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Abstract. In this article, by using the matrix-valued analog of a factorization property of free
polynomials, we offer an alternate approach to the structure of matrix-valued hermitian free
polynomials that are xy -convex.

1. Introduction

The purpose of this article is twofold. Firstly, to observe that the factorization
property proved in [7, Theorem 3.3] extends naturally to the matrix-valued setting.
Secondly, as an application, to present an alternate and conceptually different proof
of a characterization of matrix-valued xy-convex hermitian free polynomials given in
[1, Theorem 1.2], by following a conceptually similar plan to the proof of the scalar-
valued version in [7, Theorem 1.4]. Further, it is also pointed out heuristically why the
structure of xy-convex free polynomials, i.e., [1, Theorem 1.2] might fail to imply the
factorization property in [7, Theorem 3.3].

We begin by recalling some definitions. For simplicity and for the convenience of
the reader, we adopt many of the same notations used in [7] and [1].

Let 1, . . . ,k be freely noncommuting variables. Given a word

w = i1 · · ·i� (1.1)

in these variables and T ∈ Sn(Ck), let

w(T ) = Tw = Ti1 · · ·Ti� .

Let W denote the collection of words in the variables  . A d× d matrix-valued free
polynomial is an expression of the form,

p() = 
w∈W

pww,

where the sum is finite and the pw ∈ Md(C) . The free polynomial p is naturally eval-
uated at T ∈ Sn(Ck) as

p(T ) = pwTw.
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There is a natural involution∗ on free polynomials that reverses the order of products in
words so that, for w in equation (1.1),

w∗ = i� · · · i1 ;

and such that
p∗ = p∗ww∗.

This involution is compatible with the adjoint operation on matrices,

p(T )∗ = p∗(T ).

A free polynomial p is hermitian if p∗ = p ; equivalently, if p(T )∗ = p(T ) for all n
and T ∈ Sn(Ck).

From here on we often omit the adjectives matrix and free and simply refer to
matrix-valued free polynomials as polynomials, particularly when there is no possibility
of confusion.

Since the involution fixes the variables, ∗
j =  j, we refer to 1, . . . ,k as hermi-

tian variables.
Given m× n matrices A0,A1, . . . ,Ag,B1, . . . ,Bh,Cpq,1 � p � g,1 � q � h, the

expression

L(x,y) = A0−
g


j=1

Ajx j −
h


k=1

Bkyk −
g,h


p,q=1

Cpqxpyq,

is called an m×n matrix-valued xy-pencil. When all the coefficient matrices are her-
mitian, then L is called a hermitian xy-pencil.

1.1. Factorization

Given a pair of block 2×2 matrices A = (Ai, j) and B = (Bi, j) define

A�B =
(
Ai, j ⊗Bi, j

)
.

Thus A�B is a mix of Schur product (∗ ) and tensor product (⊗ ). It is known as the
Khatri-Rao product.

Let, for j = 1,2 . . . ,2 ,

s j =
(

s j,0 s j,1

s∗j,1 s j,2

)
,

where {s j,k : 1 � j � 2 , 0 � k � 2} are freely noncommuting variables with s j,0 and
s j,2 being hermitian. For notational purposes, let

s0 =
(

/0 0
0 /0

)
.

where /0 denotes the empty word.
Suppose p = 2

j,k=0 p j,kx jxk, is a 2�×2� hermitian matrix polynomial of degree
at most two in 2 hermitian freely noncommuting variables x1, . . . ,x2 , where, for
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notational purposes x0 = /0. In particular, each p j,k ∈ M�(C)⊗M2(C) and p∗j,k = pk, j.

Let E p denote the matrix polynomial in the variables {s j,0,s j,1,s j,2 : 1 � j � 2}
defined by

E p(s) =
2


j,k=0

p j,k � s jsk.

Such a polynomial is naturally evaluated at a 2 -tuple S = (S1, . . . ,S2) of block 2×2
hermitian matrices,

S j =
(

S j,0 S j,1

S∗j,1 S j,2

)
∈ Sn+m(C2) ⊆ Mn+m(C) =

(
Mn(C) Mn,m(C)

Mm,n(C) Mm(C)

)
, (1.2)

using � as

E p(S) =
2


j,k=0

p j,k �S jSk ∈ M�(C)⊗
(

Mn(C) Mn,m(C)
Mm,n(C) Mm(C)

)
.

The first observation in this article is that the following matrix-valued analog of
the factorization property proved in [7, Theorem 3.3] holds.

THEOREM 1.1. Suppose  = 2
j,k=0  j,kx jxk is a hermitian 2d×2d polyno-

mial, where

 j,k =
(

( j,k)1,1 ( j,k)1,2

( j,k)2,1 ( j,k)2,2

)
,

with ( j,k)a,b ∈ Md(C)⊗M(C) for all a,b ∈ {1,2} .
If E (S) � 0 for all positive integers m,n and S ∈ Sn+m(C2), then there exists

an N � 2(2+1)(2d) and q0,q1, . . . ,q2 ∈ MN,d(C)⊗M1,2(C) such that

q∗jqk =  j,k, 1 � j,k � 2 ,

q∗0qk +q∗kq0 = k,0 +0,k, 1 � k � 2
(q∗0q0)a,a = (0,0)a,a ∈ Md(C)⊗M(C), a = 1,2. (1.3)

In particular, letting q denote the N×2d matrix polynomial q = 2
j=0 q jx j, there is

an r1 ∈ Md(C)⊗M(C) such that

 = q∗q+ r, where r =
(

0 r1

r∗1 0

)
.

1.2. Convexity

The two notions of convexity considered in this article are described for free poly-
nomials. They involve partitioning the freely noncommuting variables into two classes
x1, . . . ,x and y1, . . . ,y .
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1.2.1. Partial convexity

A d × d matrix-valued hermitian polynomial p(x,y) is convex in y if for each
positive integer n, each X ∈ Sn(C), each R,S ∈ Sn(C) and each 0 < t < 1, one has

p(X ,tR+(1− t)S)� t p(X ,R)+ (1− t)p(X ,S).

Partial convexity in the x -variables is defined analogously. A canonical example of a
convex in y polynomial is a hermitian polynomial that is affine linear in y. For more
details and results on (partial) convexity of free polynomials, please see [2], [3], [4], [5]
and [6].

The following alternate characterization of convexity in y can be found in [9],
[10] and [1]. A tuple ((X ,Y ),V ) , where (X ,Y ) ∈ Sn(C)×Sn(C) and V : Cm → Cn

is an isometry, is an x2 -pair if V ∗X2
i V = (V ∗XiV )2 for each 1 � i �  . Equivalently

((X ,Y ),V ) is an x2 -pair if ranV reduces X . A result from [9], [10] and [1] is that a
hermitian polynomial p is convex in y, or x2 -convex, if and only if

p(V ∗(X ,Y )V ) � (Id ⊗V ∗)p(X ,Y )(Id ⊗V)

for all x2 -pairs ((X ,Y ),V ).

1.2.2. xy-convexity

A tuple ((X ,Y ),V ) , where (X ,Y ) ∈ Sn(C)× Sn(C) and V : Cm → Cn is an
isometry, such that V ∗(XiYj)V = V ∗XiVV ∗YjV, for all i, j, is an xy-pair. A hermitian
matrix-valued free polynomial p(x,y) is xy-convex if

p(V ∗(X ,Y )V ) � (Id ⊗V)∗p(X ,Y )(Id ⊗V)

for all xy-pairs ((X ,Y ),V ).
A main result in [1, Theorem 1.2] states that a hermitian d×d matrix-valued free

polynomial p(x,y) is xy-convex if and only if p(x,y) is separately partially convex,
i.e., partially convex in both x as well as y .

The main contribution in this article is an application of Theorem 1.1, which is an
alternate and conceptually different proof of the following result.

THEOREM 1.2. [1, Theorem 1.2] Suppose that p(x,y) is a hermitian d × d
matrix-valued free polynomial. The following statements are equivalent.

(i) p is xy-convex.

(ii) There exists a hermitian d×d matrix-valued xy-pencil  , a positive integer N
and an N×d matrix-valued xy-pencil  such that

p(x,y) =  (x,y)+(x,y)∗(x,y).

When d =  = 1, Theorem 1.2 reduces to [7, Theorem 1.4].
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2. The proofs

This section contains the proofs of Theorem 1.1 and Theorem 1.2 in Subsections
2.2 and 2.4 respectively. To a point, the proofs parallel those of [7, Theorem 3.3] and
[7, Theorem 1.4]. In subsections 2.1 & 2.2, and 2.3 the factorization result [7, Theo-
rem 3.3] is extended to the matrix case in any number of variables; and xy-convexity
of a polynomial is translated into positivity information on a type of Hessian. While
more involved, these tasks in principle follow the same lines as in [7]. In Subsection 2.4
the positivity of the Hessian feeds into the factorization result and it is at this point –
reading off the conclusion of Theorem 1.2 from the factorization – that the ad-hoc ap-
proach in [7] is replaced by a more conceptual argument. We begin with the following
observations, which are matrix-valued analogs of their counterparts from [7].

LEMMA 2.1. Let V ∗ =
(

In 0 0 0
0 0 In 0

)
∈M2n,2(n+m)(C) ,  =

(
i, j
)2
i, j=1 ∈Md(C)⊗

M2(C) , R =
(
Ri, j
)2
i, j=1 ∈ Mn+m(C)⊗M2(C) , where Ri, j =

(
Ra,b

i, j

)2

a,b=1
∈ Mn+m(C)

and D =
(

D1 0
0 D2

)
∈ Mn+m(C)⊗M2(C) .

(i) (Id⊗V )∗ [�R] (Id⊗V ) =
(
i, j ⊗R1,1

i, j

)2

i, j=1
= � R̃, where R̃ =

(
R1,1

i, j

)2

i, j=1
.

(ii) (Id ⊗D) [ �R] (Id ⊗D) =  � (DRD).

Proof. To prove (i) , observe that

 �R =
(
i, j ⊗Ri, j

)2
i, j=1

=

⎛⎜⎜⎜⎝
1,1⊗R1,1

1,1 1,1 ⊗R1,2
1,1

1,1⊗R2,1
1,1 1,1 ⊗R2,2

1,1

1,2 ⊗R1,1
1,2 1,2 ⊗R1,2

1,2

1,2 ⊗R2,1
1,2 1,2 ⊗R2,2

1,2

2,1⊗R1,1
2,1 2,1 ⊗R1,2

2,1

2,1⊗R2,1
2,1 2,1 ⊗R2,2

2,1

2,2 ⊗R1,1
2,2 2,2 ⊗R1,2

2,2

2,2 ⊗R2,1
2,2 2,2 ⊗R2,2

2,2

⎞⎟⎟⎟⎠ .

Thus, (Id ⊗V)∗ [ �R] (Id ⊗V) =
(
i, j ⊗R1,1

i, j

)2

i, j=1
=  � R̃.

To prove (ii) , observe that

(Id ⊗D) [ �R](Id ⊗D) =
(

(Id ⊗D1) 0
0 (Id ⊗D2)

)
(
1,1 ⊗R1,1 1,2 ⊗R1,2

2,1 ⊗R2,1 2,2 ⊗R2,2

)(
(Id ⊗D1) 0

0 (Id ⊗D2)

)
=
(
1,1⊗D1R1,1D1 1,2 ⊗D1R1,2D2

2,1⊗D2R2,1D1 2,2 ⊗D2R2,2D2

)
=  � (DRD). �

(2.1)
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2.1. A completely positive map

As a general principle, factorizations correspond to completely positive maps, a
theme pursued in this subsection. For the remainder of this subsection the hypotheses
of Theorem 1.1 are in force.

Let {e1,e2} denote the standard orthonormal basis for C2 and 〈x1, . . . ,x2〉1 de-
note the words in those letters of length at most one. i.e.,

〈x1, . . . ,x2〉1 := {x0,x1,x2, . . . ,x2}.

We will view C2+1 as the span of 〈x1, . . . ,x2〉1 with 〈x1, . . . ,x2〉1 as an orthonormal
basis and elements of M2+1(C) as matrices indexed by 〈x1, . . . ,x2〉1×〈x1, . . . ,x2〉1.
Thus x jx∗k are the matrix units for M2+1(C).

Let S ⊂ M2(C)⊗M2+1(C) denote the subspace of matrices

T =
(
T ,

)
 ,∈〈x1,...,x2 〉1 ,

where Tx0,x0 is a diagonal matrix and T ,x0
= Tx0, for  ∈ 〈x1, . . . ,x2〉1. It is easily

seen that S is an operator system in M2(C)⊗M2+1(C). Define  : S → Md(C)⊗
M2(C) by

(
(
T ,

)
) = 

 ,∈〈x1,...,x2 〉1
 , �T , . (2.2)

PROPOSITION 2.2. The map  in equation (2.2) is completely positive (cp).

A proof of the scalar-valued version of Proposition 2.2 is given in [7, Proposi-
tion 3.4]. With suitable modifications along with Lemma 2.1, the same proof can be
made to work for our matrix-valued setting as well. Hence we skip the proof.

2.2. Proof of Theorem 1.1

A proof of the scalar-valued version of the factorization result Theorem 1.1 is
given in [7, Theorem 3.3]. With suitable modifications, the same proof can be adapted
to the present matrix-valued setting. Hence we skip the proof. We point out that the
main tool for the proof is Proposition 2.2, which guarantees that the Choi matrix of the
map  factors as F∗F for some matrix F .

2.3. The xy-Hessian and xy-convex polynomials

In this section xy-convexity of a polynomial is reinterpreted as positivity of a Hes-
sian. While the construction is entirely algebraic, it is motivated by the usual geometry
of the second derivative. Proposition 2.3 below is the xy-convex analog of Proposition
2.1 from [1].
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PROPOSITION 2.3. [7, Proposition 4.1] A triple ((X ,Y ),V ) is an xy-pair if and
only if, up to unitary equivalence, it has the block form

Xj =

⎛⎝X0 j A j 0
A∗

j ∗ ∗
0 ∗ ∗

⎞⎠ , Yk =

⎛⎝Y0k 0 Ck

0 ∗ ∗
C∗

k ∗ ∗

⎞⎠ , V =
(
I 0 0

)∗
, (2.3)

1 � j,k �  . Also, a d × d matrix-valued hermitian free polynomial p(x,y)) is xy-
convex if and only if

(Id ⊗V)∗p(X ,Y )(Id ⊗V)− p(X0,Y0) � 0

for each xy-pair ((X ,Y ),V ) of the form of equation (2.3).

Let L denote the set of words in x,y of degree at most two in both x and y, but
excluding those of the forms x jxiykym and ymykxix j.

LEMMA 2.4. Suppose p(x,y) is a d×d matrix-valued hermitian polynomial. If
p(x,y) is xy-convex, then p is convex in both x and y separately. Hence p ∈ Md(C)⊗
span(L ).

Proof. To show that p is convex in x and y separately, argue as in in the proof of
[7, Lemma 4.3] by simply replacing the triple (X1,X2,Y ) used in that proof by some
triple (X1,X2,Y ) ∈ Sn(C). That p ∈ Md(C)⊗ span(L ) follows from [1, Corollary
2.8]. �

Let {s0 j, t0 j, j,k, j, j,k, j : 0 � j �  , 0 � k � 2} denote freely noncommuting
variables with s0 j, t0k,0 j,2 j,0k,2k being hermitian. In view of Proposition 2.3, let

s j =

⎛⎝ s0 j
(
 j 0

)(
∗

j
0

) (
0 j 1 j

 ∗
1 j 2 j

)⎞⎠ , tk =

⎛⎝ t0k
(
0 k

)(
0
∗k

) (
0k 1k

 ∗
1k 2k

)⎞⎠ ,

and
V =

(
/0 0 0

)∗
.

The following notations will be adopted for the remainder of the article: s0 = (s01, . . . ,s0),
t0 = (t01, . . . ,t0),  = (1 . . . ,),  = (1, . . . ,), 1 = (11, . . . ,1), 2 = (21, . . . ,
2), 0 = (01, . . . ,0) and 1 = (11, . . . ,1).

The xy-Hessian of the d × d matrix-valued polynomial p(x,y) , denoted Hxyp,
is the quadratic in , part of (Id ⊗V ∗)p(s,t)(Id ⊗V)− p(V ∗(s,t)V ) = V ∗p(s,t)V −
p(s0, t0).

In particular, for p ∈ Md(C)⊗ spanL ,

Hxyp := (Id ⊗V)∗p(s,t)(Id ⊗V)− p(V ∗(s, t)V )
= (Id ⊗V)∗p(s,t)(Id ⊗V)− p(s0,t0).
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LEMMA 2.5. If p = u∈L puu with pu ∈ Md(C) , then Hxyp is a function of the
variables {,,s0, t0,0,1,1,2} and is given by

Hxyp =



j,k,�,m=1

{[pxjx�
 j∗

� + pykymk
∗
m]

+ [pxjykx�
 j0k∗

� + pykx jymk2 j∗m + pxjykym(s0 jk∗m + j1k∗m)

+ pymykx j (m
∗
k s0 j + m ∗

1k
∗
j )

+ pxjx�yk ( j∗
� t0k + j1�∗k )+ pykx�x j (t0k�∗

j + k ∗
1�

∗
j )]

+ [pxjykymx�
(s0 jk∗ms0� + j1k∗ms0� + s0 jk ∗

1m
∗
� + j(0k0m + 1k ∗

1m)∗
� )

+ pxjykx�ym( j0k∗
� t0m + j0k1�∗m + s0 jk2�∗m + j1k2�∗m)

+ pymx�ykx j (t0m�0k∗
j + m ∗

1�0k∗
j + m2�∗k s0 j + m2� ∗

1k
∗
j )

+ pykx jx�ym(t0k j∗
� t0m + k ∗

1 j
∗
� t0m + t0k j1�∗m + k( ∗

1 j1� +2 j2�)∗m)]}.

Alternatively, with /0 denoting the empty word,

Hxyp =



a,b,g,h=1

(Ida)

(
pxaxb /0+




r,s=1

{pxayrxb0r + pxjyrysxb(0r0s + 1r ∗
1s)}

)
(Id∗

b )

+ (Ida)

(
pxaxbyh /0+




r=1

pxayrxbyh0r

)
(Id∗

b t0h)

+ (Idt0ga)

(
pygxaxb /0+




r=1

pygxayrxb0r

)
(Id∗

b )+ (Idt0ga)
(
pygxaxbyh /0

)
(Id∗

b t0h)

+ (Ida)

(



r=1

pxayryb1r + pxaxryb1r + pxayrxsyb(0r1s + 1r2s)

)
(Id∗b )

+ (Ida)

(



r=1

pyayrxb
∗
1r + pyaxrxb

∗
1r + pyaxrysxb(

∗
1r0s +2r1s)

)
(Id∗

b )

+ (Ida)

(



r=1

pxayrybxh1r

)
(Id∗b s0h)+ (Ids0ga)

(



r=1

pxgyayrxb
∗
1r

)
(Id∗

b )

+ (Idt0ga)

(



r=1

pygxaxryb1r

)
(Id∗b )+ (Ida)

(



r=1

pyaxrxbyh
∗
1r

)
(Id∗

b t0h)

+ (Ida)

(
pyayb /0+




r=1

pyaxryb2r + pyaxrxsyb(
∗
1r1s +2r2s)

)
(Id∗b )
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+(Ida)

(
pyaybxh /0+




r=1

pyaxrybxh2r

)
Id∗b s0h

+(Ids0ga)

(
pxgyayb /0+




r=1

pxgyaxryb2r

)
(Id∗b )+ (Ids0ga)

(
pxgyaybxh /0

)
(Id∗b s0h).

Proof. Follows from direct computation. �
The xy-border vector V = V (s0,t0,,) is the row vector-valued free polynomial

V = (V1 V2 · · · V), where

Va =
(
Id a Id t01a · · · Id t0a Id a Id s01a · · · Id s0a),

)
1 � a �  .

For 1 � a,b �  , let Ma,b(1,2,0,1) denote the matrix polynomial given by

(Ma,b)1,1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

pxaxb /0+



r,s=1

{pxayrxb0r

+ pxjyrysxb(0r0s + 1r ∗
1s)}

⎛⎜⎝
⎛⎜⎝ pxaxbyh /0

+



r=1

pxayrxbyh0r

⎞⎟⎠
1,h

⎞⎟⎠


h=1

⎛⎜⎝
⎛⎜⎝ pygxaxb /0

+



r=1

pygxayrxb0r

⎞⎟⎠
g,1

⎞⎟⎠


g=1

(
pygxaxbyh /0

)
g,h=1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(Ma,b)1,2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝




r,s=1

[pxayryb1r

+ pxaxryb1r

+ pxayrxsyb(0r1s + 1r2s)]

⎛⎝( 


r=1

pxayrybxh1r

)
1,h

⎞⎠

h=1

⎛⎝( 


r=1

pygxaxryb1r

)
g,1

⎞⎠

g=1

0×

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(Ma,b)2,1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝




r,s=1

[pyayrxb
∗
1r

+ pyaxrxb
∗
1r

+ pyaxrysxb(
∗
1r0s +2r1s)]

⎛⎝( 


r=1

pyaxrxbyh
∗
1r

)
1,h

⎞⎠

h=1

⎛⎝( 


r=1

pxgyayrxb
∗
1r

)
g,1

⎞⎠

g=1

0×

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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and

(Ma,b)2,2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

pyayb /0+



r,s=1

pyaxryb2r

+ pyaxrxsyb(
∗
1r1s +2r2s)

⎛⎜⎝
⎛⎜⎝ pyaybxh /0

+



r=1

pyaxrybxh2r

⎞⎟⎠
1,h

⎞⎟⎠


h=1

⎛⎜⎝
⎛⎜⎝ pxgyayb /0

+



r=1

pxgyaxryb2r

⎞⎟⎠
g,1

⎞⎟⎠


g=1

(
pxgyaybxh /0

)
g,h=1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where 1 � g,h,a,b �  . In particular, Ma,b is a block 2× 2 matrix with each block
entry being a ( +1)× ( +1) matrix of d×d matrix-valued free polynomials. The
matrix

M = (Ma,b)

a,b=1,

is called the xy-middle matrix for p.

LEMMA 2.6. If p(x,y) is an xy-convex polynomial, then

Hxyp = V MV ∗.

Proof. Since p is xy-convex, Lemma 2.4 implies p ∈ Md(C)⊗L . From here,
the result follows from a direct computation by combining the definitions of M and V
above with the definition of Hxyp. �

PROPOSITION 2.7. If p(x,y) is xy-convex, then

M (B1,B2,D0,D1) � 0

for all  -tuples B1,B2,D0,D1 of matrices of compatible sizes.

Proof. Since p is xy-convex, it follows from Proposition 2.3 that Hxyp, the xy-
Hessian, takes positive semidefinite values. Given M,N ∈ N, and

(a) matrices D01, . . . ,D0 ∈ MM(C), matrices B21, . . . ,B2 ∈ MN(C), and matrices
B11, . . . ,B1 ,D11, . . . ,D1 ∈ MM,N(C);

(b) vectors w�
k, j ∈ CM and v�

k, j ∈ CN for 0 � � �  , 1 � j � d and 1 � k �  ,

let g = ⊕
k=1gk, where gk ∈ C+1⊗ ((Cd ⊗CM)⊕ (Cd ⊗CN)) is given by

gk = (



u=0

d


j=1

eu⊗ e j ⊗wu
k, j) ⊕ (




u=0

d


j=1

eu⊗ e j ⊗ vu
k, j),
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and where {e0,e1, . . . ,e} and {e1, . . . ,ed} denote the standard orthonormal basis for
C+1 and Cd respectively.

Using [1, proposition 2.5], choose a non-zero vector h ∈ C+1 and matrices
U01, . . . ,U0 and W01, . . . ,W0 from S+1(C) such that the sets {h,U01h, . . . ,U0h}
and {h,W01h, . . . ,W0h} are bases for C+1. Set W00 = U00 = I+1 . Using linear in-
dependence, choose, for each k ∈ {1,2, . . . ,}, matrices Ak, j ∈M+1,M(C) and Ck, j ∈
M+1,N(C) such that A∗

k, jW0�h = w�
k, j and C∗

k, jU0�h = v�
k, j. Define A∗

k = (A∗
k,1 A∗

k,2 . . .

A∗
k,d), and C∗

k =
(
C∗

k,1 C∗
k,2 . . . C∗

k,d

)
. Thus A∗

k ∈MM,d(+1)(C) and C∗
k ∈MN,d(+1)(C).

Let X0k = U0k ⊕·· ·⊕U0k ∈ Md(+1)(C) and Y0k = W0k ⊕·· ·⊕W0k ∈ Md(+1)(C).
Let X0 = (X01, . . . ,X0), let Y0 =(Y01, . . . ,Y0) and observe that the tuples X0,Y0 ∈

Sd(+1)(C). Let A and C denote the tuples (A1, . . . ,A), and (C1, . . . ,C) respec-
tively. Recall the definition of the xy-border vector V . By Lemma 2.6 it follows that,

〈M (B1,B2,D0,D1)g,g〉 = [V (X0,Y0,A,C)h]∗M (B1,B2,D0,D1)[V (X0,Y0,A,C)h]
= 〈Hxyp(X0,Y0,A,C,B1,B2,D0,D1)h,h〉 � 0,

and the proof is complete. �

2.4. Proof of Theorem 1.2

Theorem 1.1 and Proposition 2.7 are combined in this section to complete the
proof of Theorem 1.2. A simple and direct proof of the implication (ii) ⇒ (i) of Theo-
rem 1.2 is given in [1, Proposition 1.3].

Proof of (i) ⇒ (ii) . Let

 =
((

01 11

 ∗
11 21

)
, . . . ,

(
0 1
 ∗

1 2

)
,

(
01 11

 ∗
11 21

)
, . . . ,

(
0 1
 ∗

1 2

))
.

Let 1 � a,b �  and
Q1 = Q() =

(
Qi, j
)2
i, j=1

denote the 2d × 2d matrix polynomial whose block entries are given by Qi, j =
((Qi, j)a,b)


a,b=1 where (Qi, j)a,b is the (1,1) entry of the matrix (Ma,b)i, j and M is

the xy-middle matrix for p. Thus Q equals⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎝ pxaxb /0+



r,s=1

{pxayrxb0r

+ pxjyrysxb(0r0s + 1r ∗
1s)}

⎞⎟⎠


a,b=1

⎛⎜⎝



r,s=1

pxayryb1r + pxaxryb1r

+ pxayrxsyb(0r1s + 1r2s)

⎞⎟⎠


a,b=1

⎛⎜⎝



r,s=1

pyayrxb
∗
1r + pyaxrxb

∗
1r

+ pyaxrysxb(
∗
1r0s +2r1s)

⎞⎟⎠


a,b=1

⎛⎜⎝ pyayb /0+



r,s=1

pyaxryb2r

+ pyaxrxsyb(
∗
1r1s +2r2s)

⎞⎟⎠


a,b=1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

1This is the reduced xy -hessian of the polynomial p . See section A.4 in [8] for more details.
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Given S = (S1,S2, . . . ,S2) ∈ Sn+m(C2) of the block form of equation (1.2), let B1 :=
(S1,1, . . . ,S,1), B2 := (S1,2, . . . ,S,2), D0 := (S+1,0, . . . ,S2,0) and D1 := (S+1,1 . . . ,
S2,1). Observe, by Proposition 2.7, that M (B1,B2,D0,D1) � 0. Further,

Q(S) = J∗ [M (B1,B2,D0,D1)]J,

for an appropriately chosen isometry J. Thus

Q(S) � 0. (2.4)

Recall the notation (x,y) = (x1, . . . ,x ,y1, . . . ,y)= (x1, . . . ,x ,x+1, . . . ,x2). Let 1�
a,b,r,s �  and let x0 denote the empty word. Define a 2d × 2d matrix-valued
polynomial P by

P(x1, . . . ,x2) =
2


j,k=0

Pj,kx jxk,

where the Pj,k ∈ (Md ⊗M)⊗M2 are given by

Pj,k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

((
pxaxb

)
a,b=1 0

0
(
pyayb

)
a,b=1

)
; ( j,k) = (0,0)

1
2

(
0

(
pxaxryb

)
a,b=1(

pyaxrxb

)
a,b=1

(
pyaxryb

)
a,b=1

)
; ( j,k) ∈ {(r,0),(0,r)}

1
2

((
pxayrxb

)
a,b=1

(
pxayryb

)
a,b=1(

pyayrxb

)
a,b=1 0

)
; ( j,k) ∈ {(+ r,0),(0,+ r)}

((
pxayrysxb

)
a,b=1 0

0 0

)
; ( j,k) = ( + r,+ s)

(
0 0(

pyaxrysxb

)
a,b=1 0

)
; ( j,k) = (r, + s)

(
0
(
pxayrxsyb

)
a,b=1

0 0

)
; ( j,k) = ( + r,s)

(
0 0
0
(
pyaxrxsyb

)
a,b=1

)
; ( j,k) = (r,s).

Observe that P is a hermitian polynomial and E P() = Q(). Thus, by equation (2.4),
it follows that E P(S) = Q(S)� 0 for all tuples S = (S1, . . . ,S2)∈ Sn+m(C2) of 2×2
block hermitian matrices.
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By Theorem 1.1, there exists an N � 2(2 + 1)(2d) and q j ∈ MN×2d(C) for
0 � j � 2 such that

q∗jqk = Pj,k, 1 � j,k � 2 ,

q∗0qk +q∗kq0 = Pk,0 +P0,k, 1 � k � 2
(q∗0q0) , = (P0,0) , ∈ Md ⊗M , 1 �  � 2.

Let q(x1, . . . ,x2) =2
r=0 qrxr. and note, in terms of x,y,

q(x,y) = q0x0 +



r=1

(qrxr +q+ryr).

A simple computation shows that

q(x,y)∗q(x,y) = P(x,y)+R,

where R =

(
0 (q∗0q0)1,2

(q∗0q0)2,1 0

)
∈ (Md(C)⊗M(C))⊗M2(C). Note that (q∗0q0)

∗
1,2 =

(q∗0q0)2,1 . Let {e1, . . . ,e2} denote the standard orthonormal basis for C2 . Define the
2d×d matrix-valued polynomial in (x,y) by

(x,y) :=



j=1

(e j ⊗ Id)x j +(e+ j ⊗ Id)y j

and
(x,y) := q(x,y)(x,y).

Since q∗j q j = Pj, j, it follows that q j(e j ⊗ Id) = 0. Hence (x,y) is an xy-pencil.
Recall the set of words L from Subsection 2.3. Let L∗ denote the words in L

of degree two in either x or y and verify

(x,y)∗(x,y) = (x,y)∗q(x,y)∗q(x,y)(x,y)
= (x,y)∗[P(x,y)+R](x,y)

= 
w∈L∗

pww+



r,s=1

(
(q∗0q0)1,2

)
r,s

xrys +
(
(q∗0q0)2,1

)
r,s

yrxs.

Thus
p(x,y) =  (x,y)+(x,y)∗(x,y),

where

 (x,y) = 
w∈L \L∗

pww −
(




r,s=1

(
(q∗0q0)1,2

)
r,s

xrys +
(
(q∗0q0)2,1

)
r,s

yrxs

)
.

Since  (x,y) is a hermitian xy-pencil, the proof is complete. �

We conclude this article with the following observation. Recall the notations used
in Sections 1 and 2.
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REMARK 2.8. As shown above, Theorem 1.1 implies Theorem 1.2. We conjec-
ture that Theorem 1.2 does not imply Theorem 1.1, based on the following observation.
Fix d =  = 1 and suppose that E (S) = Q(S) � 0. Recall that Q() is totally gen-
eral (up to the choice made in the unitary equivalence stated in [7, Proposition 4.1]) for
the 2×2 matrix polynomial P(x,y) constructed out of the xy-Hessian of a polynomial
in span(L ) . Let q(x,y) be a free polynomial whose reduced xy-hessian is Q() .
It follows from Section A.4 in [8] that q(x,y) is xy-convex. An application of The-
orem 1.1 yields q(x,y) =  (x,y)+(x,y)∗(x,y) for some (scalar-valued) xy-pencil
 (x,y) and a N×1 matrix-valued xy-pencil (x,y) . In particular q(x,y) ∈ span(L ) .
If we use this structure of q(x,y) to obtain the desired factorization of the polynomial
(x,y) , we see that it places restrictions on the coefficients of (x,y) . This happens
because Q() only depends on four variables (and not on 0 and 2 ), whereas E ()
depends on six variables, strongly supporting the conjecture that Q() is far from the
most general 2× 2 matrix polynomial (x,y) ∈ span(L ) for which E () � 0 for
all  .
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