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XY-CONVEX FREE POLYNOMIALS REVISITED

SRIRAM BALASUBRAMANIAN

(Communicated by I. Klep)

Abstract. In this article, by using the matrix-valued analog of a factorization property of free
polynomials, we offer an alternate approach to the structure of matrix-valued hermitian free
polynomials that are xy-convex.

1. Introduction

The purpose of this article is twofold. Firstly, to observe that the factorization
property proved in [7, Theorem 3.3] extends naturally to the matrix-valued setting.
Secondly, as an application, to present an alternate and conceptually different proof
of a characterization of matrix-valued xy-convex hermitian free polynomials given in
[1, Theorem 1.2], by following a conceptually similar plan to the proof of the scalar-
valued version in [7, Theorem 1.4]. Further, it is also pointed out heuristically why the
structure of xy-convex free polynomials, i.e., [1, Theorem 1.2] might fail to imply the
factorization property in [7, Theorem 3.3].

We begin by recalling some definitions. For simplicity and for the convenience of
the reader, we adopt many of the same notations used in [7] and [1].

Let x1,...,x: be freely noncommuting variables. Given a word

w:Xil"'Xi[ (11)
in these variables and T € S, (CF), let
W) =T" =T, --T,.

Let # denote the collection of words in the variables x. A d X d matrix-valued free
polynomial is an expression of the form,

p(X) =2 pww

wew

where the sum is finite and the p,, € M;(C). The free polynomial p is naturally eval-
uated at T € S,(C*) as

p(T) = ZPWTW~
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There is a natural involution™ on free polynomials that reverses the order of products in
words so that, for w in equation (1.1),

W= Xi, - Xips
and such that
pr= W

This involution is compatible with the adjoint operation on matrices,
p(T)" =p"(T).

A free polynomial p is hermitian if p* = p; equivalently, if p(T)* = p(T) for all n
and T € S,(C).

From here on we often omit the adjectives matrix and free and simply refer to
matrix-valued free polynomials as polynomials, particularly when there is no possibility
of confusion.

Since the involution fixes the variables, x}‘ = xj, wereferto xi,...,xx as hermi-
tian variables.

Given m x n matrices Ag,Ay,...,Ag,B1,...,Bn,Cpy,1 < p < g,1 < g <h, the
expression

g h gh
L(x,y) = Ao — zijj - 2 Biyi — 2 CogXpYgs
Jj=1 k=1 P.q=1

is called an m x n matrix-valued xy-pencil. When all the coefficient matrices are her-
mitian, then L is called a hermitian xy-pencil.

1.1. Factorization
Given a pair of block 2 x 2 matrices A = (A; ;) and B = (B; ;) define
A®B= (Aw'@Bw’) .

Thus A® B is a mix of Schur product () and tensor product (®). It is known as the
Khatri-Rao product.
(550 it
Y (S?l Sﬂ) ’

Let, for j=1,2...,2u,
where {s k1< j<2u,0<k< 2} are freely noncommuting variables with s 7,0 and
s; being hermitian. For notational purposes, let

o 00
=100/
where @ denotes the empty word.
Suppose p = 23.’2:0 DjiXjXk, is a 20 x 2¢ hermitian matrix polynomial of degree
at most two in 2u hermitian freely noncommuting variables xp,...,xp,, where, for
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notational purposes xo = 0. In particular, each p;; € M¢(C) ® M>(C) and p7, = py ;.
Let &p denote the matrix polynomial in the variables {Sj70,5j71,5j72 1< j<2u}
defined by

2u

Ep(s)= D, pix®sjsi.
JH=0

Such a polynomial is naturally evaluated at a 2u -tuple S = (S1,...,S2,) of block 2 x 2
hermitian matrices,

SioS; M,(C) M, .(C
Sj = (Sif(l) Sj;) S Sn+m((czu) C Mn+m((c) = (Mmrf((é) Mm(EC))> ) (1.2)

using ® as

2u
&p(S) = ,gop"’@sjsk e M(C)® (1%"5((%) MM",;m(E(éC))) '

The first observation in this article is that the following matrix-valued analog of
the factorization property proved in [7, Theorem 3.3] holds.

THEOREM 1.1. Suppose p = 23%:0 PjiXjxk is a hermitian 2du X 2du polyno-

mial, where
pir= ((Dj,k)u (pj,k)m)
’ (.Oj,k)271 (,1)‘,'71()272 ’

with (P x)ap € Ma(C) @My (C) forall a,b e {1,2}.
If &p(S) = 0 for all positive integers m,n and S € S, m(C*), then there exists
an N <2(2u+1)(2du) and qo,qz1,- .- .q2u € My q4u(C) @ My 2(C) such that

99k = Pjx, 1<),k <2u,
909k + 9k90 = Pro T Pox 1 <k <2u
(2640)aa = (00.0)aa € Ma(C) @My (C), a=1,2. (1.3)

In particular, letting q denote the N x 2d . matrix polynomial g = Ziio qjxj, thereis
an r1 € Mg(C) ® My (C) such that

% o 07’1
p=q°q+r, where r_<r’f O)'

1.2. Convexity

The two notions of convexity considered in this article are described for free poly-
nomials. They involve partitioning the freely noncommuting variables into two classes
Xiy..,xg and yp, ..., yp.
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1.2.1. Partial convexity

A d x d matrix-valued hermitian polynomial p(x,y) is convex in y if for each
positive integer n, each X € S,(CH*), each R,S € S,(C*) and each 0 <7 < 1, one has

p(X iR+ (1—1)S) <tp(X,R)+ (1 —1)p(X,S).

Partial convexity in the x-variables is defined analogously. A canonical example of a
convex in y polynomial is a hermitian polynomial that is affine linear in y. For more
details and results on (partial) convexity of free polynomials, please see [2], [3], [4], [5]
and [0].

The following alternate characterization of convexity in y can be found in [9],
[10] and [1]. A tuple ((X,Y),V), where (X,Y) € S,(C*) x S,(C*) and V : C" — C"
is an isometry, is an X% -pair if V*Xl-2V = (V*XL-V)2 for each 1 < i < u. Equivalently
((X,Y),V) is an x*-pair if ranV reduces X. A result from [9], [10] and [1] is that a
hermitian polynomial p is convex in y, or x?-convex, if and only if

p(VI X, Y)V) 2 (L @V )p(X,Y)(la @ V)

for all x?-pairs ((X,Y),V).

1.2.2. xy-convexity

A tuple ((X,Y),V), where (X,Y) € S,(C*) xS,(C*) and V : C" — C" is an
isometry, such that V*(X;Y;)V = V*X;VV*Y,V, for all i, j, is an xy-pair. A hermitian
matrix-valued free polynomial p(x,y) is xy-convex if

p(V X, Y)V) 2 (L oV)'p(X,Y)I;&V)

for all xy-pairs ((X,Y),V).

A main result in [ 1, Theorem 1.2] states that a hermitian d x d matrix-valued free
polynomial p(x,y) is xy-convex if and only if p(x,y) is separately partially convex,
i.e., partially convex in both x as well as y.

The main contribution in this article is an application of Theorem 1.1, which is an
alternate and conceptually different proof of the following result.

THEOREM 1.2. [1, Theorem 1.2] Suppose that p(x,y) is a hermitian d X d
matrix-valued free polynomial. The following statements are equivalent.

(i) p is xy-convex.

(ii) There exists a hermitian d x d matrix-valued xy-pencil A, a positive integer N
and an N x d matrix-valued xy-pencil A such that

plx,y) = A(x,y) + Alx,y)"Alx,y).

When d = u =1, Theorem 1.2 reduces to [7, Theorem 1.4].
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2. The proofs

This section contains the proofs of Theorem 1.1 and Theorem 1.2 in Subsections
2.2 and 2.4 respectively. To a point, the proofs parallel those of [7, Theorem 3.3] and
[7, Theorem 1.4]. In subsections 2.1 & 2.2, and 2.3 the factorization result [7, Theo-
rem 3.3] is extended to the matrix case in any number of variables; and xy-convexity
of a polynomial is translated into positivity information on a type of Hessian. While
more involved, these tasks in principle follow the same lines as in [7]. In Subsection 2.4
the positivity of the Hessian feeds into the factorization result and it is at this point —
reading off the conclusion of Theorem 1.2 from the factorization — that the ad-hoc ap-
proach in [7] is replaced by a more conceptual argument. We begin with the following
observations, which are matrix-valued analogs of their counterparts from [7].

. (L,00O 2
LEMMA 2.1. Let V* = (0 0l 0) € Moy 2(n4m) (C), T= (r,-,,-)l.d.:l €My (C)®

2
My(C), R=(Ri,)>._, € Myym(C) ®M,(C), where R;; = (R“’b> L € Myin(C)

ij=1 i,j
Dy 0

andD:(O D,

) € My+m(C) @M, (C).

~ ~ 2
=T®R, where R= (R}_’})

2
(i) (Liu®V)* [T®R] (Igu@V) = (r,-d-@R};J.l)

i,j=1 =1
(i) (Iyy ®D) [t®R] (Iyy © D) = T® (DRD).
Proof. To prove (i), observe that
2
T®R= (Ti=j®Ri~,j),‘7j:1
71,1®R}Zi Tl.,1®Rﬁ 712 ®R}j§ T2 ®Ri§
2.1 22 21 22
| T ®R1.1 T1,1 ®R11 Ti2 ®R12 T12 ®R1.2
.1 ®R§.Z} .1 ®R§f 2 ®R§j§ T2 ®R§.Z§
™1 ®R§ﬂ .1 ®R§f 2 ®R§Zé T2 ®R§j§
2 -
Thus, (Ipy @ V)* [t ®R] Iy @ V) = (Ti,,-@R}j})_ _ =t®k
7 T j=
To prove (ii), observe that
(Isy @ Dy) 0
11y ®D) [T®R] (Izy ® D) = K
D) [reR top)= (5P 0
T @R 12 @R\ [((lau ®Dy) 0
T @Ry 22 @R 0 (Igy ® Ds) 2.1)

_ (11 ®@DiR1 1Dy 112 ® DR 2D
7,1 ®D2Ry 1Dy T2 ® DaRy 2Dy

=1®(DRD). [
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2.1. A completely positive map

As a general principle, factorizations correspond to completely positive maps, a
theme pursued in this subsection. For the remainder of this subsection the hypotheses
of Theorem 1.1 are in force.

Let {e1,es} denote the standard orthonormal basis for C? and (x,... Xou)1 de-
note the words in those letters of length at most one. i.e.,

(X1, X1 = {x0,X1,X2, ... . Xop }-

We will view C?#1 as the span of (x1,...,xp,)1 With (x1,...,x2,4)1 as an orthonormal
basis and elements of M5, (C) as matrices indexed by (xi,..., X2, )1 X (X1,...,X2u)1-
Thus x;x; are the matrix units for My, 1(C).

Let .7 C M>(C) ® M,+1(C) denote the subspace of matrices

where Ty, x, is a diagonal matrix and 7 ,, = T, g for B € (x1,...,x0y)1. It is easily
seen that .’ is an operator system in M>(C) @ M2, 41(C). Define y : . — My, (C) ®
M;(C) by

V(Tup))= Y Pap®Tup 2.2)

B, o)1

PROPOSITION 2.2. The map  in equation (2.2) is completely positive (cp).

A proof of the scalar-valued version of Proposition 2.2 is given in [7, Proposi-
tion 3.4]. With suitable modifications along with Lemma 2.1, the same proof can be
made to work for our matrix-valued setting as well. Hence we skip the proof.

2.2. Proof of Theorem 1.1

A proof of the scalar-valued version of the factorization result Theorem 1.1 is
given in [7, Theorem 3.3]. With suitable modifications, the same proof can be adapted
to the present matrix-valued setting. Hence we skip the proof. We point out that the
main tool for the proof is Proposition 2.2, which guarantees that the Choi matrix of the
map Y factors as F*F for some matrix F.

2.3. The xy-Hessian and xy-convex polynomials

In this section xy-convexity of a polynomial is reinterpreted as positivity of a Hes-
sian. While the construction is entirely algebraic, it is motivated by the usual geometry
of the second derivative. Proposition 2.3 below is the xy-convex analog of Proposition
2.1 from [1].
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PROPOSITION 2.3. [7, Proposition 4.1] A triple ((X,Y),V) is an xy-pair if and
only if, up to unitary equivalence, it has the block form

Xo0jA; 0 Yor 0 Cy,
Xp=[A; x|, ie={ 0 xx |, V=(I00)", (2.3)
0 * * C,’{‘**

1 < j,k < u. Also, a d x d matrix-valued hermitian free polynomial p(x,y)) is xy-
convex if and only if

(la®@ V)" p(X,Y)(Ia®V) = p(Xo,Yo) = 0
Sor each xy-pair ((X,Y),V) of the form of equation (2.3).

Let . denote the set of words in x,y of degree at most two in both x and y, but
excluding those of the forms x;x;yiy, and yu,yxix;.

LEMMA 2.4. Suppose p(x,y) is a d x d matrix-valued hermitian polynomial. If
p(x,y) is xy-convex, then p is convex in both x and y separately. Hence p € My(C)®
span(L).

Proof. To show that p is convex in x and y separately, argue as in in the proof of
[7, Lemma 4.3] by simply replacing the triple (X;,X>,Y) used in that proof by some
triple (X!,X2,Y) € S,(C*). That p € M;(C) @ span(.£) follows from [1, Corollary
28]. O

Let {s0j,%07, ;B j,Vj0k,j: 0 < j < u,0< k< 2} denote freely noncommuting
variables with so;,%ox, Boj, B2, ok, &2 being hermitian. In view of Proposition 2.3, let

soj (5 0) o (0%
sj= (OC}‘) (ﬁoj' Blj) , = (0 ) (50k 51k) ,
0 Bi; B2j %) \Oix O
and
V=(000)".
The following notations will be adopted for the remainder of the article: sy = (so1, - . - , S0 ),

th= (t017'”7t0/.l.)7 o= (OC] ~~~7a,u)7 Y= (’}/17'”7’}/,11)7 ﬁl = (Bllv"'?Blu)7 B2: (ﬁ217'”7
ﬁ2[l)7 50 = (6017'”760/.1.) and 61 = (5117"'751#)~

The xy-Hessian of the d x d matrix-valued polynomial p(x,y), denoted Hp,
is the quadratic in o,y part of (I; @ V*)p(s,t)(I; @ V) — p(V*(5,)V) = V*p(s,1)V —

p(s010)-
In particular, for p € M;(C) ® span.Z,

HYp:=(I;@V)"p(s,t)(la@V) — p(V*(s,)V)
=g @V) p(s,t)(Ig®V) — p(so,t0)-
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LEMMA 2.5. If p = Y,c.o putt with p, € My(C), then HY p is a function of the
variables {ct,v,s0,%0,00,01,P1,B2} and is given by

H'= 3 ([P0 + P i)
jkbm=1
+ [Ptjyices 480k O + Pyixiym VB2, Y & Pocjyiom (80, VeV + 4B1x¥rn)
+ Pynyex; (Ym Vi S0 + Y01 5 )
+ Pajgy (040 tok + QiBLeYy ) + Py (Tok 0 06 + Vi 0t)]
+ [P jyiymrs (0 VieYmSoe + 81k YS0c + 50,V 01 @4 + 0Lj(Sok Som + O101,,) 07 )
+ Pxjyeriym (04 Ok 0 tom ~+ CjSorBreYy + 50 YiBaeYm + 061k B2cYi,)
+ Pymeyex; (om0 Box O + YiBipOor O + Y BaeYy 50j + YmBaeSir ¢} )

+ Pyixjreym 10k 0 07 tom + ViBi 104 tom + tok LBV + Vi (BiiBre + BajBe) Yin)1 }-

Alternatively, with O denoting the empty word,

u u
HYp = 2 (i) (anwa + 2 {PXayrxb o, + Pxjyrysxp (G0r0s + 51r51*s)}> (La OCZ)

a,b,g,h=1 rs=1

u
+ (Id a”l) (pxaxb)’lzo + 2 Pxayrxpyn 50") (Id OCZ’Oh)

r=1

+ (Idtog ) (PngaXbo + 2 Pygxayrxp 50r> (Laoy,) + (IdtOg ) (ngxabeIzo) (Lacyton)

r=1

+ Idaa (2 pxa)’r)’b(slr + pxaxryhﬁlr + Pxayrxsyy (60 ﬁls + 61r62s)> (Id’}/};k)

r=1

Idya <2 pyayrxb(slr + pYaXthBIV + panr,vab (ﬁlr(sos + ﬁ2r613)> (Idag)

r=1

+ (Idaa (2 any,y,,x,,5 ) (IthSOh) + (IdSOgYa (2 p)c,,,ygyrx;,(S ) (Idab)

r=1 r=1

+ Idto!s OCa (2 pJ’gXaXthBIV> (Idyl;k) IdYa (2 DPyaxrxpyn Blr) (Idal;kt()h)

+ (LaYa) (pyayhm + 2 Pyaxryp Bar + DPyaxxgyp (ﬁl*rﬁls + B2rﬁ2.¥)> (IdYIj)

r=1
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r=1

u
+ (1aYa) (Pyaybxh@ + ) Pravny, ﬁzr) LaYy son

u
+ (IdSOgYa) (pxgyaybm + 2 pxgyaxrybﬁh) (Idyg) + (IdsOgYa) (pxgyaybxh@) (IdYESOh)'

r=1

Proof. Follows from direct computation. []

The xy-bordervector ¥V =V (so, 19,0, Y) is the row vector-valued free polynomial
V=M 7 -+ Yu), where

Vo= (140t Lyto1 0t -+ IgtopOa 1gYa LasorYa -+ laSouYa),)

I1<a<u.
For 1 <a,b < u, let 4, ;(Bi,B2,00,081) denote the matrix polynomial given by
K u
p ab. 'lm
pxax,,m + Z {any,x,, Sor * x;_y,
rs=1
7 + 2 Pxayrxsyy O0r
+ pxj)’r}’sxb (607‘605‘ + 817‘81*.\')} r=1 Lh/ p—y
('%a,b)l,l =
pygxax/,(b K
i g
Pygxaxpyn?) ,
+ p)’gxa)’rXb 60;' ( YgTalbh )5’h71
r=1 2.1 e—1
u
2 [pxa)’r)’b 81 u u
=1
" 2 Dxayrypxn O1r
+ pxaxry/,ﬁlr r=1 L et
+ an)’rxxy (607'615‘ + 61 rﬁ2.\')] B
(Mup)ip= b
u
u
( Z pJ’ganrYbﬁlr ) Ouxu
r=1 a1 =l
u
%
Z [pyaerb 81!’ u u
=1
" * Z panthYh ﬁl*r
+Pyax,<x/,ﬁ1r —1 ),
+ Panryxx (Bl* 605 + BZr(Sls)]
(Myp)ry = bR
u
u
%
( 2 Pxgyayrxp 61;’ ) Op_xp_
r=1 v 1
8 g=1
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and
u u
P 0
Pyay, 0+ 2 Pyaxy, Bor yayﬁXh
rs=1
' + 2 DPyaxrypx; BZr
+ Pyaxrxsyp (Bl*rﬁls +ﬁ2rB2s) r=1 cr L/ ey
(Map)rz= ;
u
Pxgyayy®
U 0\*
Pxgyaypx —
+ szgyaxrybﬁh ( s )g7h !
r=1 g1 g=1

where 1 < g,h,a,b < . In particular, .#, is a block 2 x 2 matrix with each block
entry being a (U + 1) x (u+ 1) matrix of d x d matrix-valued free polynomials. The
matrix

M= (M),

is called the xy-middle matrix for p.

LEMMA 2.6. If p(x,y) is an xy-convex polynomial, then

HYp=V.4V".

Proof. Since p is xy-convex, Lemma 2.4 implies p € M;(C) ® .#. From here,
the result follows from a direct computation by combining the definitions of .Z and *
above with the definition of H¥p. [

PROPOSITION 2.7. If p(x,y) is xy-convex, then
M (B1,By,Dy,Dy) =0

forall u-tuples By,By,Dgy, D1 of matrices of compatible sizes.

Proof. Since p is xy-convex, it follows from Proposition 2.3 that H% p, the xy-
Hessian, takes positive semidefinite values. Given M,N € N, and

(a) matrices Doi,...,Doy € My(C), matrices Byy,...,By, € My(C), and matrices
Bit,...,Biy,Dut, -..,Diy € My n(C);

(b) Vectorswije(CM andvije(CN for0<li<u, 1<j<dand 1 <k<pu,
let g = &} gk, where g € C* 1@ ((C!®CM) & (C!®CN)) is given by
uod iod

=X Yeuwe; o)) & (X Y eu®e; @),

u=0 j=1 u=0 j=1
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and where {eg,ey,...,ey} and {ey,...,e;} denote the standard orthonormal basis for
CH+1 and C¢ respectively.

Using [1, proposition 2.5], choose a non-zero vector h € C**! and matrices
Uot;. .- Uoy and Wyi,...,Wo, from S, 1(C) such that the sets {h,Upih,...,Upyh}
and {h,Woih,...,Wouh} are bases for CHT!. Set Wy = Ugg = I+1. Using linear in-
dependence, choose, for each k € {1,2,...,u}, matrices A ; € My 11 (C) and Gy ; €
My 11 n(C) such that A,’;jWogh = wﬁﬂj and C,’;jUOgh = viJ. Define A} = (A,’;1 Afy e
AL ), and Cf = (G Gy - G y) - Thus A € My y(41)(C) and G € My 4(11)(C).
Let Xor =Upr B --- P Uy € Md(MJrl)((C) and Yo, =Wy B - B W € Md(#+1)(C).

Let Xo = (Xo1,--.,Xou), let Yo = (Yo1,..., Yo, ) and observe that the tuples Xo,Yy €
Sa(u+1)(C*). Let A and C denote the tuples (Ay,...,Ay), and (Cy,...,Cy) respec-
tively. Recall the definition of the xy-border vector ¥". By Lemma 2.6 it follows that,

(A (B1,B2,Do,D1)g,8) = [V (Xo,Yo0,A,C)h|" .4 (By,B2,Do,D1) [V (X0, Yo,A,C)h]
= <nyp(X07Y07A7C7B17B27D07D1)h7h> i 07

and the proof is complete. []

2.4. Proof of Theorem 1.2

Theorem 1.1 and Proposition 2.7 are combined in this section to complete the
proof of Theorem 1.2. A simple and direct proof of the implication (ii) = (i) of Theo-
rem 1.2 is given in [, Proposition 1.3].

Proof of (i) = (ii). Let

o — ((B(n Bn) (ﬁou ﬁlu) (501 511) (50;1 51;1))
Bii Bar) " \Biy Bow ) U \Sfy O21) 7\ S G ) )

Let I <a,b < u and
2
Ql = Q(G) = (inj)i7j=1
denote the 2du x 2du matrix polynomial whose block entries are given by Q;; =

((Qij)an)t,_, where (Q;)ap is the (1,1) entry of the matrix (.#,;);; and A is
the xy-middle matrix for p. Thus Q equals

u u

u u
Digx, 0+ 2 {pxayyx/, or Z Pxayryp d1r + anXVJ’bﬁlr

rs=1 rs=1

+ Dxjyrysxy (GorGos + 61}’51*5‘)} ab=1 + Dxayrxsyp (80rB1s + 01,-B2s) ab=1

U u U
Z Pyayrxp S8, + Pyaxrxy Bi, Pyay 0+ Z Pyaxeyy Bar

rs=1 rs=1

+ Pyaxrysxp (Bl*r(SOS + B2r61s) ab=1 + Pyaxrxsyp (ﬁl*rﬁls + BZrﬁ2s) ab=1

IThis is the reduced xy-hessian of the polynomial p. See section A.4 in [8] for more details.
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Given S = (51,52,...,8u) € Snt+m(C?) of the block form of equation (1.2), let By :=
(5171, . ,S#71)7 32 = (S172, . ,S#g), D() = (S,u+170, . 7S2M70) and D1 = (S#+171 SN
Sau,1). Observe, by Proposition 2.7, that .# (By,B2,Do,Dy) = 0. Further,

Q(S) = J* ['%(Bl 7B27D07Dl)]-]7
for an appropriately chosen isometry J. Thus
Q(S) = 0. (2.4)

Recall the notation (x,y) = (X1,...,Xu, Y15 Yu) = (X1, X, X 15+ - -, X2p ). Let 1 <
a,b,r,s < 1 and let xo denote the empty word. Define a 2du x 2du matrix-valued
polynomial P by
2u
P(xy,... ,x2“) = 2 Pj yxjxy,
J:k=0

where the P;; € (My® M) ® M, are given by

u
((pmo)abl\ OM ); (j.k) = (0,0)

‘ (pYHYb ) a,b=1

0 XaXrYp , = i
(Prax, )ml) o (j,k) € {(r,0),(0,r)}

N =

T
pJ’axrxb a,b=1 (pyaxr)%)a,bzl

( (Pyavs )
( pr,ly,x,,;% st | (Pravon) s ) :

DPyayrxp ab=1 0

(]7k) € {([,L{—F,O),(O,‘U.-l—l")}

N | =

Pii= anvrvs)fb a, h 1

0 .
e (j,k) = (u+ru+s)

pVaerAxb a.b=1

anyrxayb uh 1 (j,k) = (Uu+rs)

[F555):
(—p—%) (0 = (ru+3)
[t

0|(
o o

0 0
ol \VF ) i, k) = (r,s).
<0 (pyaerxYI;)a’b:l) (.] ) (r S)

Observe that P is a hermitian polynomial and &P(c) = Q(0). Thus, by equation (2.4),
it follows that &P(S) = Q(S) = 0 for all tuples S = (S|,...,S2u) € Snem(C*) of 2x2
block hermitian matrices.
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By Theorem 1.1, there exists an N < 2(2u+ 1)(2du) and q; € Myyx24u(C) for
0 < j <2u such that

qiqk = Pjx 1< j,k<2pu,
q0qk + qrxq0 = Pro+Pox, 1 <k<2u
(‘18‘]0)04,0: = (P070)a7a EM;OMy, 1<o<2.

Let g(x1,...,xu) = Zfﬁo grx,. and note, in terms of x,y,

u
q(x,y) = qoxo+ Y, (qrxr + qusryr)-
r=1

A simple computation shows that

q(x,y)"q(x,y) = P(x,y) +R,

(4090),,] O
(9640), , - Let {ey,...,ez,} denote the standard orthonormal basis for C2*. Define the
2du x d matrix-valued polynomial in 1(x,y) by

0 *
where R = ( [(god0), 2) € (My(C)®@My(C)) @M (C). Note that (g4q0)] , =

2 (ej@1a)xj+ (e+;@1a)y,
Jj=1

and
Alx,y) = q(x,y)n(x,y).
Since gjq; = P; j, it follows that g;(e; ® I;) = 0. Hence A(x,y) is an xy-pencil.
Recall the set of words . from Subsection 2.3. Let .Z, denote the words in .
of degree two in either x or y and verify

Alx,y) Alx,y) = n(x,y)"q(x,y) q(x,y) n(x,y)
= n(xvy)*[P(xvy) +R} TI(XJ’)

u
= 2 pwW+ 2 ((QSQO)1,2>errYs+((qa40)271>rs}’rxs-

weZs rs=1 y
Thus
p(ey) = A(xry) + Al y) Alx,y),
where
u
/1(36,)’) = 2 PwW — 2 ((q8q0>172> XrYs + ((quO)2’1> Vixs | -
we L\ L rs=1 s rs

Since A(x,y) is a hermitian xy-pencil, the proof is complete. [

We conclude this article with the following observation. Recall the notations used
in Sections | and 2.
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REMARK 2.8. As shown above, Theorem 1.1 implies Theorem 1.2. We conjec-
ture that Theorem 1.2 does not imply Theorem 1.1, based on the following observation.
Fix d = u =1 and suppose that &p(S) = Q(S) = 0. Recall that Q(0) is totally gen-
eral (up to the choice made in the unitary equivalence stated in [7, Proposition 4.1]) for
the 2 x 2 matrix polynomial P(x,y) constructed out of the xy-Hessian of a polynomial
in span(£). Let g(x,y) be a free polynomial whose reduced xy-hessian is Q(0).
It follows from Section A.4 in [8] that g(x,y) is xy-convex. An application of The-
orem 1.1 yields g(x,y) = A(x,y) + A(x,y)*A(x,y) for some (scalar-valued) xy-pencil
A(x,y) and a N x 1 matrix-valued xy-pencil A(x,y). In particular g(x,y) € span(.%).
If we use this structure of g(x,y) to obtain the desired factorization of the polynomial
p(x,y), we see that it places restrictions on the coefficients of p(x,y). This happens
because Q(o) only depends on four variables (and not on fy and &, ), whereas &p(0)
depends on six variables, strongly supporting the conjecture that Q(o) is far from the
most general 2 x 2 matrix polynomial p(x,y) € span(.£) for which &p(c) = 0 for
all o.
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