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THE HILBERT MATRIX OPERATOR ACTING ON

SPACES OF BOUNDED ANALYTIC FUNCTIONS

YUTING GUO AND PENGCHENG TANG ∗

(Communicated by F. Gesztesy)

Abstract. It is well known that the Hilbert matrix operator H is bounded from H to the mean
Lipschitz spaces p

1/p for all 1 < p <  . In this paper, we prove that the range of H acting on

H is contained in a certain Zygmund-type space, denoted by 1.∗
1 . We also provide explicit

upper and lower bounds for the norm of H as an operator from H to 1.∗
1 . Moreover, we

characterize the positive Borel measures  for which the generalized Hilbert matrix operator
H is bounded from H to the Hardy space Hq .

1. Introduction

Throughout the paper, the letter C will denote an absolute constant whose value
depends on the parameters indicated in the parenthesis, and may change from one oc-
currence to another. We will use the notation “P �Q” if there exists a constant C =C(·)
such that “P �CQ”, and “P � Q” is understood in an analogous manner. In particular,
if “P � Q” and “P � Q”, then we will write “P � Q”. For two normed spaces X and
Y , if there exists a bijective linear operator T : X → Y such that both T and its inverse
T−1 are continuous, then we say that X and Y have equivalent normed structures (or
topologically isomorphic) and we will write “X ∼= Y ”.

Let D = {z ∈ C : |z| < 1} denote the open unit disk of the complex plane C and
H(D) denote the space of all analytic functions in D .

The Bloch space B consists of those functions f ∈ H(D) for which

|| f ||B = | f (0)|+ sup
z∈D

(1−|z|2)| f ′(z)| < .

Let 0 < p � , the classical Hardy space Hp consists of those functions g∈H(D)
for which

||g||p = sup
0�r<1

Mp(r,g) < ,

where

Mp(r,g) =
(

1
2

∫ 2

0
|g(rei )|pd

)1/p

, 0 < p < ,
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M(r,g) = sup
|z|=r

|g(z)|.

The BMOA space consists of all the functions h ∈ H2 such that

||h||BMOA = |h(0)|+
(

sup
a∈D

∫
D
|h′(z)|2 log

∣∣∣∣1−az
a− z

∣∣∣∣dA(z)
) 1

2

< .

For 0 < p <  , the Qp space consists of all the functions f ∈ H(D) such that

|| f ||2Qp
= | f (0)|+

(
sup
a∈D

∫
D
| f ′(z)|2(1−|a(z)|2)pdA(z)

) 1
2

< ,

where a stands for the Möbius transformation a(z) = a−z
1−az . It is known (see [31])

that Qp = B for 1 < p < , and that Q1 = BMOA, with equivalent norms. The reader
is referred to [31] for more on the Qp spaces.

The mixed norm space Hp,q, , 0 < p,q �  , 0 <  <  , is the space of all
functions f ∈ H(D) for which

|| f ||p,q, =
(∫ 1

0
Mq

p(r, f )(1− r)q−1dr

) 1
q

< , for 0 < q < ,

and
|| f ||p,, = sup

0�r<1
(1− r)Mp(r, f ) < .

For t ∈ R , the fractional derivative of order t of f ∈H(D) is defined by Dt f (z) =


n=0(n+1)t f̂ (n)zn . If 0 < p,q � , 0 < < , then Hp,q,
t is the space of all analytic

functions f ∈ H(D) such that
||Dt f ||p,q, < .

It is a well-known fact (see [27]) that if f ∈ H(D) , 0 < p,q �  , 0 < , <  ,
and s, t ∈ R satisfy s− t = − , then

||Ds f ||p,q, � ||Dt f ||p,q, .

Consequently, we get Hp,q,
s

∼= Hp,q,
t .

Let 1 � p <  and 0 <  � 1, the mean Lipschitz space p
 consists of those

functions f ∈H(D) having a non-tangential limit almost everywhere such that p(t, f )
= O(t) as t → 0. Here p(·, f ) is the integral modulus of continuity of order p of
the function f (ei ) . It is known (see [15]) that p

 is a subset of Hp and

p
 =

{
f ∈ H(D) : Mp(r, f ′) = O

(
1

(1− r2)1−

)
, as r → 1

}
.

The space p
 is a Banach space with the norm || · ||p


given by

‖ f‖p


= | f (0)|+ sup
0�r<1

(1− r2)1−Mp(r, f ′).
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Moreover, it is known (see e.g. [6, Theorem 2.5]) that

p
1
p

� q
1
q

� BMOA � B, 1 < p < q < .

For 0 < p �  , the Zygmund type space Zp is the space of f ∈ H(D) such that

|| f ||Zp = | f (0)|+ | f ′(0)|+ sup
0<r<1

(1− r2)Mp(r, f ′′) < .

The space Z1 is closely related to the mean Lipschitz space p
1
p
. For 1 < p <  ,

with the notations above, we see that p
1
p

∼= Hp,,1
1+ 1

p
. On the other hand, the inclusions

between mixed norm spaces (see [1]) show that

Z1
∼= H1,,1

2
∼= H

1,, 1
p

1+ 1
p

� Hp,,1
1+ 1

p

∼= p
1
p
.

Therefore, the space Z1 can be regarded as the limit case of Hp,,1
1+ 1

p

∼=p
1
p

as p→ 1. In

view of this point, we will use the symbol 1,∗
1 instead of Z1 in the sequel. Note that

1,∗
1 � p

1
p

� BMOA � B for all 1 < p < .

Let  be a finite positive Borel measure on [0,1) and n∈ N . We use n to denote
the n -th moment of  , that is, n =

∫
[0,1) t

nd(t) . Let H be the Hankel matrix
(n,k)n,k�0 with entries n,k = n+k . The matrix H induces an operator on H(D)

by its action on the Taylor coefficients: an →



k=0

n,kak, n ∈ N∪{0}. The generalized

Hilbert operator H is defined on the spaces H(D) of analytic functions in the unit
disc D as follows:

If f ∈ H(D) , f (z) =



n=0

anz
n , then

H( f )(z) =



n=0

(



k=0

n,kak

)
zn, z ∈ D,

whenever the right hand side makes sense and defines an analytic function in D . If 
is the Lebesgue measure on [0,1) , then the matrix H reduces to the classical Hilbert
matrix H = ( 1

n+k+1)n,k�0 , which induces the classical Hilbert operator H .
Carleson measures play a key role when we study the generalized Hilbert opera-

tors. Recall that if  is a positive Borel measure on [0,1) and 0 < s <  , then  is an
s-Carleson measure if there exists a positive constant C such that

([t,1)) � C(1− t)s, for all 0 � t < 1.

The study of the Hilbert matrix operator H on analytic function spaces was ini-
tiated by Diamantopoulos and Siskakis in [11], where they proved that H is bounded
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on the Hardy space Hp(1 < p < ) , and provided an upper bound estimate for its
norm. Subsequently, Diamantopoulus [12] considered the boundedness of H on the
Bergman spaces Ap(2 < p <) and obtained an upper bound estimate for the norm of
H . Dostanic, Jevtić and Vukotić extended this work in [13], where they provided the
exact value of the norm of H on the Hardy space Hp(1 < p < ) , and determined
the precise value of the norm of H on the Bergman space Ap for 4 < p <  . How-
ever, they left an open problem for the case 2 < p < 4 which has been solved by Božin
and Karapetrović [7]. Following these developments, significant research has been de-
voted to investigating the boundedness of H and its norm on various analytic function
spaces, such as weighted Bergman spaces, mixed norm spaces, Korenblum spaces, and
Lipschitz spaces (see [3, 17, 18, 20, 22,25, 32, 33] and references therein).

In 2012, Łanucha, Nowak and Pavlovic [23] observed the boundedness of H
from H into BMOA . In fact, it is also true that

H (H) ⊂
⋂

1<p<
p

1
p
⊂ BMOA ⊂ B.

Recently, Bellavita and Stylogiannis [4] investigated the norm of H from H

to Qp spaces, to the mean Lipschitz spaces p
1
p

and to certain conformally invariant

Dirichlet spaces. In this note, we will prove that the range of H acting on H is
contained in the Zygmund type space 1,∗

1 . The space 1,∗
1 is strictly smaller than p

1
p

for any 1 < p <  . We also provide both upper and lower bounds for the norm of H
from H into 1,∗

1 .

THEOREM 1.1. Let  be a finite positive Borel measure on [0,1) , then the gener-
alized Hilbert operator H is bounded from H to 1,∗

1 if and only if  is a Carleson
measure.

THEOREM 1.2. The norm of H acting from H to 1,∗
1 satisfies

3
2

+
2


� ‖H ‖
H→1,∗

1
� 3

2
+

4


.

In [4], the authors proved that ||H ||H→BMOA = 1+ √
2

= 1+ || log(1− z)||BMOA .

They also point out that ||H ||H→Qp = 1+ || log(1− z)||Qp . We know that Qp = B
when p > 1. However, it is difficult to calculate the exact value of || log(1−z)||Qp even
for p > 1. Here, we shall prove that the exact norm of H from H into B is actually
equal to 1+ || log(1− z)||B = 3.

THEOREM 1.3. The Hilbert matrix operator H is bounded from H to B and

‖H ‖H→B = 1+ || log(1− z)||B = 3.

Widom [30, Theorem 3.1] proved that H is a bounded operator on H2 if and
only if  is a Carleson measure. In 2010, Galanopoulos and Peláez [19] characterized
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the positive and finite Borel measures  on [0,1) for which the generalized Hilbert
operator H is well-defined and bounded on H1 . These measures are classified as
Carleson-type measures. In 2014, Chatzifountas, Girela and Peláez [9] described the
measures  for which H is a bounded operator from Hp to Hq for 0 < p,q <  .
The extreme case p = q =  was considered by Girela and Merchán [21] (see also
[5]). However, there are two extreme cases that have not yet been considered: namely,
0 < q < p =  and 0 < p < q =  . Another purpose of this paper is to deal with the
extreme case 0 < q < p =  . To present our results regarding this question, we will
first provide some definitions and notions.

For 0 < p < , the Dirichlet-type space Dp
p−1 is the space of h ∈ H(D) such that

||h||p
Dp

p−1
= |h(0)|p +

∫
D
|h′(z)|p(1−|z|)p−1dA(z) < .

When p = 2, the space D2
1 is just the Hardy space H2 .

The Hardy-Littlewood space HL(p) consists of those functions h ∈ H(D) for
which

||h||pHL(p) =



n=0

(n+1)p−2|ĥ(n)|p < .

It is well known (see [15, 16]) that

Dp
p−1 ⊂ Hp ⊂ HL(p), 0 < p � 2, (1)

HL(p) ⊂ Hp ⊂ Dp
p−1, 2 � p < . (2)

For 0 < q < 1, let Bq denote the space consisting of those functions g∈H(D) for
which

||g||Bq =
∫ 1

0
(1− r)

1
q−2M1(r,g)dr < .

The space Bq is the mixed norm space H1,1, 1
q−1 . The Hardy space Hq is a dense

subspace of Bq and the two spaces have the same continuous linear functionals [14].
In [9], Chatzifountas, Girela and Peláez showed that H is bounded from Hp to Bq

for all 0 < p <  and 0 < q < 1, whenever  satisfies certain necessary conditions.
Nevertheless, we can know more for p =  and 0 < q < 1. That is, the operator H
is compact from H to Bq for every finite positive Borel measure  on [0,1) .

Our main results are stated as follows.

THEOREM 1.4. Let 1 � q <  and let  be a finite positive Borel measure on
[0,1) . Let Yq ∈ {Dq

q−1,H
q,HL(q)} . Then the following statements are equivalent.

(1) H is bounded from H to Yq .
(2) H is compact from H to Yq .

(3) The measure satisfies {(n+1)1− 2
q n}n=0 ∈ �q .

THEOREM 1.5. Let 0 < q < 1 and let  be a finite positive Borel measure on
[0,1) . Then H is compact from H to Bq .

The rest of the paper is organized as follows. Section 2 is devoted to proving
Theorems 1.1–1.3, while Section 3 focuses on proving Theorems 1.4 and 1.5.
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2. The range of the Hilbert operator acting on H

The integral representation of H plays a basic role in this work. If  is a finite
positive Borel measure on [0,1) and f ∈ H(D) , we shall write throughout the paper

I( f )(z) =
∫ 1

0

f (t)
(1− tz)

d(t),

whenever the right hand side makes sense and defines an analytic function on D . It
turns out that the operators H and I are closely related. For instance, if  is a
Carleson measure, then H( f ) = I( f ) for all f ∈ H1 [19]. Since H ⊂ H1 , this is
also valid for f ∈ H .

The following characterization of Carleson measures on [0,1) is due to Bao et
al. [2].

LEMMA 2.1. Suppose  > 0 , 0 � q < s <  and  is a finite positive Borel
measure on [0,1) . Then the following conditions are equivalent:

(1)  is an s-Carleson measure;

(2)

S1 := sup
w∈D

∫ 1

0

(1−|w|)
(1− t)q(1−|w|t)s+−q

d(t) < ;

(3)

S2 := sup
w∈D

∫ 1

0

(1−|w|)
(1− t)q|1−wt|s+−q

d(t) < .

We also need the following estimates (see Theorem 1.3 in [24]).

LEMMA 2.2. For z ∈ D and c ∈ R , define

Ic(z) :=
1
2

∫ 2

0

1
|1− ze−i |1+c d .

Then the following statements hold.
(1) If c < 0 , then

1 � Ic(z) � (−c)
2( 1−c

2 )
.

(2) If c > 0 , then

1 � (1−|z|2)cIc(z) � (c)
2( 1+c

2 )
.

(3) If c = 0 , then

1


� |z|2
(

log
1

1−|z|2
)−1

I0(z) � 1.

Furthermore, all these inequalities are sharp.
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Proof of Theorem 1.1. If  is a Carleson measure, then H( f ) = I( f ) for all
f ∈ H . By a simple calculation, we have that

H( f )′′(z) =
∫ 1

0

2 f (t)t2

(1− tz)3 d(t). (3)

By (3), Fubini’s theorem and Lemmas 2.1–2.2, we obtain

sup
0<r<1

(1− r2)M1(r,H( f )′′) = sup
0<r<1

(1− r2)
1
2

∫ 2

0

∣∣∣∣∫ 1

0

2t2 f (t)d(t)
(1− trei)3

∣∣∣∣d
� sup

0<r<1
(1− r2)

1
2

∫ 2

0

∫ 1

0

2t2| f (t)|
|1− trei |3 d(t)d

= sup
0<r<1

(1− r2)
∫ 1

0
2t2| f (t)| 1

2

∫ 2

0

d
|1− trei |3 d(t)

� 2(2)
2( 3

2 )
sup

0<r<1
(1− r2)

∫ 1

0
| f (t)|t2 d(t)

(1− t2r2)2

� ‖ f‖H sup
0<r<1

∫ 1

0

(1− r2)
(1− tr)2 d(t)

� ‖ f‖.

Therefore, H : H → 1,∗
1 is bounded.

On the other hand, if H : H → 1,∗
1 is bounded, then H(1)(z) = F(z) =


n=1 nzn ∈ 1,∗

1 . This implies that

sup
0<r<1

(1− r2)M1(r,F ′′
 ) < . (4)

By Fejér-Riesz inequality and Fubini’s theorem, we have

M1(r,F ′′
 ) =

1
2

∫ 2

0

∣∣∣∣∫ 1

0

2t2d(t)
(1− trei)2

∣∣∣∣d
� 1



∫ 1

0

∫ 1

0

2t2d(t)
(1− trx)3 dx

=
1


∫ 1

0
2t2
∫ 1

0

dx
(1− trx)3 d(t)

�
∫ 1

0

2t2

(1− tr)2 d(t).

Using (4) and inequalities above, we have that

1 � sup
0<r<1

(1− r2)M1(r,F ′′
 )

� sup
0<r<1

(1− r2)
∫ 1

0

2t2

(1− tr)2 d(t)
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� sup
0<r<1

(1− r2)
∫ 1

r

2t2

(1− tr)2 d(t)

� sup
1
2 <r<1

(1− r2)2r2

(1− r2)2 ([r,1))

� sup
1
2 <r<1

([r,1))
1− r

.

This implies that  is a Carleson measure. �
Proof of Theorem 1.2. Let f (z)= 1, then H ( f )(0)=

∫ 1
0 f (t)dt = 1 and H ( f )′(0)

=
∫ 1
0 t f (t)dt = 1

2 . As shown previously, we have

M1
(
r,H ( f )′′(z)

)
� 1



∫ 1

0

∫ 1

0

2t2

(1− trx)3 dtdx

=
1


∫ 1

0

∫ 1

0
2




n=0

(3+n)
(n+1)(3)

tn+2rnxndtdx

=
1





n=0

n+2
n+3

rn.

For 0 < r < 1, is is easy to compute that




n=0

n+2
n+3

rn =



n=0

rn− 1
r3




n=0

rn+3

n+3

=
1

1− r
− 1

r3

(
log

1
1− r

− r− r2

2

)
.

This yields that

‖H ( f )‖1,∗
1

= |H ( f )(0)|+ |(H ( f ))′(0)|+ sup
0<r<1

(1− r2)M1(r,H ( f )′′)

=
3
2

+ sup
0<r<1

(1− r2)M1(r,H ( f )′′)

� 3
2

+
1


sup
0<r<1

(1− r2)
[

1
1− r

− 1
r3

(
log

1
1− r

− r− r2

2

)]
=

3
2

+
1


sup
0<r<1

(1+ r)
[
1− (1− r)

r3

(
log

1
1− r

− r− r2

2

)]
.

Let

F(r) = 1− (1− r)
r3

(
log

1
1− r

− r− r2

2

)
, 0 < r < 1.

After careful calculations, we obtain

F ′(r) =
r2
2 −3r−2r log 1

1−r +3log 1
1−r

r4 .
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To show that F(r) is increasing on the interval (0,1) , it suffices to prove that (r) =
r2
2 −3r−2r log 1

1−r +3log 1
1−r > 0 on (0,1) . Now, it is easy to check that

 ′(r) = r−1+
1

1− r
−2log

1
1− r

and  ′′(r) =
r2

(1− r)2 .

Since (0) =  ′(0) = 0 and  ′′(r) > 0 for all 0 < r < 1, this means that (r) > 0
for all r ∈ (0,1) . So we conclude that F(r) is monotonically increasing on the interval

(0,1) . This also implies that (1 + r)
[
1− (1−r)

r3

(
log 1

1−r − r− r2
2

)]
is increasing on

(0,1) .
By L’Höpital’s rule we have that

sup
0<r<1

(1+ r)F(r) = 2 lim
r→1−

[
1− 1− r

r3

(
log

1
1− r

− r− r2

2

)]
= 2.

Therefore, we get ‖H ( f )‖1,�
1

� 3
2 + 2

 .

On the other hand, for any f ∈ H , we have

|H ( f )(0)| =
∣∣∣∣∫ 1

0
f (t)dt

∣∣∣∣� ‖ f ||H

∫ 1

0
dt = ‖ f‖,

and

|H ( f )′(0)| =
∣∣∣∣∫ 1

0
t f (t)dt

∣∣∣∣� ‖ f‖
∫ 1

0
tdt =

1
2
‖ f‖.

By the definition of 1,∗
1 , we get

||H ( f )||1,∗
1

= |H f (0)|+ |H ( f )′(0)|+ sup
0<r<1

(1− r2)M1(r,H ( f )′′)

� 3
2
|| f || + sup

0<r<1
(1− r2)M1

(
r,H ( f )′′

)
.

As the proof of Theorem 1.1 shows, we have

M1
(
r,H ( f )′′

)
� || f ||H

∫ 1

0
2t2

(2)
2( 3

2 )
1

(1− t2r2)2 dt

= || f ||H
1


∫ 1

0

8t2

(1− t2r2)2 dt

= || f || 1


∫ 1

0

4
1
2

(1−r2)2 d .

Using the above inequalities, we obtain that

sup
0<r<1

(1− r2)M1
(
r,H ( f )′′

)
�|| f ||H

1


sup
0<r<1

(1− r2)
∫ 1

0

4
1
2

(1−r2)2 d

=|| f ||H
4


sup
0<r<1

(1− r2)
∫ 1

0




n=0

(n+1)n+ 1
2 r2nd



402 Y. GUO AND P. TANG

=|| f ||H
4


sup
0<r<1

(1− r2)



n=0

n+1
n+3/2

r2n

=|| f ||H
4


sup
0<r<1

(1− r2)

[



n=0

r2n−



n=0

r2n

2n+3

]

=|| f ||H
4


sup
0<r<1

(1− r2)

[
1

1− r2 −
1
2 log 1+r

1−r − r

r3

]

=
4

|| f ||H

(
1− inf0<r<1

(1− r2)( 1
2 log 1+r

1−r − r)
r3

)

=
4

|| f ||H .

Therefore, ‖H ‖
H→1,∗

1
� 3

2 + 4
 . �

REMARK 2.3. In [29], the author proved that

C = sup
z∈D

∫
D

2(1−|z|2)|w|
|1− zw|3 dA(w) = sup

0<r<1

∫
D

2(1− r2)|w|
|1− rw|3 dA(w) =

8


.

Using this result, we may easily obtain an upper bound estimate for the norm of H
from H to 1,∗

1 . As shown above,

M1
(
r,H ( f )′′

)
� || f ||H

∫ 1

0
2t2
(

1
2

∫ 2

0

d
|1− trei |3

)
dt

= || f ||H

∫
D

2|w|
|1− rw|3 dA(w).

This implies that

sup
0<r<1

(1− r2)M1
(
r,H ( f )′′

)
� || f ||H sup

0<r<1

∫
D

2(1− r2)|w|
|1− rw|3 dA(w) =

8

|| f ||H .

Proof of Theorem 1.3 . Let f ∈ H , by the integral form of H ( f ) we have that

H ( f )′(z) =
∫ 1

0

t f (t)
(1− tz)2 dt.

The convergence of the integral and the analyticity of the function f guarantee that we
can change the path of integration to

t = (s) =
s

1− (1− s)z
, 0 � s � 1.

Therefore, we have that

H ( f )′(z) =
1

1− z

∫ 1

0

s
1− (1− s)z

f

(
s

1− (1− s)z

)
ds

=: − 1
1− z

g(z).
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Since s(z) := s
1−(1−s)z maps the unit disc into itself for each 0 � s < 1, it follows that

|s(z) f (s(z))| � || f ||.

So we can rewrite H ( f )′ as

H ( f )′(z) = g(z)(log(1− z))′, (5)

where g ∈ H and ||g|| � || f || .
Now, using (5) we get

‖H ( f )‖B = |H f (0)|+ sup
z∈D

(
1−|z|2)∣∣H ′( f )(z)

∣∣
� || f || + ||g|||| log(1− z)||B
� || f || + || f |||| log(1− z)||B
= || f ||(1+ || log(1− z)||B) = 3|| f ||.

On the other hand, we choose the test function h(z) = 1. Then, h ∈ H and
||h|| = 1. Thus,

‖H ‖B � ||H (h)||B = 1+ sup
z∈D

(
1−|z|2)∣∣∣∣∫ 1

0

t
(1− tz)2 dt

∣∣∣∣
� 1+ sup

0�x<1
(1− x2)

∫ 1

0

t
(1− tx)2 dt.

Therefore,

‖H ‖H→B � 1+ sup
0�x<1

(
1− x2)∫ 1

0

t
(1− tx)2 dt.

By making a change of variables t = 1−s
1−xs , we have

sup
0�x<1

(1− x2)
∫ 1

0

t
(1− tx)2 dt

= sup
0�x<1

(
1− x2)∫ 1

0

1− s
1− xs

(
1− xs
1− x

)2 1− x
(1− xs)2 ds

= sup
0�x<1

(1+ x)
∫ 1

0

1− s
1− xs

ds.

Let

G(x) = (1+ x)
∫ 1

0

1− s
1− xs

ds, x ∈ [0,1).

For fixed s ∈ [0,1] , (1− xs)−1 is monotonically increasing with respect to x on the
interval [0,1) . It follows that G(x) is monotonically increasing in [0,1) and hence

sup
0�x<1

G(x) = lim
x→1−

G(x) = 2.
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Hence, we conclude that
‖H ‖H→B = 3. �

REMARK 2.4. Recall that the Cesàro operator C is defined in H(D) as follows:
If f ∈ H(D) , f (z) = 

n=0 anzn , then

C ( f )(z) =



n=0

(
1

n+1

n


k=0

ak

)
zn =

∫ 1

0

f (tz)
1− tz

dt, z ∈ D.

The Cesàro operator C has been extensively studied on various spaces of analytic
functions, and its integral form is closely related to the Hilbert operator H . In [10],
Danikas and Siskakis proved that C is bounded from H to BMOA , and ‖C ‖H→BMOA

= 1+ √
2
. Since BMOA � B , the Cesàro operator C is also bounded from H to B .

Following the above arguments, it is easy to obtain that

‖C ‖H→B = 3.

3. The Hilbert operator acting from H to Hardy spaces

We begin with some preliminary results that will be used repeatedly throughout
the rest of the paper. The first lemma provides a characterization of Lp -integrability of
power series with nonnegative coefficients. See [28, Theorem 1] for the proof.

LEMMA 3.1. Let 0 <  , p < , {n}n=0 be a sequence of non-negative numbers.
Then ∫ 1

0
(1− r)p−1

(



n=0

nr
n

)p

dr �



n=0

2−np

(

k∈In

k

)p

,

where I0 = {0} , In = [2n−1,2n)∩N for n ∈ N .

The following result can be found in [26] and hence its proof is omitted.

LEMMA 3.2. Let 1 < q <  and Yq ∈ {Dq
q−1,H

q,HL(q)} . Suppose f (z) =


n=0 anzn ∈ H(D) and the sequence {an}n=0 is non-negative decreasing, then f ∈ Yq

if and only if

{(n+1)1− 2
q an}n=0 ∈ �q.

The following lemma is a consequence of the Lebesgue Dominated Convergence
Theorem.

LEMMA 3.3. Let  be a finite positive Borel measure on [0,1) . Let { fk}k=1 ⊂
H such that supk�1 || fk|| < and fk → 0 uniformly on compact subsets of D . Then

lim
k→

∫ 1

0
| fk(t)|d(t) = 0.
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Proof of Theorem 1.4 . It suffices to prove that (1) ⇒ (3) and (3) ⇒ (2) .
(1)⇒ (3) . Let f (z)≡ 1∈H , then H (1)(z) =

n=0 nzn ∈Yp . If 1< q < , the
desired result follows from Lemma 3.2. If q= 1, then (1) shows that D1

0 ⊂H1 ⊂HL(1).
This means that Y1 ⊂ HL(1) , so we have that (n+1)−1n ∈ �1 .

(3) ⇒ (2) . Let { fk}k=1 be a bounded sequence in H which converges to 0
uniformly on every compact subset of D . Without loss of generality, we may assume
that fk(0) = 0 for all k � 1 and supk�1 || f || � 1.

Case 1 � q � 2. Since Dq
q−1 ⊂ Hq ⊂ HL(q) , it suffices to prove that

lim
k→

||H( fk)||Dq
q−1

= 0.

Assume that 
n=1(n+1)q−2q

n <  . Then,




n=1

(n+1)q−2q
n =




n=1

(
2n−1


k=2n−1

(k+1)q−2q
k )

)

�



n=1

2n(q−1)q
2n

�



n=1

2−nq

(
2n+1−1


k=2n

(k+1)1− 1
q k

)q

.

It follows that



n=1

2−nq

(
2n+1−1


k=2n

(k+1)1− 1
q k

)q

< .

By Lemma 3.1 we have that

∫ 1

0
(1− r)q−1

(



n=0

(n+1)1− 1
q nr

n

)q

dr

�



n=0

2−nq

(
2n+1−1


k=2n

(k+1)1− 1
q k

)q

< .

Therefore, for any  > 0 there exists a 0 < r0 < 1 such that

∫ 1

r0
(1− r)q−1

(



n=0

(n+1)1− 1
q kr

n

)q

dr < . (6)

It is clear that

||H( fk)||qDq
q−1

=
∫
|z|�r0

|H( fk)′(z)|q(1−|z|)q−1dA(z)

+
∫

r0<|z|<1
|H( fk)′(z)|q(1−|z|)q−1dA(z)

:= J1,k + J2,k.
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By the integral representation of H , we get

H( fk)′(z) =
∫ 1

0

t fk(t)
(1− tz)2 d(t). (7)

Since { fk}k=1 is converge to 0 uniformly on every compact subset of D , for |z| � r0

we have that

|H( fk)′(z)| �
∫ 1

0

| fk(t)|
|1− tz|2 d(t)

�
∫ 1

0
| fk(t)|d(t).

It follows Lemma 3.3 that
J1,k → 0, as k → .

By Minkowski’s inequality and Lemma 2.2, we have that

Mq(r,H( fk)′) =
{∫ 2

0

∣∣∣∣∫ 1

0

t fk(t)
(1− trei)2 d(t)

∣∣∣∣q d
} 1

q

�
{∫ 2

0

(∫ 1

0

1
|1− trei |2 d(t)

)q

d
} 1

q

�
∫ 1

0

(∫ 2

0

d
|1− trei |2q

) 1
q

d(t)

�
∫ 1

0

1

(1− tr)2− 1
q

d(t)

�



n=0

(n+1)1− 1
q nr

n.

Thus, by the polar coordinate formula and (6), we obtain

J2,k =
∫

r0<|z|<1
|H( fk)′(z)|q(1−|z|)q−1dA(z)

�
∫ 1

r0
(1− r)q−1Mq

q (r,H( fk)′)dr

�
∫ 1

r0
(1− r)q−1

(



n=0

(n+1)1− 1
q nr

n

)q

dr

� .

Consequently,
lim
k→

||H( fk)||Dq
q−1

= 0.

Case q > 2. By (2) we see that HL(q) ⊂ Yq . To complete the proof, we have to
prove that limk→ ||H( fk)||HL(q) = 0.
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It is clear that the integral
∫ 1
0 tn fk(t)d(t) converges absolutely for all n,k ∈ N . It

follows that

H( fk)(z) =
∫ 1

0

fk(t)
1− tz

d(t)

=
∫ 1

0




n=0

tn fk(t)znd(t)

=



n=0

(∫ 1

0
tn fk(t)d(t)

)
zn.

Since 
n=1(n+1)q−2q

n < , we see that for any  > 0, there exists a positive integer
N such that




n=N+1

(n+1)q−2q
n < . (8)

For each k � 1, we have

N


n=0

(n+1)q−2

∣∣∣∣∫ 1

0
tn fk(t)d(t)

∣∣∣∣q
�

N


n=0

(n+1)q−2
(∫ 1

0
| fk(t)|d(t)

)q

�
(∫ 1

0
| fk(t)|d(t)

)q

.

By Lemma 3.3, there there exists k0 ∈ N such that(∫ 1

0
| fk(t)|d(t)

)q

<  for all k > k0. (9)

Hence, for k > k0 , by (8) and (9) we have that

||H( fk)||qHL(q) =

(
N


n=0

+



n=N+1

)
(n+1)q−2

∣∣∣∣∫ 1

0
tn fk(t)d(t)

∣∣∣∣q
�
(∫ 1

0
| fk(t)|d(t)

)q

+ sup
k�1

|| fk||



n=N+1

(n+1)q−2q
n

�  +



n=N+1

(n+1)q−2q
n

� .

Therefore,
lim
k→

||H( fk)||HL(q) = 0. �
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Proof of Theorem 1.5. Let { fk}k=1 be a bounded sequence in H which con-
verges to 0 uniformly on every compact subset of D . For 0 < r < 1, by Fubini’s
theorem and Lemma 2.2 we have that

M1(r,H( fk)) =
1
2

∫ 2

0

∣∣∣∣∫ 1

0

fk(t)
(1− trei )

d(t)
∣∣∣∣d

�
∫ 1

0
| fk(t)| 1

2

∫ 2

0

1
|1− trei |dd(t)

� log
e

1− r

∫ 1

0
| fk(t)|d(t).

Since the integral
∫ 1
0 (1− r)

1
q−2 log e

1−r dr converges, by Lemma 3.3 we have that

lim
k→

||H( fk)||Bq = 0.

This implies that H is compact from H to Bq . �
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