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ON K–FRAMES GENERATED BY OPERATORS ON HILBERT SPACES
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(Communicated by D. Han)

Abstract. The aim of this paper is to analyze K -frames generated by a bounded linear operator
on a separable Hilbert space H . First, we establish some lower bounds for the norm of an
operator T when the sequence {Tng}g∈G,n�0 satisfies the lower K -frame bound for some set
G ⊂ H . Furthermore, we derive a necessary condition for the sequence {Tng}g∈G,n�0 to be
a K -frame. As a consequence, we prove that the hypercyclic operator T with a hypercyclic
vector in the range of K cannot generate a K -frame. Additionally, under certain conditions, we
construct a Parseval iterative K -frame using an operator. Finally, we determine the form of the
K -dual for K -frames generated by an operator.

1. Introduction

The concept of frames was first introduced in Hilbert spaces by Duffin and Scha-
effer [13] in 1952, in their research on nonharmonic Fourier series. After almost 3
decades, in 1986, Daubechies et al. [12] gave new life to frameworks. It is well known
that frames can be used as redundant bases to cover the whole of Hilbert space. Frames
are becoming increasingly significant not only in theory but in a wide range of applica-
tions, and have found many applications in sampling theory, signal processing, coding
and communications, filter bank theory, and so on [4, 14–16, 25]. With the expan-
sion of frames theory, several specific types of frames are proposed, including fusion
frames, weaving frames, g -frames, and K -frames [5, 6, 17, 26]. This paper focuses
on K -frames, which were recently introduced by L. G ǎvruţa to study atomic systems
in terms of a bounded linear operator K in Hilbert spaces [17]. K -frames have been
investigated by many researchers. Liang et al. explored the relationship between K -
frames and operator K [22]. Xiao et al. discussed the interchangeability of two Bessel
sequences for K -frames and the stability of a general perturbation for K -frames in [27].
K -frames are a generalization of frames; in fact, a K -frame is precisely a frame when
K = IH .

The first formulation of a frame with the structure {Tn f}n=0 connected with dy-
namical sampling was presented by Aldroubi et al. [2], and further studied in [1,3]. This
type of frame was also characterized by Christensen et al. [9]. For more information
on these developments, readers are referred to [8,10,11]. In addition to recent develop-
ments, some foundational contributions that underline the interplay between frames and
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operator theory include the work of Han and Larson [19], who investigated frame struc-
tures arising from group representations, and P. Găvruţa [18], who explored wavelet
systems and spectral measures through operator-theoretic lenses. Leng et al. in [20]
studied a K -frame { fn}n∈Z for a Hilbert space H , which has the form {Tn f0}n∈Z

for some operator T . They investigated conditions under which a K -frame can be
represented by an operator and discussed the properties of that operator.

A K -frame for a Hilbert space H , generated by an operator, is the main topic of
this article. This study is motivated by the desire to better understand the interplay be-
tween operator theory and frame theory in the generalized setting of K -frames. While
classical frame theory focuses on reconstruction of elements in H itself, K -frames al-
low for reconstruction in the range of a given bounded linear operator K , thus providing
a more flexible and potentially more efficient framework for signal representation, es-
pecially in contexts where exact reconstruction is not required or not possible in the
full space. This framework is particularly relevant in inverse problems, sampling in
subspaces, and signal recovery under system constraints [2, 3, 17].

Throughout this paper, we assume that H is a separable Hilbert space, I and J
countable index sets and IH is the identity operator on H . For two Hilbert spaces H1

and H2 we denote the collection of all bounded linear operators between H1 and H2

by B(H1,H2) . Moreover, GL(H1,H2) will denote the set of all bijective operators
in B(H1,H2) . As usual, we set B(H ) := B(H ,H ) and GL(H ) := GL(H ,H ) .
Also, we denote the range and the null space of K ∈ B(H ) by R(K) and N (K) ,
respectively. The orthogonal projection of H onto a closed subspace M ⊆ H is
denoted by M .

In Section 2, we present definitions and basic properties of the concepts used
throughout the paper. In Section 3, we first provide a bound for the norm of the op-
erator T when it generates a sequence satisfying the lower K -frame bound. Then,
we establish a necessary condition for the sequence {Tng}g∈G,n�0 , where G ⊂ H ,
to be a K -frame. Additionally, for a given contraction operator T and under certain
conditions, we determine a set G for which the sequence {Tng}g∈G,n�0 constitutes a
Parseval K -frame. We also prove that hypercyclic operators with a hypercyclic vector
in R(K) cannot generate a K -frame. Furthermore, we discuss the lower bound of a
K -frame whose frame operator generates a K -frame. Section 4 focuses on the proper-
ties of K -dual frames corresponding to a K -frame of the form { fn}n∈Z = {Tn f0}n∈Z .
Under specific conditions, we characterize the canonical K -dual frames represented by
a bounded bijective operator.

Overall, our findings generalize several results from the classical iterative frame
setting to the more general K -frame framework, and lay the foundation for further
investigations into potential applications.

2. Preliminaries

In this section, we provide some preliminary information and background on the
theory of the concepts used in this note.
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2.1. Frames

A sequence { fn}n∈I of elements of the Hilbert space H is called a frame for H
if there are constants A,B > 0 such that

A‖ f‖2 � 
n∈I

|〈 f , fn〉|2 � B‖ f‖2, ( f ∈ H ).

The numbers A and B are referred to as the lower and upper frame bounds, respectively.
The frame is considered a tight frame if A = B and a Parseval frame if A = B = 1. If
only the right inequality is satisfied, then { fn}n∈I is called a Bessel sequence for H . It
is well-known that for any frame { fn}n∈I , there exists at least one alternate dual frame,
meaning a Bessel sequence {gn}n∈I such that

f = 
n∈I

〈 f ,gn〉 fn, ( f ∈ H ).

It is well known that in this case {gn}n∈I is also a frame and { fn}n∈I is one of its
alternate duals. If { fn}n∈I is a Bessel sequence the synthesis operator can be defined
as

U : �2(I) → H , U
({cn}n∈I

)
:= 

n∈I
cn fn.

It is well-defined and a bounded operator and its adjoint, called the analysis operator,
is given by U∗( f ) = {〈 f , fn〉}n∈I . The frame operator is given by

S : H → H , S f := UU∗ f = 
n∈I

〈 f , fn〉 fn, ( f ∈ H ).

For a frame { fn}n∈I , the frame operator is bounded, positive, invertible and for any
f ∈ H , f = n∈I〈 f ,S−1 fn〉 fn . The sequence {S−1 fn}n∈I is also a frame, which is
called the canonical dual frame.

Let I = N∪{0} or I = Z . We consider frames { fn}n∈I in a Hilbert space H
arising via iterated action of a linear operator T : span{ fn}n∈I → span{ fn}n∈I , i.e.,
frames of the form { fn}n∈I = {Tn f0}n∈I . In this case, we say that the frame { fn}n∈I is
generated by the operator T .

2.2. K -frames and its dual

Let K ∈ B(H ) . A sequence { fn}n∈I ⊆ H is called a K -frame for H , if there
exist constants A,B > 0 such that

A‖K∗ f‖2 � 
n∈I

|〈 f , fn〉|2 � B‖ f‖2, ( f ∈ H ). (2.1)

The constants A and B in (2.1) are called the lower and the upper K -frame bounds,
respectively. A K -frame is called a tight K -frame if there exists A > 0 such that

A‖K∗ f‖2 = 
n∈I

|〈 f , fn〉|2, ( f ∈ H ),
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and a Parseval K -frame if this holds with A = 1. Every K -frame is obviously a Bessel
sequence; therefore, similar to ordinary frames, we can define its synthesis operator,
analysis operator and frame operator.

Many properties that hold for ordinary frames do not apply to K -frames. For
example, the corresponding synthesis operator for K -frames is not surjective, so the
frame operator for K -frames is not generally invertible. It is important to note that if K
has a closed range, then the operator S from R(K) onto S(R(K)) is invertible.

Let { fn}n∈I be a K -frame. A Bessel sequence {gn}n∈I ⊆ H is called a K -dual
of { fn}n∈I if

K f = 
n∈I

〈 f ,gn〉 fn, ( f ∈ H ). (2.2)

It was proven that for every K -frame of H , there exists at least one Bessel sequence
{gn}n∈I which satisfies (2.2). The sequences { fn}n∈I and {gn}n∈I in (2.2) are not
interchangeable in general. More specifically, from (2.2), it follows that

K∗ f = 
n∈I

〈 f , fn〉gn, ( f ∈ H ).

Therefore, { fn}n∈I and {gn}n∈I in (2.2) are interchangeable if and only if K is self-
adjoint. For more details, refer to [17, 27].

The following theorem will be used later on. We apply this result to the unital
C∗ -algebra B(H ) . Recall that in a C∗ -algebra A , we denote Asa as the set of all
self-adjoint elements and A + is used for positive elements of A .

THEOREM 2.1. ( [23]) Let A be a C∗ -algebra.

(i) If a,b ∈ Asa and c ∈ A , then a � b implies c∗ac � c∗bc.

(ii) If for a,b ∈ A + with ab = ba, a � b then a2 � b2 .

(iii) If a,b ∈ A + and ab = ba then ab � 0 .

3. K -frames generated by an operator

In this section, we obtain bounds for the norm of the operator T when the sequence
{Tng}g∈G,n�0 satisfies the lower K -frame bound for some subset G of H . Moreover,
we provide a necessary condition for the sequence {Tng}g∈G,n�0 to be a K -frame
and we construct a Parseval K -frame using an operator T ∈ B(H ) . Furthermore, the
relationship between two K -frames is presented.

Let us start by providing a concrete example of an iterative K -frame.

EXAMPLE 3.1. Let {en}n=1 be an orthonormal basis for H . Let K ∈ B(H ) be
defined by

Ken =

{
0 if n = 1,2,3;
1
n en if n � 4.

By [21, Example 3.7], { fn}n=1 = { 1
nen}n=1 is a K -frame. One can see that { fn}n=1 =

{Tn f1}n=0 , where Ten = n
n+1en+1 for any n ∈ N .
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Consider I = N∪{0} or I = Z and {Tn f0}n∈I is a frame and K ∈ B(H ) with the
property that KTn f0 = TnK f0 for all n ∈ I . We also assume that T is invertible when
I = Z . Then T generates a K -frame with the vector K f0 . Indeed, for some A > 0 and
any f ∈ H , we have

A‖K∗ f‖2 � 
n∈I

|〈K∗ f ,T n f0〉|2

= 
n∈I

|〈 f ,KT n f0〉|2

= 
n∈I

|〈 f ,T nK f0〉|2,

it follows that {TnK f0}n∈I is a K -frame with the upper K -frame bound B‖K‖2 , where
B is the upper bound of {Tn f0}n∈I . In particular if KT = TK , then KTn f0 = TnK f0
for all n ∈ I , so the above assertions are valid. Trivially, if {Tn f0}n∈Z is a frame, then
it is a K -frame with K = T .

Note that if {Tn f0}n∈Z is a K -frame for K = T , then according to [21, Remark
1.1], the synthesis operator U of {Tn f0}n∈Z satisfies H = R(T ) ⊆ R(U) . This
implies that U is onto, confirming that {Tn f0}n∈Z is indeed a frame.

Our first result concerns the bound for the norm of the operator T when the se-
quence {Tng}g∈G,n�0 satisfies the lower K -frame bound. We require the following
lemma.

LEMMA 3.2. Let H be an infinite dimensional Hilbert space, H0 and H1 be two
subspace of H with dimH0 <  and dimH1 =  . Then dim(H⊥

0 ∩H1) = .

Proof. Let H0 = span{ f1, . . . , fn} and define  : H →Cn by ( f )= (〈 f , f1〉, . . . ,
〈 f , fn〉) . Trivially,  |H1 is a linear operator. Also, by the definition of  , N ( |H1) ⊆
H⊥

0 hence N ( |H1) is a subset of H⊥
0 ∩H1 . But dimN ( |H1) =  which implies

that dim(H⊥
0 ∩H1) =  . �

THEOREM 3.3. If R(K) is closed and infinite dimensional, |G| <  and
{Tng}g∈G,n�0 satisfies the lower K -frame bound, then ‖T‖ � 1 .

Proof. Assume that ‖T‖ < 1. The set G is finite and R(K) is infinite dimen-
sional, so by putting HN := {Tng; 0 � n � N,g ∈ G} , for some fixed N and using
Lemma 3.2, we have H⊥

N ∩R(K) 
= {0} . Consider a nonzero vector fN ∈ H⊥
N ∩R(K) .

Trivially fN /∈ R(K)⊥ = N (K∗) . Put f ′N := fN
‖K∗ fN‖ . Since R(K) is closed and the

mapping K : H → R(K) is surjective, by [7, Lemma 2.4.1 ], K∗ : R(K) → H is
bounded below. Thus there exists M > 0 such that ‖K∗ f‖� M‖ f‖ for each f ∈R(K) ,
which implies that ‖ f ′N‖ = ‖ fN‖

‖K∗ fN‖ � 1
M . On the other hand, since fN ∈ H⊥

N , we get
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〈Tng, f ′N〉 = 0, for all g ∈ G and 0 � n � N . Therefore for some A > 0,

A = A‖K∗ f ′N‖2 � 
g∈G


n�0

|〈Tng, f ′N〉|2

= 
g∈G




n=N+1

|〈Tng, f ′N〉|2

� 
g∈G

‖ f ′N‖2‖g‖2



n=N+1

‖T‖2n

� 1
M2 

g∈G

‖g‖2



n=N+1

‖T‖2n.

The right hand side tends to zero as N →  . Therefore, A = 0, which leads to a
contradiction. �

In the next example, we demonstrate that the assumption dimR(K) =  cannot
be removed in Theorem 3.3.

EXAMPLE 3.4. Let H = Cm ,  = 2
m and T : H → H be defined by

T

⎛⎜⎝x1
...

xm

⎞⎟⎠ =
1√
m

⎛⎜⎜⎜⎝
1 0

ei

. . .
0 ei(m−1)

⎞⎟⎟⎟⎠
⎛⎜⎝x1

...
xm

⎞⎟⎠ .

Then for x0 =

⎛⎜⎝1
...
1

⎞⎟⎠ , {Tnx0}m−1
n=0 generates the m×m matrix given by

⎛⎜⎜⎜⎝
1  2 · · · m−1

1 z 2z2 · · · m−1zm−1

...
...

...
...

1 zm−1 2z2(m−1) · · · m−1z(m−1)(m−1)

⎞⎟⎟⎟⎠ ,

where z = e
2i
m and  = 1√

m . Indeed the j th columns of the matrix is equal to T j−1x0 .

Therefore {Tnx0}m−1
n=0 is a basis, and hence forms a frame for Cm by [7, Theorem

1.5.1]. Now for any K ∈ Mm(C) with KT = TK and x ∈ Cm we have

‖K∗x‖2 �
m−1


n=0

|〈K∗x,Tnx0〉|2 =
m−1


n=0

|〈x,TnKx0〉|2,

which implies that {TnKx0}m−1
n=0 satisfies the lower K -frame bound. Now R(K) is

closed since it is finite dimensional, but ‖T‖ =
1√
m

< 1 for m � 2.
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We recall that a subspace M of H is called coinvariant under T if T (M⊥)⊆M⊥ .
Note that, according to [23, page 50], M is coinvariant under T if and only if

MT = MTM. (3.1)

In the next corollary, we will provide a lower bound for the norm of the operator
T which is better than the bound obtained in Theorem 3.3.

COROLLARY 3.5. Let K has a closed range and dimR(K) =  . Also
{Tng}g∈G,n�0 with |G| <  satisfies the lower K -frame bound. Then for each coin-
variant closed subspace M of T containing R(K) , ‖MT‖ � 1 .

Proof. According to the fact that M is coinvariant under T , equality (3.1) follows
that

MT 2 = MTT = MTMT = MTMTM = MTMMTM = (MTM)2.

Thus by induction for any n > 0, MTn = (MTM)n . Hence, if {Tng}g∈G,n�0 satisfies
the lower K -frame bound inequality in H , then {(MTM)ng}g∈G,n�0 also satisfies
the lower K -frame bound inequality for M , indeed for some A > 0 and for any f ∈ M
we have

A‖K∗ f‖2 � 
g∈G




n=0

|〈 f ,T ng〉|2

= 
g∈G




n=0

|〈M f ,Tng〉|2

= 
g∈G




n=0

|〈 f ,MTng〉|2

= 
g∈G




n=0

|〈 f ,(MTM)ng〉|2.

Therefore from Theorem 3.3, ‖MTM‖ � 1. Now by (3.1) ‖MT‖ � 1. �

According to the assumptions of this result and using Theorem 3.3, we have 1 �
‖MT‖ � ‖T‖ . Therefore ‖MT‖ is a better bound than 1 for the norm of the operator
T . This is important because if 1 < ‖MT‖ then we obtained 1 < ‖T‖ .

In the next theorem, we provide a necessary condition for {Tng}g∈G,n�0 to be a
K -frame for some at most countable set G . The proof is based on [3, Theorem 7]. But,
we state it here for the convenience of the reader.

THEOREM 3.6. If for an operator T ∈ B(H ) there exists a set of vector G in H
such that {Tng}g∈G,n�0 is a K -frame in H , then for each f ∈ H , K∗(T ∗)n f → 0 as
n →  .
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Proof. Let {Tng}g∈G,n�0 be a K -frame with K -frame bounds A and B . Then for
any f ∈ H and m ∈ N we have


g∈G




n=0

|〈(T ∗)m f ,T ng〉|2 = 
g∈G




n=0

|〈 f ,T n+mg〉|2

= 
g∈G




n=m

|〈 f ,T ng〉|2.

The inequality g∈G
n=0 |〈 f ,T ng〉|2 � B‖ f‖2 implies that 

n=mg∈G |〈 f ,T ng〉|2 tends
to zero as m →  . Thus


g∈G




n=0

|〈(T ∗)m f ,Tng〉|2 → 0 as m → . (3.2)

Now by using the lower K -frame inequality, we get

A‖K∗(T ∗)m f‖2 � 
g∈G




n=0

|〈(T ∗)m f ,T ng〉|2.

By equation (3.2), we can conclude that K∗(T ∗)m f → 0 as m →  . �

COROLLARY 3.7. Let T ∈ B(H ) be a unitary operator and 0 
= K ∈ B(H )
such that KT = TK . Then for any set of vectors G ⊂ H , the sequence {Tng}g∈G,n�0

cannot be a K -frame.

Proof. According to KT = TK and the fact that T is unitary, it is clear that K∗T =
TK∗ . Therefore, for any f ∈ H ,

‖K∗ f‖ = ‖K∗Tn(T ∗)n f‖ = ‖TnK∗(T ∗)n f‖ � ‖T‖n‖K∗(T ∗)n f‖ = ‖K∗(T ∗)n f‖.
If {Tng}g∈G,n�0 is a K -frame, then by the previous theorem, ‖K∗(T ∗)n f‖ → 0 as
n →  hence K∗ f = 0 for all f ∈ H , which is a contradiction. �

By the proof of Corollary 3.7, if the operator T is unitary and K 
= 0 with KT =
TK then there exists f ∈ H such that {K∗(T ∗)n f}n=1 does not converge to zero.

In the following theorem, we show that a contraction operator T generates a Par-
seval K -frame under certain conditions.

THEOREM 3.8. Let 0 
= K ∈ B(H ) and T be a contraction (i.e., ‖T‖ � 1 ) with
the property KT = TK and for every f ∈ H , K∗(T ∗)n f → 0 as n →  . Then we can
choose G ⊆ H such that {Tng}g∈G,n�0 is a Parseval K -frame.

Proof. Suppose that for any f ∈ H , K∗(T ∗)n f → 0 as n →  and ‖T‖ � 1. By
the inequalities ‖T ∗K∗ f‖ � ‖T‖‖K∗ f‖ � ‖K∗ f‖ for any f ∈ H , we get

〈KTK∗T ∗ f , f 〉 � 〈KK∗ f , f 〉,
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which implies that 0 � KK∗ −KTK∗T ∗ . Assume that D = (KK∗ −KTK∗T ∗)
1
2 and

M = cl(DH ) , where cl(DH ) denotes the norm-closure of the set {Df : f ∈ H } in
H . Let {h}∈J be an orthonormal basis for M and define G = {Dh ; ∈ J} . Thus
for any m ∈ N ,

m


n=0


∈J

|〈 f ,T nDh〉|2 =
m


n=0


∈J

|〈D(T ∗)n f ,h 〉|2

=
m


n=0

‖D(T ∗)n f‖2

=
m


n=0

〈D2(T ∗)n f ,(T ∗)n f 〉

=
m


n=0

〈(KK∗ −KTK∗T ∗)(T ∗)n f ,(T ∗)n f 〉

=
m


n=0

〈KK∗(T ∗)n f ,(T ∗)n f 〉−
m


n=0

〈KTK∗T ∗(T ∗)n f ,(T ∗)n f 〉

= ‖K∗ f‖2 −‖K∗(T ∗)m+1 f‖2.

Now, due to the fact that K∗(T ∗)m f → 0 as m →  , we obtain




n=0


∈J

|〈 f ,T nDh〉|2 = ‖K∗ f‖2,

which completes the proof. �

Note that if dimR(K) =  then by Theorem 3.3, ‖T‖ � 1 and hence in the pre-
vious theorem we are required to choose ‖T‖ = 1.

As a consequence of Theorem 3.6, the next proposition demonstrates that hyper-
cyclic operators with a hypercyclic vector in R(K) cannot generate a K -frame. Re-
call that a linear operator T ∈ B(H ) is hypercyclic if there exists  ∈ H such that
{Tn}n=0 is dense in H . In this case, the vector  is called a hypercyclic vector.

PROPOSITION 3.9. Let T,K ∈ B(H ) and T be a hypercyclic operator for some
hypercyclic vector  ∈ R(K) . Then {Tn f}n=0 and {(T ∗)n f}n=0 are not K -frames
for any choice of f ∈ H .

Proof. Suppose that  ∈R(K) is a hypercyclic vector for T , so  = K for some
 ∈ H . Hence for any nonzero vector f ∈ H and m ∈ N , N1(mf )∩{Tn}n=0 
= /0 ,
where N1(mf ) is a neighbourhood with the center mf and radius 1. Therefore, there
exists nm such that ‖Tnm −mf‖ < 1, so

〈Tnm ,Tnm〉−m〈Tnm , f 〉−m〈 f ,T nm〉+m2〈 f , f 〉 < 1,
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thus

m2‖ f‖2−1 � ‖Tnm‖2 +m2‖ f‖2−1

< 2mRe〈 f ,Tnm〉
� 2m|〈 f ,Tnm〉|,

hence

m
2
‖ f‖2− 1

2m
< |〈 f ,T nm〉|.

Since the left side of the inequality tends to infinity as m →  , we can see that the se-
quence {〈 f ,T nK〉}n=0 = {〈(T ∗)n f ,K〉}n=0 is unbounded. This implies that
{‖K∗(T ∗)n f‖}n=0 is unbounded. Therefore, by Theorem 3.6 the sequence {Tn f}n=0
is not a K -frame. Furthermore, for each f 
= 0,




n=0

|〈(T ∗)n f ,K〉|2 =



n=0

|〈 f ,T nK〉|2 = ,

from this, we can conclude that {(T ∗)n f}n=0 is not a K -frame. �
Our next result concerns the lower bound of a K -frame generated by the frame

operator of a K -frame.

PROPOSITION 3.10. Let K∗K � I and { fn}n=1 be a K -frame with the lower K -
frame bound A and the K -frame operator S . Furthermore suppose that G is an at
most countable subset of H and {Sng}g∈G,n�0 is a K -frame for H , then A < 1 if
one of the following statements holds:

(i) The sequence { fn}n=1 is a tight K -frame.

(ii) For the K -frame operator S , SK = KS.

Proof. First note that for each f ∈ H ,

A〈 f , f 〉 � A〈K∗K f ,K∗K f 〉 � 〈SK f ,K f 〉 = 〈K∗SK f , f 〉 � ‖K∗SK f‖‖ f‖,
so A‖ f‖ � ‖K∗SK f‖ . Thus

A2‖ f‖ � A‖K∗SK f‖ � ‖(K∗SK)2 f‖,
for all f ∈ H . Hence by induction for any m � 0 and f ∈ H ,

Am‖ f‖ � ‖(K∗SK)m f‖. (3.3)

If (i) holds, then KK∗ =
1
A

S so for each m > 0, (K∗SK)m =
1

Am−1 K∗S2m−1K . There-

fore, by using (3.3)

A2m−1‖ f‖ � ‖K∗S2m−1K f‖, ( f ∈ H , m > 0).
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On the other hand {Sng}g∈G,n�0 is a K -frame, thus by Theorem 3.6, for any f ∈ H ,
‖K∗S2m−1K f‖ → 0 as m →  . Therefore A2m−1 → 0 as m →  which implies that
A < 1.

Now assume that (ii) is valid. By the fact that KK∗ � 1
A

S and using Theorem 2.1,

we have

SKK∗S � 1
A

S3.

Hence by Theorem 2.1,

(K∗SK)2 � 1
A

K∗S3K. (3.4)

Again by using Theorem 2.1, relation (3.4) and the equality SK = KS , we obtain

(K∗SK)3 � 1
A

K∗SKK∗S3K =
1
A

K∗S2KK∗S2K � 1
A2 K∗S5K.

Thus by induction, for any natural number m ,

(K∗SK)m � 1
Am−1 K∗S2m−1K.

Hence for any m > 0 and f ∈ H ,

‖(K∗SK)m f‖2 = 〈(K∗SK)2m f , f 〉 � 1
A2m−2 〈(K∗S2m−1K)2 f , f 〉

=
1

A2m−2 ‖K∗S2m−1K‖2.

Therefore by (3.3),

A2m−1‖ f‖ � ‖K∗S2m−1K f‖, ( f ∈ H , m > 0)

which completes the proof as same as proof of part (i) . �

The following proposition shows that K -frames properties are preserved under
quasiconjugacy.

PROPOSITION 3.11. Let Ti,Ki ∈B(Hi) , i = 1,2 , and V : H1 →H2 be a bounded
linear operator with closed range such that VT1 = T2V , VK1 = K2V and R(K∗

2 ) ⊆
R(V ) . If {Tn

1 f}n=0 is a K1 -frame for H1 , then {Tn
2 V f}n=0 is a K2 -frame for R(V ) .

Proof. Suppose that g = V f1 , for some f1 ∈ H1 and V † is the pseudo inverse of
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V . Then for some A > 0,

‖K∗
2g‖2 = ‖K∗

2V f1‖2

= ‖(VV †)∗K∗
2V f1‖2

� ‖(V †)∗‖2‖V ∗K∗
2V f1‖2

= ‖(V †)∗‖2‖K∗
1V

∗V f1‖2

� ‖(V †)∗‖2

A




n=0

|〈V ∗V f1,T
n
1 f 〉|2

=
‖(V †)∗‖2

A




n=0

|〈V f1,VTn
1 f 〉|2

=
‖(V †)∗‖2

A




n=0

|〈g,Tn
2 V f 〉|2.

Moreover for some B > 0,




n=0

|〈g,Tn
2 V f 〉|2 =




n=0

|〈V f1,VTn
1 f 〉|2

=



n=0

|〈V ∗V f1,T
n
1 f 〉|2

� B‖V ∗V f‖2

� ‖V‖2‖g‖2,

which completes the proof. �

COROLLARY 3.12. Let Ti,Ki ∈ B(Hi) , i = 1, . . . ,n, T :=
⊕n

i=1 Ti and K :=⊕n
i=1 Ki . If {Tn f}n=0 is a K -frame for H =

⊕n
i=1 Hi , then {Tn

i V f}n=0 is a Ki -
frame for Hi for some operator V .

Proof. Let {Tn f}n=0 be a K -frame for H =
⊕n

i=1 Hi and let i :
⊕n

j=1 H j →
Hi be the orthogonal projection onto Hi . Clearly, iT = Tii and iK = Kii . More-
over R(Ki) ⊆ Hi = R(i) , hence by Proposition 3.11, {Tn

i i f}n=0 is a Ki -frame for
Hi . �

DEFINITION 3.13. Let H1 and H2 be two Hilbert spaces, with Ti,Ki ∈ B(Hi)
and fi ∈ Hi , for i = 1,2. We say that the triple (T1,K1, f1) and (T2,K2, f2) are equiv-
alent (or similar) via V ∈ GL(H1,H2) if

T2 = VT1V
−1, K2 = VK1V

−1 and f2 = V f1 (3.5)

In this case, we write (T1,K1, f1) ∼= (T2,K2, f2) .

The properties of a K -frame of similar triple are given in the following proposi-
tions.
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PROPOSITION 3.14. Let H1 and H2 be Hilbert spaces and Ti,Ki ∈ B(Hi) and
fi ∈ Hi , i = 1,2 , such that (T1,K1, f1) ∼= (T2,K2, f2) . Then {Tn

1 f1}n=0 is a K1 -frame
for H1 if and only if {Tn

2 f2}n=0 is a K2 -frame for H2 .
In the affirmative case, the operator V in (3.5) is unique on R(K1) .

Proof. Let V ∈ GL(H1,H2) be an operator as in (3.5). According to Proposition
3.11 we only need to show that V is unique. For f ∈ H1 , let K1 f = 

n=0 cnT n
1 f1 ,

where {cn}n=0 ∈ �2(N∪{0}) . If W is an another operator with the property (3.5), then

VK1 f =



n=0

cnVTn
1 f1

=



n=0

cnT
n
2 f2

=



n=0

cn(WTn
1 W−1)W f1

=



n=0

cnWTn
1 f1

= WK1 f .

Thus V is unique on R(K1) . �

COROLLARY 3.15. Let Ti,K ∈ B(H ) , i = 1,2 . If T2 is unitary and T2K = KT2 ,
then {(T2T1)n f}n=0 is a K -frame for H if and only if {(T1T2)nV f}n=0 is a K -frame
for H for some V .

Proof. Let T2 be unitary and T2K = KT2 . Consequently, K = T ∗
2 KT2 . Further-

more T1T2 = T ∗
2 (T2T1)T2 so by Proposition 3.14, the result can be deduced. �

4. K -dual for iterative K -frames

In this section, we study the form of the K -dual for a K -frames which has the
form { fn}n∈Z = {Tn f0}n∈Z for some bounded bijective operator T : span{ fn}n∈Z →
span{ fn}n∈Z . We identify the canonical K -dual frames represented by a bounded bi-
jective operator. In the sequel, we suppose that K has a closed range and we denote the
operator S from R(K) onto S(R(K)) by SF .

PROPOSITION 4.1. Let { fn}n∈Z = {Tn f0}n∈Z be a K -frame, where T ∈GL(H ) .
Assume that {gn}n∈Z = {Vng0}n∈Z is a K -dual frame of { fn}n∈Z and that V ∈GL(H ) .
The following statements hold:

(i) If TK = KT and K is injective, then V = (T ∗)−1 .

(ii) If VK∗ = K∗V and K∗ is injective, then V = (T ∗)−1 .
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Proof. (i) For any f ∈ H ,

K f = 
n∈Z

〈 f ,V ng0〉Tn f0

= T 
n∈Z

〈 f ,V ng0〉Tn−1 f0

= T 
n∈Z

〈V ∗ f ,V n−1g0〉Tn−1 f0

= T 
n∈Z

〈V ∗ f ,V ng0〉Tn f0

= TKV ∗ f

= KTV ∗ f .

Therefore TV ∗ f − f ∈ N (K) but K is injective, so TV ∗ = I and hence V = (T ∗)−1 .
(ii) This proof is similar to the proof of (i) . �

Our next theorem concerns the form of the canonical K -dual of an iterative K -
frame. We need the following results. Recall that the right shift operator is defined
by

T : �2(Z) → �2(Z), T {cn}n∈Z = {cn−1}n∈Z.

Also, denote by c00 the set of all finitely supported sequences in �2(Z) , i.e.,

c00 := {{cn}n∈Z ∈ �2(Z) : cn = 0 for all but finitely many n}.

LEMMA 4.2. [9] Consider a Bessel sequence having the form { fn}n∈Z
=

{Tn f0}n∈Z
for a linear operator T : span{ fn}n∈Z → span{ fn}n∈Z . Then TU = UT

on c00 . Assuming that T has an extension to a bounded operator T̃ : H → H , the
following hold:

(i) T̃U = UT on �2(Z) .

(ii) If {Tn f0}n∈Z
is K -frame and T̃ is invertible, then T̃S = S(T̃ ∗)−1 .

PROPOSITION 4.3. [24] Let K be a bounded operator on H with closed range,
and let F := { fn}n∈I be a K -frame with A and B bounds, respectively. Then,
{K∗S−1

F SF (R(K)) fn}n∈I is a K -dual of R(K)F with B−1 and A−1‖K‖2‖K†‖2 bounds,
respectively.

THEOREM 4.4. Let T, K ∈ B(H ) and F = { fn}n∈Z = {Tn f0}n∈Z be a K -frame
where T ∈ B(H ) is invertible, TK∗ = K∗T and SF(R(K)) is invariant under T ∗ .
Then {K∗(T ∗)−nS−1

F SF (R(K)) f0}n∈Z is a K -dual of {R(K) fn}n∈Z .

Furthermore if TK = KT , then {K∗(T ∗)−nS−1
F SF (R(K)) f0}n∈Z can be expressed

as {(T ∗)−n f̃0}n∈Z , where f̃0 = K∗S−1
F SF (R(K)) f0 and {R(K) fn}n∈Z = {(T ∗)−n f̂0}n∈Z

such that f̂0 = R(K) f0 .
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Proof. Lemma 4.2 implies that TS = S(T ∗)−1 , so

TSR(K) = S(T ∗)−1R(K). (4.1)

Now from TK∗ = K∗T , we get (T ∗)−1K = K(T ∗)−1 . Thus (T ∗)−1(R(K)) ⊆ R(K)
and so S(T ∗)−1R(K) ⊆ S(R(K)) . Therefore by (4.1), TSR(K) ⊆ S(R(K)) , which
implies that

T (S(R(K))) ⊆ S(R(K)).

By the fact that S(R(K)) = SF(R(K)) , we can conclude that

T (SF(R(K))) ⊆ SF(R(K)).

On the other hand, the inclusion T ∗(SF(RK))) ⊆ SF(R(K)) by [23, page 50] implies
that

TSF (R(K)) = SF (R(K))T. (4.2)

Hence
T−1SF (R(K)) = SF (R(K))T

−1. (4.3)

Now by using S(R(K)) = SF(R(K)) and (4.1),

TSFR(K) = SF(T ∗)−1R(K),

so

(T ∗)−1R(K) = S−1
F SF(T ∗)−1R(K) = S−1

F TSFR(K).

Hence

(T ∗)−1R(K)S
−1
F SF (R(K)) = S−1

F TSFR(K)S
−1
F SF (R(K)),

and therefore

(T ∗)−1S−1
F SF (R(K)) = S−1

F TSF (R(K)). (4.4)

So we have

(T ∗)−2S−1
F SF (R(K)) = (T ∗)−1(T ∗)−1S−1

F SF (R(K))

= (T ∗)−1S−1
F TSF (R(K)) (by (4.4))

= (T ∗)−1S−1
F SF (R(K))T (by (4.2))

= S−1
F TSF (R(K))T (by (4.4))

= S−1
F T 2SF (R(K)), (by (4.2)).

Therefore by induction for n ∈ N ,

(T ∗)−nS−1
F SF (R(K)) = S−1

F TnSF (R(K)). (4.5)



388 R. ALVANI, M. JANFADA AND GH. SADEGHI

Now by (4.4) we get,

(T ∗)−1S−1
F SF (R(K))T

−1 = S−1
F TSF (R(K))T

−1.

Hence by (4.3)

(T ∗)−1S−1
F T−1SF (R(K)) = S−1

F SF (R(K)),

and so
S−1

F T−1SF (R(K)) = T ∗S−1
F SF (R(K)). (4.6)

Therefore

(T ∗)2S−1
F SF (R(K)) = T ∗T ∗S−1

F SF (R(K))

= T ∗S−1
F T−1SF (R(K)) (by (4.6))

= T ∗S−1
F SF (R(K))T

−1 (by (4.3))

= S−1
F T−1SF (R(K))T

−1 (by (4.6))

= S−1
F T−2SF (R(K)), (by (4.3)).

By induction for any n ∈ N , we deduce that

(T ∗)nS−1
F SF (R(K)) = S−1

F T−nSF (R(K)). (4.7)

Now by (4.5) and (4.7) for any n ∈ Z , we have

(T ∗)−nS−1
F SF (R(K)) = S−1

F TnSF (R(K)). (4.8)

This together with Proposition 4.3 implies that

{K∗S−1
F SF (R(K)) fn}n∈Z = {K∗S−1

F SF (R(K))T
n f0}n∈Z

= {K∗S−1
F TnSF (R(K)) f0}n∈Z (by (4.2))

= {K∗(T ∗)−nS−1
F SF (R(K)) f0}n∈Z, (by (4.8)).

Moreover, if TK = KT , then K∗T ∗ = T ∗K∗ . Therefore (T ∗)−1K∗ = K∗(T ∗)−1 and
consequently, K∗(T ∗)−n = (T ∗)−nK∗ , which implies that

{K∗(T ∗)−nS−1
F SF (R(K)) f0}n∈Z = {(T ∗)−nK∗S−1

F SF (R(K)) f0}n∈Z = {(T ∗)−n f̃0}n∈Z,

where f̃0 = K∗S−1
F SF (R(K)) f0 , thus the result follows.

Finally, according to the equalities TK = KT and TK∗ = K∗T , R(K) is invariant
under T andT ∗ , which implies that TR(K) = R(K)T so

{R(K) fn}n∈Z = {R(K)T
n f0}n∈Z = {TnR(K) f0}n∈Z = {Tn f̂0}n∈Z,

where f̂0 = R(K) f0 . �
In the following example using Theorem 4.4, we find the canonical K -dual of a

K -frame.
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EXAMPLE 4.5. Let {en}n∈Z be an orthonormal basis for H and F = { fn}n∈Z =
{ 1

(2n)2+1
e2n}n∈Z . Then { fn}n∈Z = {Tn f0}n∈Z , where Ten = n2+1

(n+2)2+1
en+2 for any n ∈

Z , also T is invertible and T−1en = n2+1
(n−2)2+1

en−2 . Trivially, F is a Bessel sequence in

H . Furthermore if M = span{ fn}n∈Z and K = M , then R(K) = R(U) , where U is
the synthesis operator of F . Hence by [21, Remark 1.1] F is a K -frame. On the other
hand, the property H = M⊕M⊥ implies that TK = KT ; indeed if f ∈ span{ fn}n∈Z

then f = n∈Z cn
1

(2n)2+1
e2n , where {cn}n∈Z ∈ �2(Z) so

TK f = T f = 
n∈Z

cn
1

(2n+2)2 +1
e2n+2 = K 

n∈Z

cn
1

(2n+2)2 +1
e2n+2 = KT f .

Moreover, for any f ∈ span⊥{ fn}n∈Z , f =n∈Z dne2n+1 , where {dn}n∈Z ∈ �2(Z) thus

TK f = T (0) = 0 = K
(

n∈Z

dn
(2n+1)2 +1
(2n+3)2 +1

e2n+3
)

= KT f .

It follows that TK is equal to KT on M and M⊥ , so TK = KT on H . In addition,

it is easy to check that T ∗en = (n−2)2+1
n2+1

en−2 and SF(M) ⊆ M , so SF(M) is invariant

under T ∗ . Now according to SF f0 = f0 , S−1
F f0 = f0 , thus MS−1

F SF (R(M)) f0 = f0 .
Therefore, by Theorem 4.4, the canonical K -dual of {Tn f0}n∈Z is {(T ∗)−n f0}n∈Z .

In [20], the authors present an equivalent condition for a K -frame to be iterative
with respect to its K -dual which is presented here. This result is true if K is surjective.
Additionally, if K is co-isometry then this result is true. The proof can be obtained by
a similar argument to the proof of this proposition by using K∗ instead of K† . In the
sequel, a counterexample is provided for the non-surjective case.

PROPOSITION 4.6. [20] Consider a K -frame { fn}n∈Z with K -frame bounds A,
B, respectively. Let T be a bounded linear operator. Then the following conclusions
are equivalent:

(i) The K -frame has a representation { fn}n∈Z = {Tn f0}n∈Z for the bounded oper-
ator T .

(ii) For K -dual frame {gn}n∈Z , we obtain

f j+1 = 
n∈Z

〈K† f j,gn〉 fn+1, (4.9)

where K† is the pseudo inverse of K .

EXAMPLE 4.7. Let {en}n∈Z be an orthonormal basis for H and m∈N be given.
Define { fn}n∈Z = { 1

n2+1
en}n∈Z and let K ∈ B(H ) be defined by

Ken =

{
0 if |n| < m;
1
nen if |n| � m.
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Obviously, R(K) ⊂ R(U) where U is the synthesis operator of { fn}n∈Z . Hence
by [21, Remark 1.1], { fn}n∈Z is a K -frame. According to [7, Lemma 2.5.2], K† =
K∗(KK∗)−1 on R(K) , so K†en = nen for |n| � m . Now we see that { fn}n∈Z =
{Tn f0}n∈Z where Ten = n2+1

(n+1)2+1
en+1 for any n ∈ Z , but according to K† is zero

on the orthogonal complement of R(K) , for any K -dual frame {gn}n∈Z , we have

e1 
= 
n∈Z

〈K†e0,gn〉 fn+1

= 
n∈Z

〈0,gn〉 fn+1

= 0.

Declarations

Data availability. Not applicable to this article as no datasets were generated or
analysed during the current study.

Conflict of interest. The authors have no conflicts of interest to declare that are
relevant to the content of this article.

RE F ER EN C ES

[1] A. ALDROUBI, C. CABRELLI, A. F. CAKMAK, U. MOLTER AND A. PETROSYAN, Iterative actions
of normal operators, J. Funct. Anal. 272 (3) (2017), 1121–1146.

[2] A. ALDROUBI, C. CABRELLI, U. MOLTER AND S. TANGM, Dynamical sampling, Appl. Comput.
Harmon. Anal. 42 (3) (2017), 378–401.

[3] A. ALDROUBI AND A. PETROSYAN, Dynamical sampling and systems from iterative actions of op-
erators, in Frames and Other Bases in Abstract and Function Spaces: Novel Methods in Harmonic
Analysis, vol. 1, Springer, Cham, 2017, 15–26.

[4] H. BOLCSKEI, F. HLAWATSCH AND H. G. FEICHTINGER, Frame-theoretic analysis of oversampled
filter banks, IEEE Trans. Signal Process. 46 (12) (1998), 3256–3268.

[5] P. G. CASAZZA AND G. KUTYNIOK, Frames of subspaces, Contemp. Math. 345 (2004), 87–114.
[6] P. G. CASAZZA AND R. G. LYNCH, Weaving properties of Hilbert space frames, in Proceeding of

SampTA. (2015), 110–114.
[7] O. CHRISTENSEN, An Introduction to Frames and Riesz Bases, second expanded edition, Birkhäuser
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