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Abstract. Let (X) denote the  -operator radius of a bounded linear operator X on a finite
dimensional Hilbert space H , where 0 <  � 2 . In this article, we present  -operator radii
generalizations of various numerical radius commutator inequalities, including

(SX +XS) � 2
√

2(S) · ‖X‖,
(SX∗+X∗S) � 2(S) · ‖X‖,

and the arithmetic-geometric mean inequality:

(XSY∗) � 1
2

(|X |2S+S|Y |2) ,

under various conditions on X and Y .

1. Introduction

Let H be a finite dimensional complex Hilbert space equipped with the inner
product 〈·, ·〉 , and let B(H ) denote the algebra of all bounded linear operators on
H . For clarity of exposition, the discussion is restricted to the finite-dimensional set-
ting, although the results extend naturally to compact trace class operators on separable
complex Hilbert spaces. The bounded linear operator S ∈ B(H ) is said to admit a
unitary  -dilation if there exists a unitary operator V on a Hilbert space K containing
H as a subspace, such that for every positive integer n the following relation holds:

Sn = PH ◦Vn
∣∣
H

,

where  > 0 and PH represents the projection from K onto H [18]. The set of
all such operators S is denoted by E . Halbrook [8] and Williams [19] observed that
E is an absorbing subset of B(H ) . This observation led them to define the  -
operator radius (S) of an operator S as the Minkowski functional associated with
the absorbing set E . Specifically,

(X) = inf
{
 > 0 | −1X ∈ E

}
.

Mathematics subject classification (2020): 47A20, 47A30, 47A10, 47A12.
Keywords and phrases: Operator radius, numerical radius, unitary  dilation, commutative operators,

Hilbert space.

c© � � , Zagreb
Paper OaM-19-26

411

http://dx.doi.org/10.7153/oam-2025-19-26


412 RAMKISHAN, P. DHARMARHA AND A. KUMAR

 -operator radii have been a subject of particular interest in the literature. It has
been shown that (·) generally acts as a quasi-norm and satisfies the triangle inequal-
ity only for 0 <  � 2. The study of  -operator radii becomes more important given
that the notion of  -radii unifies three key measures in operator theory. Notably, (X)
equals the operator norm ‖X‖ when  = 1, the numerical radius (X) when  = 2,
and converges to the spectral radius (X) as  →  .

Throughout this article, we consider  to be in the range 0 <  � 2. Some basic
properties of (·) , where 0 <  � 2, that will be used in this paper are the following:
For X ,Y ∈ B(H ) , we have

1.



([
X 0
0 Y

])
= max

(
(X), (Y )

)
2. (·) is a self adjoint norm,

(X∗) = (X)

3. (·) is weakly unitarily invariant, i.e., for any unitary operator U ∈ B(H ) ,

(U∗XU) = (X)

4. For all  > 0 and integer n � 1,

(Xn) �
(
(X)

)n
.

For proofs of all these properties and more information about operator radii we
refer the reader to [3, 5, 8–10, 18, 19].

In [5], Fong and Holbrook established two remarkable numerical radius inequal-
ities for commutators of bounded linear operators. Specifically, for any operators
S,X ,T ∈ B(H ) , they proved that

(X∗S+SX∗) � 2‖X‖(S) (1.1)

and
(SX +XS) � 2

√
2‖X‖(S). (1.2)

Some generalization of these inequalities have been given in [6, 7, 16].
We now present some recent known inequalities involving the norm and numerical

radius for products of bounded operators on finite-dimensional Hilbert spaces. For
S,X ,Y ∈ B(H ) , it is well known that

‖XSY∗‖ � 1
2

∥∥|X |2S+S|Y |2∥∥ , (1.3)

where |X |= (X∗X)1/2 . This inequality is commonly referred as the arithmetic-geometric
mean inequality. For further discussion, we refer the reader to [4]. A natural question
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arises as to whether an analogous inequality holds for the numerical radius. Specifi-
cally, one may inquire whether

(XSY ∗) � 1
2

(|X |2S+S|Y |2) (1.4)

holds for arbitrary operators S,X ,Y ∈B(H ) . It has been established that this inequal-
ity holds in the particular cases when either X = Y or X∗Y = 0 [13]. However, it does
not hold in general, as demonstrated by a counterexample presented in [17].

To illustrate this, consider the 2×2 matrices

X =
[
1 0
0 1

]
, Y =

[
2+

√
3 0

0 1

]
, S =

[
1

4+
√

3
3

0 −2

]
.

Note that X and Y are positive definite matrices. By direct computation, we obtain

XSY∗ =
[
0.5 3
0 −2

]
and |X |2S+S|Y |2 =

[
2 6
0 −4

]
.

Using Theorem 1 in [11], it follows that

(XSY∗) = 2.7025 and (|X |2S+S|Y |2) = 2.6213,

which furnishes a counterexample to inequality (1.4). Throughout this article, for any
bounded operator S on a finite-dimensional Hilbert space H , the Frobenius norm of
S is defined and denoted by

‖S‖F =
√

tr(S∗S),

where tr(S∗S) denotes the trace of the positive operator S∗S .
The remainder of this paper is organized as follows.
In Section 2, we present  -operator radii generalizations of the generalized com-

mutator various inequalities including (1.1) and (1.2).
In Section 3, we give refinements and  -operator radii generalizations of inequal-

ity (1.4) for several specific cases.

2. Operator radius commutator inequalities

The motivation for our first main result in this section stems from a query raised
in the work of Fong and Holbrook [5] on unitarily invariant operator norms. In their
study, they establish the following key result:

LEMMA 2.1. Let xk ∈ H with ‖xk‖ � 1 for all 1 � k � n, and let S ∈ B(H ) .
Then,

|〈Sx1,x2〉+ 〈Sx2,x3〉+ . . .+ 〈Sxn−1,xn〉| � n(S),

where (S) denotes the numerical radius of S .
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As an application of this lemma, they derive the following two commutator in-
equalities:

(SX +XS) � 3(S)‖X‖, (2.1)

and

(SX∗+X∗S) � 2(S)‖X‖. (2.2)

Further, they remarked that, “The bound 3 in inequality (2.1) is not optimal and
can be improved; we have presented it separately because it is based on a particularly
simple method (Lemma 2.1) that could have analogues for general operator radii  ”.
But, the analogues version of Lemma 2.1, for general operator radii does not appear to
be a simple task, since the proof of Lemma 2.1 crucially relies on the specific definition
of the numerical radius in terms of the inner product:

(S) = sup
‖x‖=1

|〈Sx,x〉|,

a characterization that does not have a direct analogue for general operator radii.
In [6], Hirzallah and Kittaneh, as an application of slightly improved version of

Lemma 2.1, expressed the numerical radius of a bounded operator S in terms of the nu-
merical radius of a block operator matrix. Using this formulation, they derived further
generalizations of the numerical radius inequality (2.2).

In the following proposition, we present a generalization of their representation for
operator radii, expressing the operator radius of a bounded operator S in terms of block
operator matrices. This formulation will subsequently be used to derive generalizations
of inequality (2.2) for general operator radii.

PROPOSITION 2.1. Let S ∈ B(H ) , and let S̃ be a n× n operator matrix in
B(⊕n

k=1H ) that has the operator S in the sub diagonal and in the top right hand
corner, in the position (1,n) and zero O everywhere else. Then

(S̃) = (S).

Proof. The proof depends on the the fact that  is weakly unitarily invariant.
Define a block version of unitary discrete transform matrix D̃n as,

D̃n =
1√
n

⎡
⎢⎢⎢⎢⎢⎣

In In In · · · In
In  In  2In · · ·  n−1In
In  2In  4In · · ·  2(n−1)In
...

...
...

. . .
...

In  n−1In  2(n−1)In · · ·  (n−1)2In

⎤
⎥⎥⎥⎥⎥⎦ ,

where  denotes the n− th primitive root of unity. Note that D̃n ∈ B(⊕n
k=1H ) . For

1 � k � n , consider the n× 1 block matrix Ẽk having In at (k,1) and 0 everywhere
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else. For all 1 � k � n , we have

E∗
k D̃nS̃D̃n

∗Ek =
1
n

[
In  1(k−1)In . . .  (n−1)(k−1)In

]
⎡
⎢⎢⎢⎢⎢⎢⎣

O O . . . O S
S O . . . O O

O S
. . .

...
...

...
...

. . . O O
O O . . . S O

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

In
 1(k−1)

In
 2(k−1)

In
...

 (n−1)(k−1)
In

⎤
⎥⎥⎥⎥⎥⎥⎦

=
1
n

[
In  1(k−1)In . . .  (n−1)(k−1)In

]
⎡
⎢⎢⎢⎢⎢⎢⎣

 (n−1)(k−1)
S

S

 1(k−1)
S

...

 (n−2)(k−1)
S

⎤
⎥⎥⎥⎥⎥⎥⎦

=
1
n
 (n−1)(k−1) ·X +

1
n

j=n


j=2

 ( j−1)·(k−1) · ( j−2)·(k−1) ·S

(since  ( j−1)·(k−1) · ( j−2)·(k−1) =  k−1, ∀ 2 � j � n)

=  k−1 ·S. (2.3)

From equation (2.3), we can conclude that
n


k=1

‖E∗
k D̃nS̃D̃n

∗Ek‖2
F =

n


k=1

tr(S∗S) = ‖D̃nS̃D̃n
∗‖2

F . (2.4)

We have,

‖S̃‖2
F = tr(S̃∗S̃) =

n


k=1

tr(S∗S). (2.5)

Since D̃n is a unitary matrix and Frobenious norm is invariant under unitary trans-
forms, from equations (2.4) and (2.5), we can conclude that D̃nS̃D̃n

∗ is a block diagonal
operator matrix, with k− th diagonal block k−1 ·S . Hence (S̃) = (S) . �

To establish our purpose we need to recall the following two results. The first
result provides a bound on the numerical radius of product of operators and has been
given in [5].

LEMMA 2.2. Let S,X ∈ B(H ) . Then

(X∗SX) � ‖X‖2(S).

The following lemma plays a key role in deriving operator radius versions of nu-
merical radius inequalities. This lemma has been given in [12].

LEMMA 2.3. Let S ∈ (H ) and 0 <  � 2 . Then

(S) =
2


([

O
√
(2−)S

O |1− |S
])

.
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The following lemma presents operator radii generalization of Lemma 2.2.

LEMMA 2.4. Let S,X ∈ B(H ) . Then

(X∗SX) � ‖X‖2(S).

Proof. Let S,X ∈ B(H ) . By Lemma 2.3, we have

(X∗SX) =
2


([

O
√
(2−)X∗SX

O |1− |X∗SX

])

=
2


([

X∗ O
O X∗

][
O
√
(2−)S

O |1− |S
][

X O
O X

])

�
∥∥∥∥
[
X O
O X

]∥∥∥∥
2

· 2


([

O
√
(2−)S

O |1− |S
])

(by using Lemma 2.2)

= ‖X‖2 ·(S). �

We are now ready to present another important result in this section, which will
serve as a key step toward generalizing inequality (2.2) for operator radii.

PROPOSITION 2.2. Let X1,X2, . . .Xn,S ∈ B(H ) . Then



(
k=n


k=1

X∗
k+1SXk + X∗

1 SXn

)
�
(

k=n


k=1

‖Xk‖2

)
·(S).

Proof. Let S̃ be a n× n operator matrix in B(⊕n
k=1H ) that has the operator S

in the sub diagonal and in the top right hand corner, in the position (1,n) and zero 0
everywhere else. Also, consider the n×n block matrix

X̃ =

⎡
⎢⎢⎢⎢⎢⎣

X2 O . . . O
X3 O . . . O
...

...
...

Xn O . . . O
X1 O . . . O

⎤
⎥⎥⎥⎥⎥⎦ .

Then, by Lemma 2.4 and Proposition 2.1,

(X̃∗S̃X̃) � ‖X̃‖2(S̃)

�
(

k=n


k=1

‖Xk‖2

)
·(S).
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Now the observation

X̃∗S̃X̃ =
k=n


k=1

X∗
k+1SXk + X∗

1 SXn,

completes the proof. �
The inequality in Proposition 2.2 for the case  = 2 was presented in [6]. We now

present some corollaries of Proposition 2.2.

COROLLARY 2.1. Let X1,X2, . . . ,X2n, S ∈ B(H ) . Then



(
2n−1


k=1

X∗
k+1SXk + X∗

1 SX2n

)
� 2

(
k=n


k=1

‖X2k−1‖2

)(
k=n


k=1

‖X2k‖2

)
(S). (2.6)

Proof. It can be proved straightforward, following the same steps as in proof of
Theorem 2.6 [6]. �

COROLLARY 2.2. Let X ,Y,S ∈ B(H ) . Then

(X∗SY +Y∗SX) � 2‖X‖‖Y‖(S). (2.7)

In particular,
(X∗S+SX) � 2‖X‖(S). (2.8)

Proof. Inequality (2.7) is a special case of (2.6), obtained by substituting n = 1,
X1 = X , and X2 = Y . �

The optimal bound in inequality (2.1) is 2
√

2, and it can again be found in [5].
We now present a slight generalization of this improved version of inequality (2.1)
for operator radii. Our result depends upon following sharp estimates, for  -operator
radius contraction S and unit vector x ,

‖Sx‖2 +‖S∗x‖2 � 22

2−
for 0 <  � 1 , (2.9)

and
‖Sx‖2 +‖S∗x‖2 � 2 for 1 �  � 2 . (2.10)

The proofs of inequalities (2.9), and (2.10) has been given in [14].

PROPOSITION 2.3. Let X ,S ∈ B(H ) . Then

(XS+SX) � 2√
2−

(S) · ‖X‖ for 0 <  � 1 , (2.11)

and
(XS+SX) � 2

√
(S) · ‖X‖ for 1 �  � 2 . (2.12)
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Proof. Let x ∈ H be a unit vector, and let X and S be a contraction and  -
operator contraction on Hilbert space H , respectively. By Cauchy- Schwarz inequal-
ity, we have

|〈(XS+SX)x, x〉| = |〈Sx, X∗x〉+ 〈Xx, S∗x〉|
� ‖Sx‖ · ‖X∗x‖+‖Xx‖ · ‖S∗x‖
� ‖Sx‖+‖S∗x‖ (2.13)

(since X is a contraction).

From inequalities (2.9) and (2.10), we can deduce that

‖Sx‖+‖S∗x‖ � 2√
2−

for 0 <  � 1 , (2.14)

and
‖Sx‖+‖S∗x‖ � 2

√
 for 1 �  � 2 . (2.15)

Combining inequalities (2.13)–(2.15) with the identity

(SX +XS) = sup
‖x‖=1

|〈(SX +XS)x, x〉|,

we obtain

(XS+SX) � 2√
2−

, for 0 <  � 1 , (2.16)

and
(XS+SX) � 2

√
, for 1 �  � 2 . (2.17)

These estimates establish inequalities (2.11) and (2.12) in the case ‖X‖ � 1 and
(S) � 1. The general case follows by applying inequalities (2.16) and (2.17) to the
normalized operators

X̃ =
X

‖X‖ , Ỹ =
Y
‖Y‖ . �

Observe that for  = 2, inequality (2.12) becomes

(XS+SX) � 2
√

2(S)‖X‖. (2.18)

Inequality (2.18) have been proved in [5].

3. Operator radii mean inequalities

Let X ,Y ∈ B(H ) . As discussed in the introduction, the following inequality
holds for the operator norm:

‖XSY∗‖ � 1
2

∥∥|X |2S+S|Y |2∥∥ .
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A weaker version of this inequality holds for the numerical radius:

(XSX∗) � 1
2
(|X |2S+S|X |2). (3.1)

Our next proposition extends inequality (3.1) to the more general setting of  -
operator radii.

PROPOSITION 3.1. Let X and S be n×n complex matrices. Then for 0 <  � 2 ,

(XSX∗) � 1
2
(|X |2S+S|X |2). (3.2)

Proof. By Lemma 2.3, we have

(XSX∗) =
2


([

O
√
(2−)XSX∗

O |1− |XSX∗

])

=
2


([

X O
O X

][
O
√
(2−)S

O |1− |S
][

X∗ O
O X∗

])

� 1


([|X |2 O

O |X |2
][

O
√
(2−)S

O |1− |S
]
+
[
O
√
(2−)S

O |1− |S
][|X |2 O

O |X |2
])

(by using inequality (3.1))

=
1


([

O
√
(2−)(|X |2S+S|X |2)

O |1− |(|X |2S+S|X |2)
])

=
1
2
(|X |2S+S|X |2)

(using Lemma 2.3).

This completes the proof. �

REMARK 3.1. An alternative proof of inequality (3.2) can be obtained using the
theory of Schur multiplier operators. It suffices to establish the inequality in the special
case where X is positive semi-definite, since the general case then follows by applying
the argument given in the proof of Theorem 2.1 in [13].

Let X ,S ∈ Mn(C) , and assume that X is positive semi-definite. Without loss of
generality, we may take X = diag(i) with i � 0. Then, we have:

XSX = T ◦ (X2S+SX2), where T =

(
i j

 2
i + 2

j

)
i, j

.

The matrix T is positive definite. By invoking Theorem 8 of [15] and Corollary 4
of [2], we deduce that

(T ◦ (X2S+SX2)) � sup
i, j∈R

i j

 2
i + 2

j

·(X2S+SX2).
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Since the supremum above is equal to 1/2, it follows that

(T ◦ (X2S+SX2)) � 1
2
·(X2S+SX2).

This completes the proof.

Another special case of inequality (1.3), which holds for numerical radius is the
following:

(XSY∗) � 1
2

(|X |2S+S|Y |2) provided X∗Y = O . (3.3)

Next, we prove a refined version of this inequality for (·). To this end we need
to recall the following remarkable and highly useful result from [1].

LEMMA 3.1. Let S = [Si, j] be n×n operator matrix with Si, j ∈ B(H ). Then

(S) � ([si, j]),

where

si, j =

{
(Si, j) if i = j

‖Si, j‖ if i �= j.

LEMMA 3.2. Let S be a n×n complex matrix. Then for 0 <  � 2 ,



([
O S
O O

])
� 1


‖S‖� (S).

Proof. Using Lemma 3.1, we have



([
O S
O O

])
=

2



⎛
⎜⎜⎝
⎡
⎢⎢⎣

O O O
√
(2−)S

O O O O
O O O |1− |S
O O O O

⎤
⎥⎥⎦
⎞
⎟⎟⎠

� 2

· ‖S‖ ·

⎛
⎜⎜⎝
⎡
⎢⎢⎣

0 0 0
√
(2−)

0 0 0 0
0 0 0 |1− |
0 0 0 0

⎤
⎥⎥⎦
⎞
⎟⎟⎠

(by Lemma 3.1)

� 2

· ‖S‖ · sup{

√
(2−) xz+ |1− | yz : x2 + y2 + z2 = 1} (3.4)

Supremum of quadratic form in equation (3.4) can be equivalently expressed as,

sup{|uTAu| : u ∈ R
3, uTu = 1}, (3.5)
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where

A =

⎡
⎢⎢⎣

0 0
√

(2−)
2

0 0 |1− |
2√

(2−)
2

|1− |
2 0

⎤
⎥⎥⎦ .

Since A is a symmetric matrix, from equations (3.4) and (3.5) we can conclude
that

sup{
√
(2−) xz+ |1− | yz : x2 + y2 + z2 = 1} = max{| | : Ax = x}. (3.6)

Since A is symmetric matrix with rank(A) = 2 and trace(A) = 0, set of eigenval-
ues of A have form { ,− ,0} . Therefore,

tr(A∗A) = 2 2 = 2

(
(2−)

4
+

(1−)2

4

)
=

1
2
.

so,

 = ±1
2
.

Thus, ‖A‖ = max{| | : Ax = x} = 1/2, and, in conjunction with inequalities
(3.4) and (3.6), this implies that



([
O S
O O

])
� 1


· ‖S‖ (3.7)

Now the fact ‖S‖ � (S) , together with equation (3.7) completes the proof
(see [9]). �

REMARK 3.2. A weaker version of above inequality can be proved as follows,
Note that



([
S O
O S

])
= (S) and 

([
S O
O −S

])
= (S). (3.8)

Consider the unitary matrices U = 1√
2

[
In In
−In In

]
and V =

[
In O
O In

]
. Then



(
V ∗
[

O S
−S O

]
V

)
= 

(

[
O S
S O

])
= 

([
O S
S O

])
, (3.9)

and

(U∗(S⊕−S)U) = 

([
O S
S O

])
. (3.10)

Combining the equations (3.8), (3.9) and (3.10), we obtain

2

([
O S
O O

])
= 

([
O S
S O

]
+
[

O S
−S O

])

� 

([
O S
S O

])
+

([
O S
−S O

])
� 2(S).
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This implies



([
O S
O O

])
� (S).

Now, we are in a position to present aforementioned refinement of the inequality
(3.3).

PROPOSITION 3.2. Let X ,Y and S be n×n matrices such that X∗Y = O. Then
for 0 <  � 2 ,

(XSY∗) � 1
2

‖|X |2S+S|Y |2‖ � 1
2
(|X |2S+S|Y |2).

Proof. Let Z =
[
X Y
O O

]
and T =

[
O S
O O

]
. Then

(XSY∗) = 

([
XSY ∗ O

O O

])
= (ZTZ∗)

� 1
2
(|Z|2T +T |Z|2) (by Proposition 3.1)

=
1
2


([
X∗X X∗Y
Y ∗X Y ∗Y

][
O S
O O

]
+
[
O S
O O

][
X∗X X∗Y
Y ∗X Y ∗Y

])

=
1
2


([
O |X |2S+S|X |2
O O

])
(since X∗Y = O). (3.11)

Finally, by invoking Lemma 3.2 in conjunction with inequality (3.11), we deduce
that

(XSY∗) � 1
2


([
O |X |2S+S|X |2
O O

])
� 1

2
‖|X |2S+S|Y |2‖� 1

2
(|X |2S+S|Y |2).

This completes the proof. �
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[18] B. SZ.-NAGY AND C. FOIAŞ, On certain classes of power-bounded operators in Hilbert space, Acta

Sci. Math. (Szeged), 27 (1966), 17–25.
[19] J. P. WILLIAMS, Schwarz norms for operators, Pacific J. Math. 24 (1968), 181–188.

(Received June 4, 2025) Ramkishan
Department of Mathematics

University of Delhi
Delhi-110007, India

e-mail: ramkishanmaths289@gmail.com

Preeti Dharmarha
Department of Mathematics

Hansraj College University of Delhi
Delhi-110007, India

e-mail: drpreetidharmarha@hrc.du.ac.in

Amit Kumar
Department of Mathematics

University of Delhi
Delhi-110007, India

e-mail: amitpunfermiran@gmail.com

Operators and Matrices
www.ele-math.com
oam@ele-math.com


