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PROPERTIES OF INTEGRAL OPERATORS

ON BERGMAN–MORREY SPACES

RUISHEN QIAN ∗ AND ZHONGHUA HE

(Communicated by V. Bolotnikov)

Abstract. For 0 < q <  and 0 <  < , the tent space Tq, () consists of all  -measurable
functions f such that

‖ f‖q
Tq, () := sup

I⊆D

1
|I|

∫
S(I)

| f (z)|qd(z) < .

In this note, we study the boundedness and compactness of the inclusion mapping i from
Bergman-Morrey Spaces A p, to Tent Spaces Tq, () . The boundedness and essential norm
of Volterra integral operators from Bergman-Morrey Spaces A p, to Bergman-Morrey Spaces
A q, are also investigated in this paper, which generalized the main results in [31]. In the end,
we investigated the closed range Volterra integral operators on Bergman-Morrey Spaces A p, .

1. Introduction

Let D denote the open unit disk in the complex plane C , D its boundary and
H(D) the space of all analytic functions in D . Let 0 < p < , −2 < q < , 0 � s < .
The space F(p,q,s) (see [32]) is the space consisting of all f ∈ H(D) such that

‖ f‖p
F(p,q,s) = | f (0)|p + sup

a∈D

∫
D

| f ′(z)|p(1−|z|2)q(1−|a(z)|2)sdA(z) < ,

where dA is the normalized Lebesgue area measure in D such that A(D) = 1 and
a(z) = a−z

1−az . Especially, when p = 2 and s = 1, it gets the BMOA space (see [8]), the
space of analytic functions in the Hardy space whose boundary functions have bounded
mean oscillation. It is well known that F(p, p−2,s) is equivalent to weighted Bloch
space B (0 <  < ) for all s > 1, where the weighted Bloch space B (see [34])
is the class of all f ∈ H(D) for which

‖ f‖B := | f (0)|+ sup
z∈D

(1−|z|2) | f ′(z)| < .
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If  = 1, we denote B simply by B , which is the well-known classical Bloch space.
Let S(I) be the Carleson box based on I with

S(I) =
{

z ∈ D : 1−|I|< |z| < 1 and
z
|z| ∈ I

}
.

If I = D , then S(I) = D . For 0 < s < , we say that a non-negative measure  on D

is a s-Carleson measure if

sup
I⊆D

(S(I))
|I|s < .

When s = 1, it is the classical Carleson measure (see [35]). From [32], we see that
f ∈F(p,q,s) if and only if d(z) = | f ′(z)|p(1−|z|2)q+sdA(z) is a bounded s-Carleson
measure, where 0 < p <  , −2 < q <  , 0 < s <  and q+ s > −1.

Hardy space Hp (0 < p <  , see [5]) is the space of all f ∈ H(D) such that

‖ f‖p
Hp = sup

0<r<1

1
2

∫ 2

0
| f (rei )|pd <.

Weighted Bergman space Ap
 (0 < p <  , −1 <  <  , see [35]) consists of all

f ∈ H(D) such that

‖ f‖p
Ap


=
∫

D

| f (z)|p(1−|z|2)dA(z) < .

As usual, let Ap
0 = Ap .

Let 0 < p <  and 0 <  < 2, the Bergman-Morrey space A p, denoted the
spaces of function f ∈ H(D) satisfies

‖ f‖A p, = | f (0)|+ sup
a∈D

(1−|a|2) 2−
p ‖ f ◦a− f (a)‖Ap < .

The Bergman-Morrey space A p, was introduced by Yang and Liu in [31]. And
from [31], we can see that the Bergman-Morrey space A p, is a special space of
F(p,q,s) , that is, A p, = F(p, p− , ) . Furthermore, we see that F(p, p− , ) =
N (p,− , ) by [12]. Thus, when p > 0 and 0 <  < 2, we have

A p, = F(p, p− , ) = N (p,− , ),

where N (p,− , ) is the class of all f ∈ H(D) for which

sup
a∈D

∫
D

| f (z)|p(1−|z|2)− (1−|a(z)|2)dA(z) < .

Associated with f ,g∈H(D) , the Volterra integral operators are defined as follows

Vg f (z) =
∫ z

0
f (w)g′(w)dw, Sg f (z) =

∫ z

0
f ′(w)g(w)dw, z ∈ D.
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For 0 < q < and 0 < s <, the tent space Tq,s() consists of all  -measurable
functions f such that

‖ f‖p
Tq,s() := sup

I⊆D

1
|I|s

∫
S(I)

| f (z)|qd(z) < .

The tent space T2,s() = T
2 was introduced by by Xiao in [29] to studied Volterra

integral operators acting on Qs space, generlized by Pau and Zhao in [18] later. For
more results on tent space and Volterra integral operators, we refer to [3, 4, 7, 19, 36].

Recently, Yang and Liu studied tent space and Volterra type operators acting on
Bergman-Morrey space A p, in [31]. They proved that Vg is bounded from A p,

to A p, if and only if g ∈ B . Motivated by their works, we prove that inclusion
mapping i : A p, → T

q,2− q(2−)
p

() is bounded if and only if  is a 2-Carleson measure

which generalized the main results in [31]. Furthermore, Vg is bounded from A p, to

A q,2− q(2−)
p if and only if g ∈ B , where 0 < q � p <  and 0 <  , < 2. And

essential norm related them are also investigated. In the end, we also investigated the
closed range Volterra integral operators on Bergman-Morrey Spaces A p, .

Throughout this article, positive constants are denoted by C , they may differ from
one occurrence to the other. We say that f � g if there exists a constant C such that
f � Cg . The symbol f ≈ g means that f � g � f .

2. Embedding from A p, to Tq,()

In this section, we will characterise the boundedness and compactness of the in-
clusion mapping i : A p, → Tq,() . For this purpose, we start this section by quoting
some auxiliary results which will be used in the proofs of the main results of this paper.

LEMMA 1. ([31]) Let 0 < p <  and 0 <  < 2 . Then f ∈ A p, if and only if

sup
I⊆D

1

|I|
∫

S(I)
| f ′(z)|p(1−|z|2)pdA(z) < .

LEMMA 2. ([31]) Let 0 < p <  and 0 <  < 2 . Suppose that f ∈ A p, , then

| f (z)| � ‖ f‖A p,

(1−|z|2) 2−
p

, z ∈ D.

LEMMA 3. ([31]) Let 0 < p <  and 0 <  < 2 . Then

fa(z) =
1−|a|2

(1−az)1+ 2−
p

∈ A p,

and

ga(z) =
1−|a|2

a(1−az)1+ 2−
p

∈ A p, , a,z ∈ D.
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LEMMA 4. ( [14]) For 0 < r < 1 , let {z:|z|<r}(z) be the characteristic function
of the set {z : |z| < r} . If  is a p-Carleson measure on D , then  is a vanishing p-
Carleson measure if and only if ‖−r‖p → 0 as r → 1− , where dr = {z:|z|<r}d .

Now, we are going to prove our first result.

THEOREM 1. Let  be a positive Borel measure on D. Suppose that 0 < p � q <
 and 0 < q

p �  < 2 . Then the inclusion mapping i : A p, → Tq,() is bounded
if and only if

sup
I⊆D

(S(I))

|I|+ q(2−)
p

< .

Proof. For any I ∈ D , let a = (1−|I|) ∈ D , where  is the center of I . Then

1−|a| ≈ |1−az| ≈ |I|, z ∈ S(I).

Necessity. Suppose that the inclusion mapping i : A p, → Tq,() is bounded.
From Lemma 3, we see that

fa(z) =
1−|a|2

(1−az)1+ 2−
p

∈ A p, .

Then

| fa(z)| ≈ 1

|I| 2−
p

.

Thus,

 >
1
|I|

∫
S(I)

| fa(z)|qd(z) ≈ (S(I))

|I|+ q(2−)
p

.

Sufficiency. Suppose that f ∈ A p, and

sup
I⊆D

(S(I))

|I|+ q(2−)
p

< .

Then

1
|I|

∫
S(I)

| f (z)|qd(z)

� 1
|I|

(∫
S(I)

| f (z)− f (a)|qd(z)+
∫
S(I)

| f (a)|qd(z)
)

=: M +N.

Combine with Lemma 2, we obtain

| f (a)| � ‖ f‖A p,

|I| 2−
p

.
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Thus,

N � sup
I⊆D

(S(I))

|I|+ q(2−)
p

< .

Now, we estimat M . Since 0 < p � q <  and 0 < q
p �  < 2. We have

 +
q(2− )

p
�  +

p(2− )
p

= 2.

It is well known that  is + q(2− )
p -Carleson measure if and only if Ap

p−q
q

⊆ Lq()

(see [35]). Note that 0 < q
p �  < 2, we have A p, ⊆ A p ⊆ A p

p−q
q

. Then

M � (1−|a|2) 4q
p

∫
S(I)

∣∣∣∣∣ f (z)− f (a)

(1−az)4/p+ 
q

∣∣∣∣∣
q

d(z)

� (1−|a|2) 4q
p

∫
D

∣∣∣∣∣ f (z)− f (a)

(1−az)4/p+ 
q

∣∣∣∣∣
q

d(z)

� (1−|a|2) 4q
p

(∫
D

∣∣∣∣∣ f (z)− f (a)

(1−az)4/p+ 
q

∣∣∣∣∣
p

(1−|z|2) p−q
q dA(z)

) q
p

= (1−|a|2) 2q
p

(
(1−|a|2)2

∫
D

| f (z)− f (a)|p (1−|a|2)2

|1−az|4+ p
q

(1−|z|2) p−q
q dA(z)

) q
p

�
(

(1−|a|2)(2− )
∫

D

| f (z)− f (a)|p (1−|a|2)2

|1−az|4 dA(z)
) q

p

=
(
(1−|a|2)(2− )‖ f ◦a(z)− f (a)‖p

A p

) q
p

< . �

THEOREM 2. Let  be a positive Borel measure on D. Suppose that + q(2− )
p �

2 ,  + q(2− )
p − 2 < q � p <  and 0 <  , < 2 . Then the inclusion mapping i :

A p, → Tq,() is bounded if and only if

sup
I⊆D

(S(I))

|I|+ q(2−)
p

< .

Proof. Necessity. Similar to the proof of Theorem 1, thus we omitted the proof.
Sufficiency. Suppose that f ∈ A p, and

sup
I⊆D

(S(I))

|I|+ q(2−)
p

< .
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Similar to the proof of Theorem 1, we only need to estimat M . Since  is + q(2− )
p -

Carleson measure if and only if Aq

+ q(2−)
p −2

⊆ Lq() . Note that p � q , we have

A p, ⊆ A p ⊆ A q ⊆ A q

+ q(2−)
p −2

. Then

M � (1−|a|2)2+ q(2−)
p

∫
S(I)

| f (z)− f (a)|q

|1−az|2+ q(2−)
p +

d(z)

� (1−|a|2)2+ q(2−)
p

∫
D

| f (z)− f (a)|q

|1−az|2+ q(2−)
p +

d(z)

� (1−|a|2)2+ q(2−)
p

∫
D

| f (z)− f (a)|q

|1−az|2+ q(2−)
p +

(1−|z|2)+ q(2−)
p −2dA(z)

� (1−|a|2)2+ q(2−)
p

∫
D

| f (z)− f (a)|q
|1−az|4 dA(z)

= (1−|a|2) q(2−)
p ‖ f ◦a(z)− f (a)‖q

A q

� (1−|a|2) q(2−)
p ‖ f ◦a(z)− f (a)‖q

A p < . �

THEOREM 3. Let  be a positive Borel measure on D. Suppose that 0 < p � q <
 and 0 < q

p �  < 2 . Then the inclusion mapping i : A p, → Tq,() is compact if
and only if

lim
|I|→0

(S(I))

|I|+ q(2−)
p

= 0.

Proof. Suppose that the inclusion mapping i : A p, → Tq,() is compact. Given
a sequence of arcs {In} with limn→ |In| = 0. Denote the center of In by ein and
an = (1−|In|)ein . Let

fn(z) :=
1−|an|2

(1−anz)
1+ 2−

p

, z ∈ D.

It is clear that { fn} is bounded in A p, and { fn} converges to zero uniformly on any
compact subset of D. Then limn→ ‖ fn‖Tq, () = 0. Since

| fn(z)| ≈ (1−|an|)
−2

p ≈ |In|
−2

p , z ∈ S(In),

we obtain

(S(In))

|In|+ q(2−)
p

≈ 1
|In|

∫
S(In)

| fn(z)|qd(z) � ‖ fn‖q
Tq, () → 0, n → .

By the arbitrariness of {In}, we deduce that  is a vanishing ( + q(2− )
p )-Carleson

measure.
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Conversely, suppose that  is a vanishing (+ q(2− )
p )-Carleson measure, then 

is also a (+ q(2− )
p )-Carleson measure and limr→1− ‖−r‖+ q(2−)

p
= 0 by Lemma

4. It follows from the boundedness above, the inclusion mapping i : A p, → Tq,() is
bounded. Let { fn} be a bounded sequence in A p, such that { fn} converges to zero
uniformly on each compact subset of D. We have

1
|I|

∫
S(I)

| fn(z)|qd(z) � 1
|I|

∫
S(I)

| fn(z)|qdr(z)+
1
|I|

∫
S(I)

| fn(z)|qd(− r)(z)

� 1
|I|

∫
S(I)

| fn(z)|qdr(z)+‖− r‖+ q(2−)
p

‖ fn‖q
A p,

� 1
|I|

∫
S(I)

| fn(z)|qdr(z)+‖− r‖+ q(2−)
p

→ 0,

as r→ 1− and n→. Therefore, limn→ ‖ fn‖Tq, () = 0. This shows that the inclusion

mapping i : A p, → Tq,() is compact. �

THEOREM 4. Let  be a positive Borel measure on D. Suppose that + q(2− )
p �

2 ,  + q(2− )
p − 2 < q � p <  and 0 <  , < 2 . Then the inclusion mapping i :

A p, → Tq,() is compact if and only if

lim
|I|→0

(S(I))

|I|+ q(2−)
p

= 0.

Proof. The proof is similar to Theorem 3, thus we omitted the proof. �
From Theorem 1 or Theorem 2, we obtain [31, Theorem 3.3], that is

COROLLARY 1. Let 0 < p <  and 0 <  < 2 . Suppose that  is a positive
Borel measure on D. Then the inclusion mapping i : A p, → Tp, () is bounded if
and only if

sup
I⊆D

(S(I))
|I|2 < .

3. Boundedness of Volterra integral operators Vg(Sg) : A p, → A q,

In this section, we study the boundedness of Volterra integral operators Vg(Sg) :
A p, → A q, .

THEOREM 5. Let g ∈ H(D) .
(1). Suppose that 0 < p � q < and 0 < q

p �  < 2 . Then Vg is bounded from

A p, to A q, if and only if g ∈ B
q+2−(+ q(2−)

p )
q .
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(2). Suppose that + q(2− )
p � 2 , + q(2− )

p −2 < q � p < and 0 <  , < 2 .

Then Vg is bounded from A p, to A q, if and only if g ∈ B
q+2−(+ q(2−)

p )
q .

Proof. (1) . For any I ∈ D , let a = (1− |I|) ∈ D , where  is the center of I .
Then

1−|a| ≈ |1−az| ≈ |I|, z ∈ S(I).

Suppose that Vg is bounded from A p, to A q, . From Lemma 3, we see that

fa(z) =
1−|a|2

(1−az)1+ 2−
p

∈ A p, .

Combined with Lemma 1, we obtain

1

|I|+ q(2−)
p

∫
S(I)

|g′(z)|q(1−|z|2)qdA(z)

≈ 1
|I|

∫
S(I)

| fa(z)|q|g′(z)|q(1−|z|2)qdA(z)

=
1
|I|

∫
S(I)

|(Vg fa)′(z)|q(1−|z|2)qdA(z) � ‖Vg fa‖p
A q, < .

Thus, g ∈ F(q,q− (+ q(2− )
p ), + q(2− )

p ) . Note that 0 < p � q < and 0 < q
p �

 < 2, thus,

 +
q(2− )

p
�  +

p(2− )
p

= 2 > 1.

That is F(q,q− (+ q(2− )
p ), + q(2− )

p ) = B
q+2−(+ q(2−)

p )
q .

On the other hand, suppose that f ∈ A p, and g ∈ B
q+2−(+ q(2−)

p )
q . Since

g ∈ B
q+2−(+ q(2−)

p )
q = F

(
q,q− (+

q(2− )
p

), +
q(2− )

p

)
,

Then dg(z) =: |g′(z)|q(1− |z|2)dA(z)q is a ( + q(2− )
p )-Carleson measure. Com-

bined with Theorem 1, we have

1
|I|

∫
S(I)

|(Vg f )′(z)|q(1−|z|2)qdA(z)

=
1
|I|

∫
S(I)

| f (z)|q|g′(z)|q(1−|z|2)qdA(z)

=:
1
|I|

∫
S(I)

| f (z)|qdg(z)

�
(
(1−|a|2)(2− )‖ f ◦a(z)− f (a)‖p

A p

) q
p

< .
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(2) . The proof is similar to (1) , thus we omitted the proof. �

From Theorem 5, when  = 2− q(2− )
p , we have

COROLLARY 2. Let 0 < q � p <  and 0 <  < 2 . Suppose that g ∈ H(D) .

Then Vg is bounded from A p, to A q,2− q(2−)
p if and only if g ∈ B .

We also easy to have one of main results in [31].

COROLLARY 3. Let 0 < p <  and 0 <  < 2 . Suppose that g ∈ H(D) . Then
Vg is bounded from A p, to A p, if and only if g ∈ B .

The next result generalized [31, Theorem 4.3].

THEOREM 6. Let 0 < q � p <  and 0 <  < 2 . Suppose that g ∈ H(D) . Then

Sg is bounded from A p, to A q,2− q(2−)
p if and only if g ∈ H .

Proof. Suppose that Sg is bounded from A p, to Aq,2− q(2−)
p . By Lemma 3, we

have

ga(z) =
1−|a|2

a(1−az)1+ 2−
p

∈ A p, .

Noticed the fact that

1−|a(z)|2 =
(1−|a|2)(1−|z|2)

|1−az|2

and

|1−az| ≈ 1−|z|2 ≈ 1−|a|2, z ∈ D(a,r),

where D(a,r) = {z : |a(z)| < r} . Then

 > ‖Sgga‖q

A
q,2− q(2−)

p

�
∫

D

|g′a(z)|q|g(z)|q(1−|z|2)q−(2− q(2−)
p )(1−|a(z)|2)2− q(2−)

p dA(z)

�
∫

D(a,r)
|g′a(z)|q|g(z)|q(1−|z|2)q−(2− q(2−)

p )(1−|a(z)|2)2− q(2−)
p dA(z)

� 1
(1−|a|2)2

∫
D(a,r)

|g(z)|qdA(z) � |g(a)|q.

Thus, g ∈ H .
On the other hand, let g ∈ H and f ∈ A p, . Using the fact that Ap ⊆ Aq , when
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p � q . We have ‖ · ‖Aq � ‖ · ‖Ap . We obtain

∫
D

| f ′(z)|q|g(z)|q(1−|z|2)q−(2− q(2−)
p )(1−|a(z)|2)2− q(2−)

p dA(z)

� sup
z∈D

|g(z)|q
∫

D

| f ′(z)|q(1−|z|2)q−(2− q(2−)
p )(1−|a(z)|2)2− q(2−)

p dA(z)

= sup
z∈D

|g(z)|q
(

(1−|a|2) (2−)
p ‖ f ◦a− f (a)‖Aq

)q

� sup
z∈D

|g(z)|q
(

(1−|a|2) (2−)
p ‖ f ◦a− f (a)‖Ap

)q

. �

When p = q , from Theorem 6, we easy to have [31, Theorem 4.3].

COROLLARY 4. Let 0 < p <  and 0 <  < 2 . Suppose that g ∈ H(D) . Then
Sg is bounded from A p, to A p, if and only if g ∈ H .

REMARK. Since multiplication operator

Mg f (z) := f (z)g(z) = f (0)g(0)+Vg f +Sg f .

Combined with Theorems 5 and 6, similar to the proof of [31, Corollary 4.6], we have

the multiplication operator Mg is bounded from A p, to A q,2− q(2−)
p if and only if

g ∈ H .

4. Essential norm of Vg from A p, to A q,

Let us recall some definitions. Let (X ,‖ ·‖X) and (Y,‖ ·‖Y ) be Banach spaces and
T : X → Y be a bounded linear operator. The essential norm of T : X → Y, denoted by
‖T‖e,X→Y , is defined by

‖T‖e,X→Y = inf
K
{‖T −K‖X→Y : K is compact from X to Y}.

It is easy to see that T : X → Y is compact if and only if ‖T‖e,X→Y = 0. Let A be a
closed subspace of X . Given f ∈ X , the distance from f to A , denoted by distX ( f ,A),
is defined by

distX ( f ,A) = inf
g∈A

‖ f −g‖X .

LEMMA 5. [33] If  > 0 and f ∈ B , then

limsup
|z|→1−

(1−|z|2) | f ′(z)| ≈ distB ( f ,B
0 ) ≈ limsup

r→1−
‖ f − fr‖B .

Here fr(z) = f (rz), 0 < r < 1, z ∈ D.
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LEMMA 6. Let g ∈ B
q+2−(+ q(2−)

p )
q .

(1). Suppose that 0 < p � q < and 0 < q
p �  < 2 . Then Vgr : A p, →A q,

is compact;
(2). Suppose that + q(2− )

p � 2 , + q(2− )
p −2 < q � p < and 0 <  , < 2 .

Then Vgr : A p, → A q, is compact.

Proof. The proof is similar to Lemma 5.2 of [31], thus we omitted it. �
The following lemma is well known.

LEMMA 7. ( [25]) Let X ,Y be two Banach spaces of analytic functions on D .
Suppose that

(1) The point evaluation functionals on Y are continuous.

(2) The closed unit ball of X is a compact subset of X in the topology of uniform
convergence on compact sets.

(3) T : X → Y is continuous when X and Y are given the topology of uniform con-
vergence on compact sets.

Then, T is a compact operator if and only if for any bounded sequence { fn} in X such
that { fn} converges to zero uniformly on every compact set of D , then the sequence
{T fn} converges to zero in the norm of Y .

THEOREM 7. Suppose that g ∈ H(D) and Vg : A p, → A q, is bounded. Sup-

pose that 0 < p � q <  , 0 < q
p �  < 2 or  + q(2− )

p � 2 ,  + q(2− )
p −2 < q �

p <  and 0 <  , < 2 . Then

‖Vg‖e,A p,→A q, ≈ limsup
|z|→1−

(1−|z|2)
q+2−(+ q(2−)

p )
q | f ′(z)|

≈ dist
B

q+2−(+ q(2−)
p )

q

(
f ,B

q+2−(+ q(2−)
p )

q
0

)
.

Proof. By Lemma 6, Vgr : A p, → A q, is compact. Then

‖Vg‖e,A p,→A q, � ‖Vg−Vgr‖ = ‖Vg−gr‖ ≈ ‖g−gr‖
B

q+2−(+ q(2−)
p )

q

.

Using Lemma 5, we have

‖Vg‖e,A p,→A q, � limsup
r→1−

‖g−gr‖
B

q+2−(+ q(2−)
p )

q

≈ dist
B

q+2−(+ q(2−)
p )

q

(
g,B

q+2−(+ q(2−)
p )

q
0

)
.



364 R. QIAN AND Z. HE

On the other hand, let {an} be a sequence in D such that limn→ |an|= 1. For each
n, let fan be defined as in Lemma 3. Then { fan} is bounded in A p, . Furthermore,
{ fan} converges to zero uniformly on every compact subset of D. Let an = (1−|In|) ∈
D , where  is the center of In . Then

1−|an| ≈ |1−anz| ≈ |In|, z ∈ S(In).

Given a compact operator T : A p, →A q, , by Lemma 7 we have limn→ ‖T fan‖A q,

= 0. Therefore,

‖Vg−T‖q � limsup
n→

‖(Vg−T ) fan‖q
A q,

� limsup
n→

(
‖Vg fan‖q

A q, −‖T fan‖q
A q,

)
= limsup

n→
‖Vg fan‖q

A q,

� limsup
n→

1
|In|

∫
S(In)

| fan(z)|q|g′(z)|q(1−|z|2)qdA(z)

� limsup
n→

1

|In|+ q(2−)
p

∫
S(In)

|g′(z)|q(1−|z|2)qdA(z).

Hence

‖Vg‖q
e,A p,→A q, � limsup

|an|→1−

∫
D

|g′(z)|q(1−|z|2)q−− q(2−)
p (1−|an(z)|2)+ q(2−)

p dA(z).

It follows from Lemma 5 and the arbitrariness of {an} that

‖Vg‖q
e,A p,→A q, � limsup

|a|→1−

∫
D

|g′(z)|q(1−|z|2)q−− q(2−)
p (1−|a(z)|2)+ q(2−)

p dA(z)

≈ limsup
|z|→1−

(
(1−|z|2)

q+2−(+ q(2−)
p )

q | f ′(z)|
)q

. �

The following result can be deduced by Theorem 3 directly.

COROLLARY 5. Suppose that 0 < p � q< , 0 < q
p � < 2 or + q(2− )

p � 2 ,

 + q(2− )
p − 2 < q � p <  and 0 <  , < 2 . Then Vg : A p, → A q, is compact

g ∈ B
q+2−(+ q(2−)

p )
q

0 .

From Corollary 5, we easy to have the following results.

COROLLARY 6. Suppose that 0 < q � p < and 0 <  < 2 . Then Vg : A p, →
A q,2− q(2−)

p is compact g ∈ B0 .
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COROLLARY 7. Suppose that 0 < p < and 0 <  < 2 . Then Vg : A p, →A p,

is compact g ∈ B0 .

THEOREM 8. Let 0 < q � p <  and 0 <  < 2 . Suppose that g ∈ H(D) such

that Sg : A p, → A q,2− q(2−)
p is bounded, then

‖Sg‖
e,A p,→A

q,2− q(2−)
p

≈ ‖g‖H .

Proof. Let {an} and T be defined as in the proof of Theorem 3. Let gan be

defined as in Lemma 3. Since T : A p, → A q,2− q(2−)
p is compact, by Lemma 6 we

get limn→ ‖Tgan‖
A

q,2− q(2−)
p

= 0. Hence,

‖Sg−T‖ � limsup
n→

‖(Sg−T )gan‖
A

q,2− q(2−)
p

� limsup
n→

(
‖Sggan‖

A
q,2− q(2−)

p
−‖TFwn‖

A
q,2− q(2−)

p

)
= limsup

n→
‖Sggan‖

A
q,2− q(2−)

p
.

Therefore,
‖Sg‖

e,A p,→A
q,2− q(2−)

p
� limsup

n→
‖Sggan‖

A
q,2− q(2−)

p
.

Similar argument as in the proof of Theorem 2 shows that

‖Sggan‖
A

q,2− q(2−)
p

� |g(an)|,

which implies that ‖Sg‖
e,A p,→A

q,2− q(2−)
p

� ‖g‖H .

On the other hand, Theorem 4 gives

‖Sg‖
e,A p,→A

q,2− q(2−)
p

= inf
T
‖Sg−T‖ � ‖Sg‖ � ‖g‖H . �

From Theorem 8, we get the following result.

COROLLARY 8. Let 0 < q � p < and 0 <  < 2 . Suppose that g∈H(D) , then

Sg : A p, → Aq,2− q(2−)
p is compact if and only if g = 0.

5. Closed range of Volterra integral operators

If X and Y are norm spaces, the operator T : X → Y is bounded below if there
exists C > 0 such that

‖Tx‖Y � C‖x‖X

for all x ∈ X .
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If X and Y are Banach spaces and T : X → Y is bounded operator. By [1], we
known that T is bounded below if and only if T is one to one and has closed range. It
is easily to see that Vg is one to one. Thus, Vg is bounded below if and only if Vg has
closed range.

The problem of closed range is a fundamental issue in operator theory, and there
are many publications studying this issue. However, there has been relatively little
research on the closed range of Volterra integral operator, we refer to [2, 17]. In this
section, we studying the closed range of Volterra integral operator on Bergman-Morrey
Spaces A p, .

Let us recall the following useful result.

LEMMA 8. ([15]) Let G be a measurable subset of D , 0 < p <  and  > −1 .
There are  > 0 and 0 < r < 1 , such that

A(G∩D(a,r)) � A(D(a,r))

if and only if there exist C > 0 such that∫
G
| f (z)|p(1−|z|2)dA(z) � C

∫
D

| f (z)|p(1−|z|2)dA(z).

THEOREM 9. Let 0 < p <  and 0 <  < 1 . Suppose that g ∈ B , then Vg :
A p, → A p, has closed range if and only if there is an r ∈ (0,1) and a,c > 0 such
that

A(Gc ∩D(a,r)) � A(D(a,r)),

where Gc = {z ∈ D : (1−|z|2)|g′(z)| > c} .

Proof. Sufficiency. Since Vg is one to one, we only need to prove Vg is bounded
below. Suppose that f ∈ A p, = F(p, p− , ) = N (p,− , ) . Let

ha(z) =
f (z)(1−|a|2) 

p

(1−az)
2
p

, a,z ∈ D.

Then ha ∈ Ap . Thus,

sup
w∈D

∫
D

|(Vg f )′(z)|p(1−|z|2)p− (1−|w(z)|2)dA(z)

�
∫

D

| f (z)|p|g′(z)|p(1−|z|2)p− (1−|a(z)|2)dA(z)

� cp
∫

Gc

| f (z)|p(1−|z|2)− (1−|a(z)|2)dA(z)

= cp
∫

Gc

|ha(z)|pdA(z)

� C
∫

D

|ha(z)|pdA(z) (by Lemma 8)

�
∫

D

| f (z)|p(1−|z|2)− (1−|a(z)|2)dA(z).
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Hence, we deduced that
‖Vg f‖p

A p, � ‖ f‖p
A p, .

Necessity. Suppose that Vg : A p, → A p, has closed range, then for f ∈ A p, ,
we have

‖Vg f‖p
A p, � ‖ f‖p

A p, .

For a,z∈D , let fa(z)= 1−|a|2

(1−az)1+ 2−
p

. By Lemma 3, we have fa ∈A p, and ‖ fa‖A p, ≈
1. Therefore,

C � ‖Vg fa‖p
A p,

= sup
w∈D

∫
D

|(Vg fa)′(z)|p(1−|z|2)p− (1−|w(z)|2)dA(z)

�
∫

D

| fa(z)|p|g′(z)|p(1−|z|2)p−dA(z)

= M1 +M2 +M3,

where

M1 =
∫

Gc∩D(a,r)
| fa(z)|p|g′(z)|p(1−|z|2)p−dA(z),

M2 =
∫

D(a,r)\Gc

| fa(z)|p|g′(z)|p(1−|z|2)p−dA(z)

and

M3 =
∫

D\D(a,r)
| fa(z)|p|g′(z)|p(1−|z|2)p−dA(z).

Noted that
1−|a|2 ≈ 1−|z|2

and
(1−|a|2)2 ≈ A(D(a,r)), z ∈ D(a,r).

An easy computation gives

M1 � 1

(1−|a|2)2−

∫
Gc∩D(a,r)

|g′(z)|p(1−|z|2)p−dA(z)

� ‖g‖p
B

(1−|a|2)2−

∫
Gc∩D(a,r)

(1−|z|2)−dA(z) � C1‖g‖p
B

A(Gc ∩D(a,r))
A(D(a,r))

.

We can also easily to deduced that

M2 � cp
∫

D(a,r)\Gc

(1−|a|2)p

|1−az|p+2− (1−|z|2)−dA(z)

� cp
∫

D

(1−|a|2)p

|1−az|p+2− (1−|z|2)−dA(z) � C2 · cp.
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Now, we are going to estimated M3 . Making change of variables z = a(w) , we have

M3 � ‖g‖p
B

∫
D\D(a,r)

| fa(z)|p(1−|z|2)−dA(z)

= ‖g‖p
B

∫
D\D(0,r)

| fa(a(w))|p(1−|a(w)|2)− |(a(w))′|2A(w)

= ‖g‖p
B

∫
D\D(0,r)

(1−|w|2)−
|1−aw|2−p− A(w).

Noted that ∫
D

(1−|w|2)−
|1−aw|2−p− A(w) < .

Thus, for any  > 0, there exists 0 < r < 1 such that

∫
D\D(0,r)

(1−|w|2)−
|1−aw|2−p− A(w) < .

Therefore, let r close enough to 1, so that  is small enough such that ‖g‖p
B < C

3 .
And let c small enough so that C2 · cp < C

3 . Hence, we have

C
3

� C1‖g‖p
B

A(Gc ∩D(a,r))
A(D(a,r))

.

The proof is completed. �

It is easy to see that Sg is not one to one when Sg acting on differential constant.
Thus, we only consider the spaces A p, \C = { f ∈ A p, : f (0) = 0} . Following the
proof of [31], we easily to have Sg : A p, \C → A p, \C is bounded if and only if
g ∈ H .

THEOREM 10. Let 0 < p <  and 0 <  < 1 (or 1 < p <  and 0 <  < 2 ).
Suppose that g ∈ H , then Sg : A p, \C → A p, \C has closed range if and only if
there is an  ∈ (0,1) and a,c > 0 such that

A(Gc ∩(a, )) � A((a, )),

where Gc = {z ∈ D : |g(z)| > c} .

Proof. We using the same idea as Theorem 9.
Sufficiency. We only need to prove Sg is bounded below. Let f ∈A p, = F(p, p−

 , ) and

Ja(z) =
f ′(z)(1−|a|2) 

p

(1−az)
2
p

, a,z ∈ D.
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Thus Ja ∈ Ap
p and we have

sup
w∈D

∫
D

|(Sg f )′(z)|p(1−|z|2)p− (1−|w(z)|2)dA(z)

�
∫

D

| f ′(z)|p|g(z)|p(1−|z|2)p− (1−|a(z)|2)dA(z)

� cp
∫

Gc

| f ′(z)|p(1−|z|2)p− (1−|a(z)|2)dA(z)

= cp
∫

Gc

|Ja(z)|p(1−|z|2)pdA(z)

� C
∫

D

|Ja(z)|p(1−|z|2)pdA(z) (by Lemma 8)

�
∫

D

| f ′(z)|p(1−|z|2)p− (1−|a(z)|2)dA(z).

That is

‖Sg f‖p
A p, � ‖ f‖p

A p, .

Necessity. Suppose that Sg : A p, → A p, has closed range, then for f ∈ A p, ,
we have

‖Sg f‖p
A p, � ‖ f‖p

A p, .

For a,z ∈ D , let ga(z) = 1−|a|2

a(1−az)1+ 2−
p

. Thus, ga ∈ A p, and ‖ga‖A p, ≈ 1 by Lemma

3. Therefore,

C � ‖Sgga‖p
A p,

= sup
w∈D

∫
D

|(Sgga)′(z)|p(1−|z|2)p− (1−|w(z)|2)dA(z)

�
∫

D

|g′a(z)|p|g(z)|p(1−|z|2)p−dA(z)

= L1 +L2 +L3,

where

L1 =
∫

Gc∩D(a,r)
|g′a(z)|p|g(z)|p(1−|z|2)p−dA(z),

L2 =
∫

D(a,r)\Gc

|g′a(z)|p|g(z)|p(1−|z|2)p−dA(z)

and

L3 =
∫

D\D(a,r)
|g′a(z)|p|g(z)|p(1−|z|2)p−dA(z).
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An easy computation gives

L1 � ‖g‖p
H

∫
Gc∩D(a,r)

|g′a(z)|p(1−|z|2)p−dA(z)

� ‖g‖p
H

∫
Gc∩D(a,r)

(1−|a|2)p

|1−az|2p+2− (1−|z|2)p−dA(z)

� c1‖g‖p
H

A(Gc∩D(a,r))
A(D(a,r))

.

We can also easily to deduced that

L2 � cp
∫

D(a,r)\Gc

(1−|a|2)p

|1−az|2p+2− (1−|z|2)p−dA(z)

� cp
∫

D

(1−|a|2)p

|1−az|2p+2− (1−|z|2)p−dA(z) � c2 · cp.

Now, we are going to estimated L3 . Making change of variables z = a(w) , we have

L3 � ‖g‖p
H

∫
D\D(a,r)

|g′a(z)|p(1−|z|2)p−dA(z)

= ‖g‖p
H

∫
D\D(0,r)

|g′a(a(w))|p(1−|a(w)|2)p− |(a(w))′|2A(w)

� ‖g‖p
H

∫
D\D(0,r)

(1−|w|2)p−

|1−aw|2− A(w).

Noted that ∫
D

(1−|w|2)p−

|1−aw|2− A(w) < .

Thus, for any  > 0, there exists 0 < r < 1 such that

∫
D\D(0,r)

(1−|w|2)−
|1−aw|2−p− A(w) < .

Therefore, let r close enough to 1, so that  is small enough such that ‖g‖p
H < C

3 .
And let c small enough so that c2 · cp < C

3 . Hence, we have

C
3

� c1‖g‖p
H

A(Gc ∩D(a,r))
A(D(a,r))

.

The proof is completed. �
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