the first result. [J

THEOREM 2. Let A,B € £(H). Then
ber2(A®B)
ber! "W (422 B?) || |AP @ [BI? + A" @ |B"*[[jer

2u+1
+2 ber (A*@B%) ||| |B*+ |A*]* ® |B*]? Hberl
Lt e,
1

<5 lIAF @ B + 14" 018"y,

for w,v €(0,1] and p,q >0 with 5+ 1 =1.
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Proof. Assume that u,v € [0,1] and p,q > 0 with 11_?+ é = 1. Then, using the
inequality (6), we have

ber’(A® B)

gﬁber(l_“)((Ath )[[lA @B+ (A2 B)h,
+ﬁber (A®B))||[(A® Bl +|(A®B)*|? Hberl
+1H\A®B\2+I(A®B*I2Hben

2u+1 S ber (A @ B || |AP @ B+ A @ (B

+22 o ber (A% @B [[lA] @ B + 4" & B lyer s
+1H\A\2®IBI2+\A*I2®\B*I ber.1

<54 @BP+1ADB) e,

= S AP @ 1B+ AP © By,

as required. [
In the next result, we obtain a lower bound for the Berezin radius involving the

tensor product.

PROPOSITION 5. Let A,B € £ (). Then

ber(A ©B) > — max {ber (R(A® B) + S(A® B)), ber (R(A® B) ~ S(A©B)) ).

V2

Proof. Assume that k; € s ® # is the normalized reproducing kernel. Then,
utilizing Lemma 2, we have

[(A®B)ke,ke)|” > (R(A® B)ke, ko) + (3(A® B)ke ke )’

>

=

({94 @ B)fe, ko) | + [(S(A © B)ke.ke)|)

>

=

[(R(A® B)+3(A® B)Re, ke )|

| =N =

Hence,

ber(A®B) > |((A® B)k¢,k; )| > (R(A®B) £ 3(A®B)ke ke

1
o
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Therefore, we get

ber(A©B) > % max {|(R(A © B)+3(A @ B)ke, ke)

Then, by taking the supremum over all ke € @A, we get the desired inequal-
ity, O

(R(A®B)-3(A® B)ke ke)|}

)

THEOREM 3. Let A,B € £(H). Then

0< ||A®B||12)er.2_ber2(A®B) < IEE{HA(@B_ nl®1”12)er,2 _C%er(A®B_ 7’II®I)}7
' n

where cper(X) = inf}<XlAcT,lA<T>|.

T€O

Proof. Assume that k; € 27 ® # is the normalized reproducing kernel. First
note that for all n € C, we have

(4@ B)ke||* — (4 ® B)ke, ko) = || (A® B—nI@ ke ||~ |((A® B-nI @ ke, k)|
Hence,
(A B)ke||” = |({(A®B)ke, ko) |” = (A B—nI@ Dke||* = |(A® B—nI @ ke, k;) |’

<A@ BN @ |fpery—Cher(A®B-1I D).
Taking the supremum over all k, € 77 ® #, we get
IA @ Bllper » —ber*(A@ B) <A@ B—NI&|[forr — Cher(ADB—1I®1).
It follows from 1 € C is arbitrary that
|A @ Bllper , —ber’(A@ B) < inf {lA@ B =1l @1lfier> ~ cher(A®B—mI@1)},

as required. [

3. Upper bounds for the Berezin radius

In the present section, we obtain the upper bounds for the Berezin radius of bounded
linear operators including tensor product of operators. For this goal, we need the fol-
lowing two lemmas. The first one is known as Busano’s inequality and the second one
is known the weighted arithmetic-geometric mean inequality.

LEMMA 4. [0] Let x,y,e € 5, and let ||e|| = 1. Then

[1Ge )+ Nl Iy 1]-

| =

|[(x,e){e,y)| <



THE BEREZIN RADIUS AND THE BEREZIN NORM 333
LEMMA 5. [17] If a,b >0 and 0 < o < 1, then

a*b'"* < aa+(1—a)b.
THEOREM 4. Let A € (). Then

1 . *
ber? (4) < 5 {ber?(4%) + min (1Al ez + (1= 1))14° e

S

(1= )l|Aller2 + 114" |er 2)] +ber(A%) (|A[[fer2 + \\A*Hﬁer,z)} -

Proof. Let T € © be arbitrary. Then we have

Gl

}<AkT,A ke)

]

1
I%AhN+MMMAMH4W%AMMMMMhMZ

(
[(Wheske) |+ (A" Ake ko) | (A4 Re Re)|

(44" + A" AYe ko) |

ben

|<%kf>mﬂmmmehﬂ>wwﬁmH
"2 [(A%e, o )| [((AA* + A Aer k)| L :
;{|<A2kf, . |2+< tAA* + (1 —1)A* A ke ke ) (1 —1)AA* +tA* Az, ke )

(A4 + A" AYke ko) }

ke
)+
x| (AA ke k)
)
)

+2 (A% ke

< 5 {ber(4%) + [(WANRera + (1 )14 er2)

D=

((l _I)HAH%er,Z+t||A*||12)er,2)] +ber(A2)(||AH2ber,2+ HA*H%erg)} .

Taking the supremum over all 7 € ©, we get for all ¢ € [0, 1] that

1 *
ber*(4) < 7 {bel‘2(A2) + [(tl|Aller2 + (1 = 1) 1A [fer.2)

Nl—

(1= 0)l|Aller2 + 114" [Ber2)] +ber(A%) ([|Alfer2 + ||A*||12)er,2)}
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and considering the minimum over ¢ € [0, 1], we arrive at

1 . %
ber?(4) < 5 {ber’(4%) + min. [(14 ]Gz + (1 =014 )

Nl—

((1 - t) HA||12)er,2 +ZHA*H%er,2)] + ber(Az)(HA”lz)erQ + ||A*||12)er,2)}

as required. This completes the proof. [J
THEOREM 5. Let A € £(H). Then
1 1
ber(A"A®AA") < Jber ((A*A)? + (AA")?) + Sber (A*A%AY). (7)

Proof. Let T € © be arbitrary. It follows from Lemma 4 that

AA@AA (1) = (A"A ® AA ey @ v e D k)
= (A*Ak; @ AA ke ke @ ke )
= <A Akf7k1> <AA kf7k1>

—

l"Ake [ [[AA"Re]| + [ (AA ke, A4 "kz)
(H Ak anh) + 3[4 AR )|
(((A*A)*+ (AA") )kr,kf>+%|<A*A2A*/GT,1%T>y
ber ((A*A)* + (AA*)?) + %ber (A*A%AY).

Taking the supremum over 7 € Q, we arrive at the required inequality (7). The proof is
completed. [

In order to state our next results, we need the following lemma, see [24].

LEMMA 6. Let x,y,e € H with |le|]| = 1. Then

[(x,e){e,y)| < \/3HXI| VI =+ [yl e ) -
THEOREM 6. Let A,B € £(H). Then

3 1
ber’(A® B) < gher (JA]*+ B|*) + gher (JA|* + |B|*) ber(BA). (8)
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Proof. Let T € © be arbitrary. By replacing ¢ = k;, x = Ak;, and y = A*k; in
Lemma 6, we obtain

e
- } (Ake,ke) (Bhe ko) |
HAer 1B+ 5 HAerHB ke[ [(BAkz k2|
- Z<|A|2icf,zzr><|3*| &1712T>+Z¢<|A|2a7a><BW«T,@ (Bake )
<3 ((WPhke) + (8RR 1))
b (AP Rk )+ (1B ke ke ) ) | (BAke Re)|
< %<(|A|4+ BV ke k) + é<(|A|4+ B ) ke e ) | (BAke )|

This clearly implies inequality (8). [

COROLLARY 3. Let A,B€ L (). Then

3 1
ber*(B*A) < gber (JA]®+ |B|®) + gber (JA|*+ [B|*) ber(|B|*|A]).

Proof. Replacing A by |A|?> and B by |B|? in the proof of Theorem 8, respectively,
we obtain

A oA A oA 3 A oA
(AP ko) (1BPRe k) < 3 (A" + 1B e )
1 I
+ 5 (Al +[B[*) ke ko) [(BP AP ko) )
On the other hand, it follows from the Cauchy-Schwarz inequality that

(B Aky, ko) [* = | (Ake, Bh: )|
< [|Ake ||| Bh<|*
= ([(Ake, Ake)| | (Bhr, Bio)|)°
= (J(1APRe ko) | (1B Re k) ]) (10)

Combining (9) and (10), we have

(B ake k) <

~

(A]* +IB[*) ke ke)

8
+ =~ ((|A[*+ |B|*) ke ke ) | (|BI?|A ke, ke )|

| —
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Taking the supremum over 7 € Q in the latter inequality, we have that
3 1
ber*(B*A) < gher (|A[®+|BJ®) + gher (JA|* + |B|*) ber(|B|*|A]*).

This proves the corollary. [

The following results is proven in [10, Theorem 3.1].

THEOREM 7. Let A € £(H°). Then

1
2)7

In the following proposition, we refine the general inequality

ber() < (1A lbeca — in 4 - (o)
TEQ

ber(A ® B) < [|Allber.2|Bllber.2-

PROPOSITION 6. Let A,B € .Z(.5¢). Then

1
2) 2
Proof. Since ber(A ® B) < ber(A)ber(B), the proof is immediate from Theorem
7. 0O

1
~ 2\ . -
ber(A ® B) < (A||ber72—ian(A—A(r))kT ) <||Bberg—me(B—B(r))kr
TEQ TEQ

For the related results see [10], [13] and [24].
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