EXISTENCE THEORY FOR NONLINEAR STURM-LIOUVILLE PROBLEMS WITH NON-LOCAL BOUNDARY CONDITIONS

DANIEL MARONCELLI AND JESÚS RODRÍGUEZ

(Communicated by Lingju Kong)

Abstract. In this work we provide conditions for the existence of solutions to nonlinear Sturm-Liouville problems of the form

$$(p(t)x'(t))' + q(t)x(t) + \lambda x(t) = f(x(t))$$

subject to non-local boundary conditions

$$ax(0) + bx'(0) = \eta_1(x)$$
 and $cx(1) + dx'(1) = \eta_2(x)$.

Our approach will be topological, utilizing Schaefer's fixed point theorem and the Lyapunov-Schmidt procedure.

1. Introduction

In this paper we provide criteria for the solvability of nonlinear Sturm-Liouville problems of the form,

$$(p(t)x'(t))' + q(t)x(t) + \lambda x(t) = f(x(t)) \qquad t \in [0, 1], \tag{1}$$

subject to non-local boundary conditions

$$ax(0) + bx'(0) = \eta_1(x) \text{ and } cx(1) + dx'(1) = \eta_2(x).$$
 (2)

There are several standard ways in which one may define a solution to problem (1)–(2), and so to maintain completeness, we mention that in this paper we will be interested in proving the existence of classical solutions to (1)–(2). Formally, by a solution to (1)–(2) we mean a function $x:[0,1] \to \mathbb{R}$ such that px' is continuously differentiable and satisfies (1)–(2).

Throughout our analysis, we will assume that $p,q:[0,1]\to\mathbb{R}$ are continuous, p(t)>0 for all $t\in[0,1]$, $a^2+b^2>0$ and $c^2+d^2>0$, λ is an eigenvalue of the associated linear Sturm-Liouville problem, $f:\mathbb{R}\to\mathbb{R}$ is continuous, and for i=1,2, $\eta_i(x)=\int_{[0,1]}g_i(x)d\mu_i$, where $g_1,g_2:\mathbb{R}\to\mathbb{R}$ are continuous and μ_1 and μ_2 are finite Borel measures on [0,1].

The focus of this paper is the analysis of nonlinear Sturm-Liouville problems at resonance subject to non-local boundary conditions, where by resonance we mean that

Mathematics subject classification (2010): 34B24.

Keywords and phrases: Existence theory, Sturm-Liouville problem, boundary conditions.

the linear homogeneous problem (7)–(8) has nontrivial solutions. Since the pioneering work of Landesman-Lazer, [12], much has been written about resonant nonlinear Sturm-Liouville boundary value problems with linear boundary conditions. Pertinent references from the point of view of this paper are [2, 4, 5, 6, 8, 11, 12, 14, 15, 18, 19]. Less has been said in regard to problems with nonlocal boundary conditions, even for the case of nonresonance; readers ineterested in results in this direction may consult [1, 7, 10, 13, 17, 20, 21, 22, 23].

The novelty of this work is due in large part to the generality of the nonlinear boundary conditions η_1 and η_2 . As an important special case we point out that, by taking μ_1 and μ_2 to be point-supported measures, our integral boundary conditions allow for nonlinear multipoint boundary conditions of the form

$$\eta_1(x) = \sum_{k=1}^n f_k(x(t_k)), \eta_2(x) = \sum_{j=1}^m h_j(x(t_j)),$$

where each f_k , h_j is a continuous function and each t_k , $t_j \in [0,1]$.

Our main result, Theorem 3.1, provides conditions for the existence of solutions to (1)–(2) under a suitable interaction of the eigenspace of the linear Sturm-Liouville problem and the nonlinearities in both the differential equation and the boundary conditions. We would like to remark that the result we obtain in Theorem 3.1 constitutes a significant extension of the work found in [15] by allowing for much more generality in the boundary conditions, (2).

2. Preliminaries

The nonlinear boundary value problem (1)–(2) will be viewed as an operator equation. We let C := C[0,1] denote the space of real-valued continuous functions topologized by the supremum norm, $\|\cdot\|_C$. As usual, $L^2 := L^2[0,1]$ will denote the space of real-valued square-integrable functions defined on [0,1]. The topology on L^2 will be that induced by the standard L^2 -norm, $\|\cdot\|_{L^2}$. We use H^2 to denote the Sobelov space of functions with two weak derivatives in L^2 ; that is,

$$H^2 = \{x \in L^2 \mid x' \text{ is absolutely continuous and } x'' \in L^2\}.$$

Unless otherwise stated, the topology on H^2 will be the subspace topology inherited from L^2 . However, we will, on several occasions, topologize H^2 with the Sobelov norm,

$$||x||_{H^2} = ||x||_{L^2} + ||x'||_{L^2} + ||x''||_{L^2}.$$

On occasion, we may also view H^2 as a subspace of C. We will use $|\cdot|$ to denote the Euclidean norm on \mathbb{R}^2 and $\langle \cdot, \cdot \rangle_Z$, $\langle \cdot, \cdot \rangle_S$, and $\langle \cdot, \cdot \rangle_\mathbb{R}$ will denote the inner products on L^2 , H^2 , and \mathbb{R}^2 , respectively. Weak convergence in L^2 will be denoted by $\frac{2}{2}$ and weak convergence in the Sobelov space H^2 will be denoted by $\frac{S}{2}$. We make $L^2 \times \mathbb{R}^2$

an inner product space with inner product

$$\left\langle \begin{bmatrix} h \\ w_1 \\ w_2 \end{bmatrix}, \begin{bmatrix} g \\ v_1 \\ v_2 \end{bmatrix} \right\rangle := m \left(\langle h, g \rangle_2 + \left\langle \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}, \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \right\rangle_{\mathbb{R}} \right), \tag{3}$$

where m is a positive constant which will be chosen later, and we will use $\|\cdot\|_{L^2\times\mathbb{R}^2}$ to denote the norm generated by this inner product. Lastly, we give $C\times\mathbb{R}^2$ the product topology, and we will use $\|\cdot\|_{C\times\mathbb{R}^2}$ to denote the standard product norm on this space.

Linear boundary operators B_1 and B_2 will be defined as follows:

 $B_1: H^2 \to \mathbb{R}$ is given by

$$B_1x = ax(0) + bx'(0)$$

and $B_2: H^2 \to \mathbb{R}$ is given by

$$B_2x = cx(1) + dx'(1).$$

We define $\mathcal{L}: H^2 \to L^2 \times \mathbb{R}^2$

$$\mathcal{L}x = \begin{bmatrix} \mathcal{A}x \\ B_1x \\ B_2x \end{bmatrix},$$

where $\mathscr{A}: H^2 \to L^2$ is defined by

$$\mathscr{A}x(t) = (p(t)x'(t))' + (q(t) + \lambda)x(t).$$

Similarly, we define a nonlinear operator $\mathscr{G}: H^2 \to L^2 \times \mathbb{R}^2$ by

$$\mathscr{G}(x) = \begin{bmatrix} \mathscr{F}(x) \\ \eta_1(x) \\ \eta_2(x) \end{bmatrix},$$

where $\mathscr{F}(x)(t) = f(x(t))$ and, as before, for i = 1, 2, $\eta_i(x) = \int_{[0,1]} g_i(x) d\mu_i$. Solving the nonlinear boundary value problem (1)–(2) is now equivalent to solving

$$\mathcal{L}x = \mathcal{G}(x). \tag{4}$$

The study of the nonlinear boundary value problem (1)–(2) will be intimately related to the linear nonhomogeneous boundary value problem

$$(p(t)x'(t))' + q(t)x(t) + \lambda x(t) = h(t), \quad t \in [0,1]$$
(5)

$$ax(0) + bx'(0) = w_1$$
 and $cx(1) + dx'(1) = w_2$, (6)

where h is an element of L^2 and w_1 and w_2 are elements of \mathbb{R} . Using our notation from above, we have that solving (5)–(6) is equivalent to solving

$$\mathcal{L}x = \begin{bmatrix} h \\ w_1 \\ w_2 \end{bmatrix}.$$

We begin our study of the nonlinear boundary value problem (1)–(2) by analyzing (5)–(6). To aid in this analysis, we first recall some well-known facts regarding the linear homogeneous Sturm-Liouville problem

$$(p(t)x'(t))' + q(t)x(t) + \lambda x(t) = 0$$
(7)

$$ax(0) + bx'(0) = 0$$
 and $cx(1) + dx'(1) = 0$. (8)

For those readers interested in a more detailed introduction to linear Sturm-Liouville problems, we suggest [9].

It is well known that λ is a simple eigenvalue; that is, $Ker(\mathcal{L})$ is one-dimensional. We may therefore choose a vector, ψ , which forms a basis for $Ker(\mathcal{L})$. Without loss of generality, we will assume $\|\psi\|_{L^2}=1$. Since (7) is a second-order linear homogeneous differential equation, we may choose ϕ satisfying (7) so that $\{\psi,\phi\}$ forms a basis for the solution space of this linear homogeneous problem. We will assume $\langle \psi,\phi\rangle_2=0$.

For $u, v \in H^2$, let wr(u, v) denote the Wrońskian of u and v; that is, wr(u, v) = uv' - vu'. It follows from standard ode theory that if u and v are linearly independent solutions to (7), then $p \cdot wr(u, v)$ is a nonzero constant. We will assume that ϕ has been chosen so that $p \cdot wr(\psi, \phi) = 1$ and define $\omega : [0, 1] \times [0, 1] \to \mathbb{R}$ by

$$\omega(t,s) = \begin{cases} \psi(t)\phi(s) & \text{if } 0 \le t \le s \le 1\\ \psi(s)\phi(t) & \text{if } 0 \le s \le t \le 1 \end{cases}$$
 (9)

As a reminder to the reader, ω is often referred to as a fundamental solution of (7). If we define $K: L^2 \to H^2$ by

$$Kh(t) = \int_0^1 \omega(t, s)h(s)ds,$$
(10)

then it is easy to verify that K is self-adjoint, compact, and satisfies $\mathscr{A}Kh = h$ for every $h \in L^2$. Differentiating under the integral symbol, one easily establishes that for every $h \in L^2$, $B_1Kh = \langle h, \phi \rangle_2 B_1 \psi = 0$ and $B_2Kh = \langle h, \psi \rangle_2 B_2 \phi$. Let

$$v_1 = B_1 \phi \text{ and } v_2 = B_2 \phi.$$

Since ϕ satisfies (7) and is linearly independent of ψ , we must have $B_1\phi \neq 0$ and $B_2\phi \neq 0$; this is a consequence of the uniqueness of solutions to initial value problems and that fact the linear Sturm-Liouville boundary conditions can be thought of as an orthogonality condition.

With the above ideas in hand, we are now in a position characterize the range of \mathscr{L} . We have the following result.

PROPOSITION 2.1. Let
$$h \in L^2$$
 and $w_1, w_2 \in \mathbb{R}$. Then $\vec{h} := \begin{bmatrix} h \\ w_1 \\ w_2 \end{bmatrix} \in Im(\mathscr{L})$ if

and only if
$$\langle \vec{h}, \vec{\psi} \rangle = 0$$
, where $\vec{\psi} := \begin{bmatrix} \psi \\ v_1^{-1} \\ -v_2^{-1} \end{bmatrix}$. That is, in $L^2 \times \mathbb{R}^2$, $Im(\mathcal{L}) = \{\vec{\psi}\}^{\perp}$.

Proof.
$$\mathscr{L}x = \begin{bmatrix} h \\ w_1 \\ w_2 \end{bmatrix}$$
 if and only if $\mathscr{A}x = h$, $B_1x = w_1$, and $B_2x = w_2$. However,

 $\mathscr{A}x = h$ if and only if $x = c_1\psi + c_2\phi + Kh$, for some real numbers c_1, c_2 . Applying the boundary map B_1 and recalling $B_1Kh = 0$, we get $B_1(c_1\psi + c_2\phi + Kh) = c_2v_1$. Similarly, using $B_2Kh = \langle h, \psi \rangle_2 B_2\phi$, we get $B_2(c_1\psi + c_2\phi + Kh) = (c_2 + \langle h, \psi \rangle_2)v_2$.

Now.

$$c_2v_1 = w_1$$
 and $(c_2 + \langle h, \psi \rangle_2)v_2 = w_2$

if and only if

$$c_2 = \frac{w_1}{v_1}$$
 and $\langle h, \psi \rangle_2 = \frac{w_2}{v_2} - \frac{w_1}{v_1} = \left\langle \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}, \begin{bmatrix} -v_1^{-1} \\ v_2^{-1} \end{bmatrix} \right\rangle_{\mathbb{R}}$

which happens if and only if $\langle \vec{h}, \vec{\psi} \rangle = 0$. \square

With this characterization of the $Im(\mathcal{L})$ in hand, we make the following definitions which will play a crucial role in our ability to analyze the nonlinear Sturm-Liouville problem, (1)–(2), using a projection scheme.

DEFINITION 2.2. Define $P: L^2 \to L^2$ by $Px = \langle x, \psi \rangle_2 \psi$.

It is clear that P is the orthogonal projection onto $Ker(\mathcal{L})$.

Now, choose m, see (3), to be $\frac{1}{1+\left|\begin{bmatrix} v_1^{-1} \\ -v_2^{-1} \end{bmatrix}\right|^2}$. With this choice of m, $\vec{\psi}$ is a unit

vector in $L^2 \times \mathbb{R}^2$.

DEFINITION 2.3. Define $Q: L^2 \times \mathbb{R}^2 \to L^2 \times \mathbb{R}^2$ by

$$Q\left(\begin{bmatrix}h\\w_1\\w_2\end{bmatrix}\right) = \left\langle\begin{bmatrix}h\\w_1\\w_2\end{bmatrix}, \vec{\psi}\right\rangle \vec{\psi}.$$

From Proposition 2.1, we have that Q is the orthogonal projection of $L^2 \times \mathbb{R}^2$ on $Im(\mathcal{L})^{\perp}$. Thus, I-Q, is a projection onto the $Im(\mathcal{L})$.

In our analysis of the nonlinear Sturm-Liouville problem we will use a projection scheme often referred to as the Lyapunov-Schmidt procedure. The use of the Lyapunov-Schmidt reduction will allow us to write the operator equation (4) as an equivalent equation in which a fixed point argument may be applied to prove the existence of solutions. Interested readers may consult [3, 16] for a more detailed account of these ideas.

PROPOSITION 2.4. Solving $\mathcal{L}x = \mathcal{G}(x)$ is equivalent to solving the system

$$\left\{ \begin{aligned} (I-P)x - M(I-Q)\mathscr{G}(x) &= 0\\ \text{and}\\ \left(\left\langle \mathscr{F}(x), \psi \right\rangle_2 + \left\langle \begin{bmatrix} \eta_1(x) \\ \eta_2(x) \end{bmatrix}, \begin{bmatrix} v_1^{-1} \\ -v_2^{-1} \end{bmatrix} \right\rangle_{\mathbb{R}} \right) \psi &= 0 \end{aligned} \right.,$$

where M denotes $(L_{|_{H^2 \cap Ker(\mathscr{L})^{\perp}}})^{-1}$.

Proof.

$$\mathcal{L}x = \mathcal{G}(x) \iff \begin{cases} (I - Q)(\mathcal{L}x - \mathcal{G}(x)) = 0 \\ & \text{and} \\ Q(\mathcal{L}x - \mathcal{G}(x)) = 0 \end{cases}$$

$$\iff \begin{cases} \mathcal{L}x - (I - Q)\mathcal{G}(x) = 0 \\ & \text{and} \end{cases}$$

$$Q\mathcal{G}(x) = 0$$

$$\iff \begin{cases} M\mathcal{L}x - M(I - Q)\mathcal{G}(x) = 0 \\ & \text{and} \end{cases}$$

$$Q\mathcal{G}(x) = 0$$

$$\iff \begin{cases} (I - P)x - M(I - Q)\mathcal{G}(x) = 0 \\ & \text{and} \end{cases}$$

$$\langle \left[\mathcal{F}(x) \\ \eta_1(x) \\ \eta_2(x) \right], \left[\begin{matrix} \psi \\ v_1^{-1} \\ -v_2^{-1} \end{matrix} \right] \rangle \vec{\psi} = 0 \end{cases}$$

$$\iff \begin{cases} (I - P)x - M(I - Q)\mathcal{G}(x) = 0 \\ & \text{and} \end{cases}$$

$$\langle \left[\mathcal{F}(x) \\ \eta_1(x) \\ \eta_2(x) \right], \left[\begin{matrix} \psi \\ v_1^{-1} \\ -v_2^{-1} \end{matrix} \right] \rangle \psi = 0 \end{cases}$$

$$\iff \begin{cases} (I - P)x - M(I - Q)\mathcal{G}(x) = 0 \\ & \text{and} \end{cases}$$

$$(\langle \mathcal{F}(x), \psi \rangle_2 + \langle \left[\begin{matrix} \eta_1(x) \\ \eta_2(x) \end{matrix} \right], \left[\begin{matrix} v_1^{-1} \\ -v_2^{-1} \end{matrix} \right] \rangle_{\mathcal{F}}) \psi = 0 \end{cases}$$

3. Main results

We now come to our main result. In what follows, we will assume that the nonlinear integral boundary operators η_1 and η_2 are induced by bounded continuous functions g_1 and g_2 .

To simplify the statement of the theorem, we introduce the following notation. For i = 1, 2, we let

$$g_{i,+}(+\infty) := \limsup_{x\to\infty} g_i(x),$$

$$g_{i,-}(+\infty) := \liminf_{x \to \infty} g_i(x),$$

$$g_{i,+}(-\infty) := \limsup_{x \to -\infty} g_i(x),$$

and

$$g_{i,-}(-\infty) := \liminf_{x \to -\infty} g_i(x).$$

We define $\mathcal{O}_0 := \{t \mid \psi(t) = 0\}$, $\mathcal{O}_+ := \{t \mid \psi(t) > 0\}$, and $\mathcal{O}_- := \{t \mid \psi(t) < 0\}$. From Standard Sturm-Liouville theory, we have that \mathcal{O}_0 is a finite set consisting of simple zeros. In what follows, this fact will be used several times, possibly without explicit mention. Finally, for i = 1, 2, we let

$$J_{i,\pm} = g_{i,\pm}(+\infty)\mu_i(\mathscr{O}_+) + g_{i,\pm}(-\infty)\mu_i(\mathscr{O}_-).$$

THEOREM 3.1. Suppose that the following conditions hold:

- C1. The function f is "sublinear"; that is, there exists real numbers M_1, M_2 and β , with $0 \le \beta < 1$, such that for every $x \in \mathbb{R}$, $|f(x)| \le M_1 |x|^{\beta} + M_2$;
- C2. There exist positive real numbers \hat{z} and J such that for all $z > \hat{z}$,

$$f(-z) \leqslant -J < 0 < J \leqslant f(z);$$

- C3. For i = 1, 2, $\mu_i(\mathcal{O}_0) = 0$, where again u_i is the Borel measure in the definition of the boundary operator η_i ;
- C4. $-J\int_0^1 |\psi| dt < \left\langle \begin{bmatrix} J_{1,sgn(-v_1)} \\ J_{2,sgn(v_2)} \end{bmatrix}, \begin{bmatrix} v_1^{-1} \\ -v_2^{-1} \end{bmatrix} \right\rangle_{\mathbb{R}}$, where for a real number, v, $sgn(v) = + if \ v > 0$ and $sgn(v) = if \ v < 0$;

then, there exists a solution to (1)–(2).

Proof. We start by defining $T: L^2 \to H^2$ by

$$T(x) = Px - (\langle \mathscr{F}(x), \psi \rangle_2 + \left\langle \begin{bmatrix} \eta_1(x) \\ \eta_2(x) \end{bmatrix}, \begin{bmatrix} v_1^{-1} \\ -v_2^{-1} \end{bmatrix} \right\rangle_{\mathbb{R}}) \psi + M(I - Q) \mathscr{G}(x).$$

From Proposition 2.4, we have that the solutions to (1)–(2) are the fixed points of T. Since M is an integral mapping from L^2 into H^2 , it is compact, and thus so is T. We will show that

$$FP := \{x \in H^2 \mid x = \gamma T(x) \text{ for some } \gamma \in (0,1)\}$$

is a priori bounded in L^2 . A fixed point will then follow from an application of Schaefer's fixed point theorem.

To this end, suppose that there exist sequences $\{x_n\}_{n\in\mathbb{N}}$ and $\{\gamma_n\}_{n\in\mathbb{N}}$ in H^2 and (0,1), respectively, with $\|x_n\|_{L^2}\to\infty$ and $x_n=\gamma_n T(x_n)$. Let $y_n=\frac{x_n}{\|x_n\|_{H^2}}$. Since

the closed unit ball in the Sobelov space H^2 is weakly compact, by going to a subsequence if necessary, we may assume that $y_n \stackrel{S}{\rightharpoonup} y$, for some $y \in H^2$. Again, going to a subsequence if necessary, we may assume that γ_n converges to some $\gamma \in [0,1]$.

Now,

$$y_n = \frac{x_n}{\|x_n\|_{H^2}}$$

$$= \gamma_n \frac{T(x_n)}{\|x_n\|_{H^2}}$$

$$= \gamma_n - \left(\langle \mathcal{F}(x_n), \psi \rangle_2 + \left\langle \begin{bmatrix} \eta_1(x_n) \\ \eta_2(x_n) \end{bmatrix}, \begin{bmatrix} v_1^{-1} \\ -v_2^{-1} \end{bmatrix} \right\rangle_{\mathbb{R}} \right) \psi + M(I - Q)\mathcal{G}(x_n)$$

$$= \gamma_n \frac{\|x_n\|_{H^2}}{\|x_n\|_{H^2}}.$$

Since f is sublinear (See C1) and g_1 and g_2 are bounded, it follows that

$$\|\mathscr{G}(x)\|_{L^2 \times \mathbb{R}^2} \leqslant K_1 \|x\|_{L^2}^{\beta} + K_2,$$
 (11)

and

$$\|\mathscr{G}(x)\|_{C \times \mathbb{R}^2} \leqslant K_1 \|x\|_C^{\beta} + K_2,$$
 (12)

for some positive real numbers K_1 and K_2 and every $x \in H^2$. Thus, from (11),

$$\gamma_{n} \frac{\left(\langle \mathscr{F}(x_{n}), \psi \rangle_{2} + \left\langle \begin{bmatrix} \eta_{1}(x_{n}) \\ \eta_{2}(x_{n}) \end{bmatrix}, \begin{bmatrix} v_{1}^{-1} \\ -v_{2}^{-1} \end{bmatrix} \right\rangle_{\mathbb{R}} \psi + M(I - Q)\mathscr{G}(x_{n})}{\|x_{n}\|_{H^{2}}} \stackrel{2}{\rightharpoonup} 0,$$

so that

$$\gamma_n \frac{Px_n - \left(\langle \mathscr{F}(x_n), \psi \rangle_2 + \left\langle \begin{bmatrix} \eta_1(x_n) \\ \eta_2(x_n) \end{bmatrix}, \begin{bmatrix} v_1^{-1} \\ -v_2^{-1} \end{bmatrix} \right\rangle_{\mathbb{R}} \right) \psi + M(I - Q)\mathscr{G}(x_n)}{\|x_n\|_{H^2}} \stackrel{?}{\rightharpoonup} \gamma Py.$$

Since $y_n \stackrel{S}{\rightharpoonup} y$, $y_n \stackrel{2}{\rightharpoonup} y$, so that we conclude $y = \gamma P y$. Applying P gives

$$Py = \gamma P^2 y = \gamma P y,$$

from which we deduce that $\gamma=1$ or Py=0. Since $\|y\|_{H^2}=1$, it follows that $\gamma=1$. Thus, Py=y and we deduce that $y=\pm\frac{1}{\|\psi\|_{H^2}}\psi$. We will assume that $y=\frac{1}{\|\psi\|_{H^2}}\psi$, as the other case is similar.

Now, by the compact embedding of H^2 in C, we have, since $y_n \stackrel{S}{\rightharpoonup} y$, that $y_n \to y$ in C. Using the fact that $y_n \stackrel{2}{\rightharpoonup} \frac{1}{\|\psi\|_{L^2}} \psi$, we have that

$$\langle y_n, \psi \rangle_2 \to \frac{1}{\|\psi\|_{H^2}} \langle \psi, \psi \rangle_2 = \frac{1}{\|\psi\|_{H^2}}.$$
 (13)

However, $\langle x_n, \psi \rangle_2 = \|x_n\|_{H^2} \langle y_n, \psi \rangle_2$, so that $\langle x_n, \psi \rangle_2 \to \infty$, since $\|x_n\|_{H^2}$ does (recall $\|x_n\|_{L^2} \to \infty$). Without loss of generality, we will assume from now on that $\langle x_n, \psi \rangle_2 > 0$ for each n.

From $x_n = \gamma_n T(x_n)$, it follows that for each n

$$(I-P)x_n = \gamma_n M(I-Q)\mathscr{G}(x_n)$$

and

$$Px_n = \gamma_n Px_n - \gamma_n \left(\langle \mathscr{F}(x_n), \psi \rangle_2 + \left\langle \begin{bmatrix} \eta_1(x_n) \\ \eta_2(x_n) \end{bmatrix}, \begin{bmatrix} v_1^{-1} \\ -v_2^{-1} \end{bmatrix} \right\rangle_{\mathbb{R}} \right) \psi.$$

This is equivalent to

$$(I-P)x_n = \gamma_n M(I-Q)\mathcal{G}(x_n)$$
(14)

and

$$(1 - \gamma_n)\langle x_n, \psi \rangle_2 + \gamma_n \left(\langle \mathscr{F}(x_n), \psi \rangle_2 + \left\langle \begin{bmatrix} \eta_1(x_n) \\ \eta_2(x_n) \end{bmatrix}, \begin{bmatrix} v_1^{-1} \\ -v_2^{-1} \end{bmatrix} \right\rangle_{\mathbb{R}} \right) = 0.$$
 (15)

Let v_n denote $(I-P)x_n$. From (12) and (14), we have that

$$||v_n||_C \le |\gamma_n| ||M(I - Q)|| (K_1 ||x_n||_C^{\beta} + K_2)$$

$$\le D_1 ||x_n||_C^{\beta} + D_2,$$

where ||M(I-Q)|| denotes the operator norm of M(I-Q) and for i=1,2, $D_i=||M(I-Q)||K_i$. Applying the compact embedding theorem again, we may assume, by scaling each D_i , that

$$||v_n||_C \leq D_1 ||x_n||_{H^2}^{\beta} + D_2.$$

However, from (13) we have that $\frac{\langle x_n, \psi \rangle_2}{\|x_n\|_{H^2}} \to \frac{1}{\|\psi\|_{H^2}}$, so that by rescaling one more time, we may assume

$$\|v_n\|_C \leqslant D_1 \langle x_n, \psi, \rangle_2^{\beta} + D_2. \tag{16}$$

For the moment, fix $t \in \mathcal{O}_+ \cup \mathcal{O}_-$. Since

$$|x_n(t)| \geqslant \langle x_n, \psi \rangle_2 |\psi(t)| - |v_n(t)|$$

$$\geqslant \langle x_n, \psi \rangle_2 |\psi(t)| - ||v_n||_C,$$

we have, using (16), that

$$\lim_{n \to \infty} x_n(t) = \pm \infty, \text{ whenever } t \in \mathcal{O}_{\pm}.$$
 (17)

Define

$$E_n = \{t \mid |\psi|(t) \geqslant \varepsilon_n\},\$$

where
$$\varepsilon_n = \frac{\hat{z} + \|v_n\|_C}{\langle x_n, \psi \rangle_2}$$
. If $t \in E_n$, then
$$|x_n(t)| \geqslant \langle x_n, \psi \rangle_2 |\psi(t)| - |v_n(t)|$$

$$\geqslant \langle x_n, \psi \rangle_2 |\psi(t)| - ||v_n||_C,$$

$$\geqslant \langle x_n, \psi \rangle_2 \left(\frac{\hat{z} + \|v_n\|_C}{\langle x_n, \psi \rangle_2}\right) - ||v_n||_C$$

$$= \hat{z}.$$

This gives, using C2, that

$$\int_{0}^{1} f(x_n) \psi dt = \int_{E_n} f(x_n) \psi dt + \int_{E_n^c} f(x_n) \psi dt$$

$$\geqslant J \int_{E_n} |\psi| dt + \int_{E_n^c} f(x_n) \psi dt$$

$$\geqslant J \int_{E_n} |\psi| dt - \int_{E_n^c} |f(x_n) \psi| dt$$

We claim that $\int_{E_n^c} |f(x_n)\psi|dt \to 0$, so that by Lebesgue's Dominated Convergence Theorem,

$$\liminf_{n \to \infty} \int_{0}^{1} f(x_{n}) \psi dt \geqslant \liminf_{n \to \infty} J \int_{E_{n}} |\psi| dt$$

$$= J \int_{0}^{1} |\psi| dt.$$
(18)

To see that $\int_{E_n^c} |f(x_n)\psi| dt \to 0$, first note that for any $t \in E_n^c$

$$|x_{n}(t)| \leq \langle x_{n}, \psi \rangle_{2} \varepsilon_{n} + ||v_{n}||_{C}$$

$$\leq \langle x_{n}, \psi \rangle_{2} \left(\frac{\hat{z} + ||v_{n}||_{C}}{\langle x_{n}, \psi \rangle_{2}}\right) + ||v_{n}||_{C}$$

$$= \hat{z} + 2 ||v_{n}||_{C}$$

$$\leq \hat{z} + 2(D_{1}\langle x_{n}, \psi \rangle_{2}^{\beta} + D_{2}) \quad \text{(using (16))}.$$

It then follows, from C1, that

$$|f(x_n)(t)| \le M_1 |x_n(t)|^{\beta} + M_2$$

 $\le M_1 (\hat{z} + 2(D_1 \langle x_n, \psi, \rangle_2^{\beta} + D_2))^{\beta} + M_2,$

which gives that

$$\int_{E_n^{\mathsf{c}}} |f(x_n)\psi| dt \leqslant (M_1(\hat{z} + 2(D_1\langle x_n, \psi, \rangle_2^{\beta} + D_2))^{\beta} + M_2)\varepsilon_n \mu_L(E_n^{\mathsf{c}}),$$

where μ_L denotes Lebesgue measure on [0,1].

Since $\frac{\|v_n\|_C}{\langle x_n, \psi \rangle_2} \to 0$, we have that $E_n^c \to \mathcal{O}_0$. Further, since \mathcal{O}_0 consists of finitely many simple zeros, it follows from the Mean Value Theorem that there exists a positive constant, say L, with

$$\mu_L(E_n^c) \leqslant L\varepsilon_n$$
.

We then have that

$$\begin{split} \int_{E_n^c} |f(x_n)\psi| dt & \leq (M_1(\hat{z} + 2(D_1\langle x_n, \psi, \rangle_2^{\beta} + D_2))^{\beta} + M_2) L \varepsilon_n^2 \\ & = (M_1(\hat{z} + 2(D_1\langle x_n, \psi, \rangle_2^{\beta} + D_2))^{\beta} + M_2) L \Big(\frac{\hat{z} + \|v_n\|_C}{\langle x_n, \psi \rangle_2}\Big)^2 \\ & \leq (M_1(\hat{z} + 2(D_1\langle x_n, \psi, \rangle_2^{\beta} + D_2))^{\beta} + M_2) L \Big(\frac{\hat{z} + D_1\langle x_n, \psi \rangle_2^{\beta} + D_2}{\langle x_n, \psi \rangle_2}\Big)^2, \end{split}$$

so that

$$\int_{E_n^c} |f(x_n)\psi| dt \leqslant R \frac{\langle x_n, \psi \rangle_2^{2\beta^2}}{\langle x_n, \psi \rangle_2^2},$$

for some positive constant R. Letting $n \to \infty$, and using the fact that $\beta < 1$, we conclude that $\int_{\mathbb{R}^c} |f(x_n)\psi| dt \to 0$.

We now look to analyze $\liminf_{n\to\infty} \int_0^1 g_i(x_n) d\mu_i$ and $\limsup_{n\to\infty} \int_0^1 g_i(x_n) d\mu_i$, for i=1,2. From (17), if $t\in \mathcal{O}_+$, then

$$g_{i,-}(+\infty) \leqslant \liminf_{n \to \infty} g_i(x_n)(t)$$
 and $\limsup_{n \to \infty} g_i(x_n)(t) \leqslant g_{i,+}(+\infty)$.

Similarly, for each $t \in \mathcal{O}_{-}$ and each i, i = 1, 2,

$$g_{i,-}(-\infty) \leqslant \liminf_{n \to \infty} g_i(x_n)(t)$$
 and $\limsup_{n \to \infty} g_i(x_n)(t) \leqslant g_{i,+}(-\infty)$.

Since g_1 and g_2 are bounded, we have, by Fatou's lemma, that for each i,

$$J_{i,-} = g_{i,-}(+\infty)\mu_{i}(\mathcal{O}_{+}) + g_{i,-}(-\infty)\mu_{i}(\mathcal{O}_{-})$$

$$= \int_{\mathcal{O}_{+}} g_{i,-}(+\infty)d\mu_{i} + \int_{\mathcal{O}_{-}} g_{i,-}(-\infty)d\mu_{i}$$

$$\leqslant \int_{\mathcal{O}_{+}\cup\mathcal{O}_{-}} \liminf_{n\to\infty} g_{i}(x_{n})d\mu_{i}$$

$$= \int_{[0,1]} \liminf_{n\to\infty} g_{i}(x_{n})d\mu_{i} \text{ (using C3)}$$

$$\leqslant \liminf_{n\to\infty} \int_{[0,1]} g_{i}(x_{n})d\mu_{i}$$

$$\leqslant \limsup_{n\to\infty} \int_{[0,1]} g_{i}(x_{n})d\mu_{i}$$

$$\leq \int_{[0,1]} \limsup_{n \to \infty} g_i(x_n) d\mu_i$$

$$\leq \int_{\mathscr{O}_+ \cup \mathscr{O}_-} \limsup_{n \to \infty} g_i(x_n) d\mu_i$$

$$\leq \int_{\mathscr{O}_+} g_{i,+}(+\infty) d\mu_i + \int_{\mathscr{O}_-} g_{i,-}(-\infty) d\mu_i$$

$$= g_{i,+}(+\infty) \mu_i(\mathscr{O}_+) + g_{i,+}(-\infty) \mu_i(\mathscr{O}_-)$$

$$= J_{i,+}.$$

Suppose for the moment that $v_1 > 0$ and $-v_2 > 0$ and let s and r be positive real numbers. Using the definitions of limit inferior and limit superior, see (18) and (19), there exists an n_s and an n_r such that if $n \ge n_s$, then

$$J\int_{0}^{1} |\psi|dt - s < \langle f(x_n), \psi \rangle_{2} = \langle \mathscr{F}(x_n), \psi \rangle_{2}, \tag{20}$$

and if $n \ge n_r$, then

$$J_{i,-} - r < \int_{[0,1]} g_i(x_n) d\mu_i < J_{i,+} + r.$$
 (21)

Since $v_1 > 0$ and $-v_2 > 0$, it follows that

$$\left\langle \begin{bmatrix} J_{1,-} - r \\ J_{2,-} - r \end{bmatrix}, \begin{bmatrix} v_1^{-1} \\ -v_2^{-1} \end{bmatrix} \right\rangle_{\mathbb{R}} \leqslant \left\langle \begin{bmatrix} \int_{[0,1]} g_1(x_n) d\mu_1 \\ \int_{[0,1]} g_2(x_n) d\mu_2 \end{bmatrix}, \begin{bmatrix} v_1^{-1} \\ -v_2^{-1} \end{bmatrix} \right\rangle_{\mathbb{R}} \leqslant \left\langle \begin{bmatrix} J_{1,+} + r \\ J_{2,+} + r \end{bmatrix}, \begin{bmatrix} v_1^{-1} \\ -v_2^{-1} \end{bmatrix} \right\rangle_{\mathbb{R}}. \tag{22}$$

However,

$$\left\langle \begin{bmatrix} J_{1,-} \\ J_{2,-} \end{bmatrix}, \begin{bmatrix} v_1^{-1} \\ -v_2^{-1} \end{bmatrix} \right\rangle_{\mathbb{R}} = \left\langle \begin{bmatrix} J_{1,\operatorname{sgn}(-v_1)} \\ J_{2,\operatorname{sgn}(v_2)} \end{bmatrix}, \begin{bmatrix} v_1^{-1} \\ -v_2^{-1} \end{bmatrix} \right\rangle_{\mathbb{R}} > -J \int_0^1 |\psi| dt. \tag{23}$$

Thus, it follows, from (20),(21), (22), and (23), that we may choose r and s small enough so that

$$\langle \mathscr{F}(x_n), \psi \rangle_2 + \left\langle \begin{bmatrix} \eta_1(x_n) \\ \eta_2(x_n) \end{bmatrix}, \begin{bmatrix} v_1^{-1} \\ -v_2^{-1} \end{bmatrix} \right\rangle_{\mathbb{D}} > 0,$$
 (24)

for large enough n. The other cases for the sign of v_1 and $-v_2$ are similar. In each case, the conclusion in (24) holds. Recalling that $\langle x_n, \psi \rangle_2 \to +\infty$, we have that for large enough n,

$$(1-\gamma_n)\langle x_n,\psi\rangle_2+\gamma_n\left(\langle \mathscr{F}(x_n),\psi\rangle_2+\left\langle\begin{bmatrix}\eta_1(x_n)\\\eta_2(x_n)\end{bmatrix},\begin{bmatrix}v_1^{-1}\\-v_2^{-1}\end{bmatrix}\right\rangle_{\mathbb{P}}\right)>0.$$

However, this contradicts the fact that by (15),

$$(1-\gamma_n)\langle x_n,\psi\rangle_2+\gamma_n\left(\langle \mathscr{F}(x_n),\psi\rangle_2+\left\langle\begin{bmatrix}\eta_1(x_n)\\\eta_2(x_n)\end{bmatrix},\begin{bmatrix}v_1^{-1}\\-v_2^{-1}\end{bmatrix}\right\rangle_{\mathbb{D}}\right)=0.$$

Thus,

$$FP := \{x \in H^2 \mid x = \gamma T(x) \text{ for some } \gamma \in (0,1)\}$$

must be a priori bounded, and the proof is complete. \Box

REMARK 3.2. If $\eta_1 = \eta_2 = 0$, then by choosing for each i, i = 1, 2, $g_i = 0$ and μ_i to be Lebesgue measure on [0,1], we have that $J_{i,\pm} = 0$. Thus, condition C4 of Theorem 3.1 is trivially satisfied. This shows that Theorem 3.1 is a generalization of the result found in [15], where they analyze linear homogeneous boundary conditions.

The following corollary isolates the special case in which the boundary operators η_1 and η_2 are generated by bounded continuous function g_1 and g_2 for which we assume that for i=1,2, $g_i(\pm\infty):=\lim_{x\to\pm\infty}g_i(x)$ exists.

COROLLARY 3.3. Suppose that the following conditions hold:

- C1*. The function f is "sublinear"; that is, there exists real numbers M_1, M_2 and β , with $0 \le \beta < 1$, such that for every $x \in \mathbb{R}$, $|f(x)| \le M_1 |x|^{\beta} + M_2$;
- C2*. There exist positive real numbers \hat{z} and J such that for all $z > \hat{z}$,

$$f(-z) \leqslant -J < 0 < J \leqslant f(z);$$

- C3*. For i = 1, 2, $\mu_i(\mathcal{O}_0) = 0$, where again u_i is the Borel measure in the definition of the boundary operator η_i ;
- C4*. For i = 1, 2, $g_i(\pm \infty) := \lim_{x \to \pm \infty} g_i(x)$ exists;

C5*.
$$-J\int_0^1 |\psi|dt < \left\langle \begin{bmatrix} J_{1,+} \\ J_{2,+} \end{bmatrix}, \begin{bmatrix} v_1^{-1} \\ -v_2^{-1} \end{bmatrix} \right\rangle_{\mathbb{R}};$$

then, there exists a solution to (1)–(2).

Proof. If for $i=1,2,\ g_i(\pm\infty):=\lim_{x\to\pm\infty}g_i(x)$ exist, then for each of these $i,\ J_{i,-}=J_{i,+}$. \square

4. Example

In this section we give a concrete example of the application of our main result, Theorem 3.1. We will use an interval of $[0,\pi]$ to simplify calculations.

Consider

$$x'' + m^2 x = f(x(t)) (25)$$

subject to

$$x(0) = \int_{[0,\pi]} g_1(x) du_1 \text{ and } x(\pi) = \int_{[0,\pi]} g_2(x) du_2$$
 (26)

where f, g_1 , and g_2 are real-valued continuous functions with g_1 and g_2 bounded.

It is well-known that the \mathcal{L}^2 -normalized eigenfunctions corresponding to the Dirichlet problem

$$x'' + m^2 x = 0$$

subject to boundary conditions

$$x(0) = 0$$
 and $x(\pi) = 0$,

are $\pm \frac{2}{\pi}\sin(mt)$. We choose to take $\psi(t) = \frac{2}{\pi}\sin(mt)$. This gives that ϕ , see (9), is $-\frac{\pi}{2}\cos(mt)$. Thus, $v_1 = \phi(0) = -\frac{\pi}{2}$ and $v_2 = \phi(\pi) = \frac{\pi}{2}$. We also have that

$$\mathscr{O}_{+} = \begin{cases} \bigcup_{i=0}^{j} \left(\frac{2i\pi}{m}, \frac{(2i+1)\pi}{m}\right) & \text{if } m = 2j+1\\ \bigcup_{i=0}^{j-1} \left(\frac{2i\pi}{m}, \frac{(2i+1)\pi}{m}\right) & \text{if } m = 2j \end{cases}$$

and

$$\mathscr{O}_{-} = \begin{cases} \bigcup_{i=0}^{j-1} \left(\frac{(2i+1)\pi}{m}, \frac{(2i+2)\pi}{m} \right) & \text{if } m = 2j+1 \\ \bigcup_{i=0}^{j-1} \left(\frac{(2i+1)\pi}{m}, \frac{(2i+2)\pi}{m} \right) & \text{if } m = 2j \end{cases}.$$

Suppose for the moment that conditions C1-C3 hold, since these can be trivially satisfied by any number of choices for f and μ_1, μ_2 . Condition C4 of Theorem 3.1 in this specific problem becomes

$$-\frac{4}{\pi}J < \left\langle \begin{bmatrix} J_{1,+} \\ J_{2,+} \end{bmatrix}, \begin{bmatrix} -\frac{2}{\pi} \\ -\frac{2}{\pi} \end{bmatrix} \right\rangle_{\mathbb{R}},$$

which is equivalent to $(J_{1,+} + J_{2,+}) < 2J$. It is clear that there are several bounded continuous functions g_1, g_2 and Borel measures μ_1, μ_2 which make the above inequality valid.

As a concrete example, let $E_m = \{t \mid \sin(mt) = 0\}$ and fix $t_0 \notin E_m$. Take $\mu := \mu_1 = \mu_2$ to be the measure point-supported at t_0 ; that is, for a subset A of [0,1],

$$\mu(A) = \begin{cases} 1 & \text{if } t_0 \in A \\ 0 & \text{if } t_0 \notin A \end{cases}.$$

Since $t_0 \notin E_m$, we have that t_0 is in \mathcal{O}_+ or \mathcal{O}_- . If for each $i, i=1,2, g_i(\pm\infty):=\lim_{x\to\pm\infty}g_i(x)$ exists, then when $t\in\mathcal{O}_+$, $J_{i,+}=g_i(+\infty)$. Similarly, when $t\in\mathcal{O}_-$, then $J_{i,+}=g_i(-\infty)$. Thus, if $t_0\in\mathcal{O}_\pm$, then provided $g_1(\pm\infty)+g_2(\pm\infty)<2J$, we have, from Corollary 3.3, that the nonlinear boundary value problem (25)–(26) has a solution. It is interesting to note that if $t_0\notin\cup_m E_m$, and both $g_1(+\infty)+g_2(+\infty)<2J$ and $g_1(-\infty)+g_2(-\infty)<2J$, then (25)–(26) has a solution for all eigenvalues m.

REFERENCES

- [1] A. BOUCHERIF, Second-order boundary value problems with integral boundary conditions, Nonlinear Anal. 70 (2009), 364–371.
- [2] X. CHEN AND Z. DU, Existence of Positive Periodic Solutions for a neutral delay predator-prey model with Hassell-Varley type functional response and impulse, Qual. Theory Dyn. Syst., (2017), doi:10.1007/s12346-017-0223-6.

- [3] S. CHOW AND J. K. HALE, Methods of Bifurcation Theory, Springer, Berlin, 1982.
- [4] P. DRÁBEK, On the resonance problem with nonlinearity which has arbitrary linear growth, J. Math. Anal. Appl. 127 (1987), 435–442.
- [5] P. DRÁBEK, Landesman-Lazer type condition and nonlinearities with linear growth, Czechoslovak Math. J. 40 (1990), 70–86.
- [6] P. DRÁBEK AND S. B. ROBINSON, Resonance problems for the p-laplacian, J. Funct. Anal. 169 (1999), 189–200.
- [7] Z. I. Du and J. Yin, A Second Order Differential Equation with Generalized Sturm-Liouville Integral Boundary Conditions at Resonance, Filomat 28 (2014), 1437–1444.
- [8] R. IANNACCI AND M. N. NKASHAMA, Nonlinear two point boundary value problems without Landesman-Lazer condition, Proc. Amer. Math. Soc. 106 (1989), 943–952.
- [9] W. G. KELLEY AND A. C. PETERSON, The theory of differential Equations, Springer, 2010.
- [10] R. A. KHAN, The generalized method of quasilinearization and nonlinear boundary value problems with integral boundary conditions, Electronic. J. Qual. Theory Differ. Equ. 19 (2003), 1–15.
- [11] E. M. LANDESMAN AND A. C. LAZER, Nonlinear perturbations of linear elliptic boundary value problems at resonance, J. Math. Mech. 19 (1969), 609–623.
- [12] A. C. LAZER AND D. F. LEACH, Bounded perturbations of forced harmonic oscillators at resonance, Ann. Mat. Pure Appl. 82 (1969), 49–68.
- [13] X. LIN AND Q. ZHANG, Existence of solution for a p-Laplacian multi-point boundary value problem at resonance, Qual. Theory Dyn. Syst., (2017), doi:10.1007/s12346-017-0259-7.
- [14] R. MA, Nonlinear discrete Sturm-Liouville problems at resonance, Nonlinear Anal. 67 (2007), 3050–3057.
- [15] D. MARONCELLI AND J. RODRÍGUEZ, Existence theory for nonlinear Sturm-Liouville problems with unbounded nonlinearities, Differ. Equ. Appl. 6 (2014), 455–466.
- [16] D. MARONCELLI AND J. RODRÍGUEZ, On the solvability of nonlinear impulsive boundary value problems, Topol. Methods Nonlinear Anal. 44 (2014), 381–398.
- [17] H. PANG AND Y. TONG, Symmetric positive solutions to a second-order boundary value problem with integral boundary conditions, Bound. Value Probl. 150 (2013), 1–9.
- [18] JESÚS F. RODRÍGUEZ, Existence theory for nonlinear eigenvalue problems, Appl. Anal. 87 (2008), 293–301.
- [19] J. RODRÍGUEZ, Nonlinear discrete Sturm-Liouville problems, J. Math. Anal. Appl. 308 (2005), 380–391.
- [20] J. RODRÍGUEZ AND A. SUAREZ, Existence of solutions to nonlinear boundary value problems, Differ. Equ. Appl. 9 (2017), 1–11.
- [21] J. RODRÍGUEZ AND A. SUAREZ, On nonlinear perturbations of Sturm-Liouville problems in discrete and continuous settings, Differ. Equ. Appl. 8 (2016), 319–334.
- [22] J. RODRÍGUEZ AND Z. ABERNATHY, On the solvability of nonlinear Sturm-Liouville problems, J. Math. Anal. Appl. 387 (2012), 310–319.
- [23] X. M. ZHANG AND W. G. GE, Positive solutions for a class of boundary-value problems with single integral boundary conditions, Computers Mathematics with Applications 58 (2009), 203–215.

(Received May 24, 2017)

Daniel Maroncelli
Department of Mathematics
College of Charleston
Charleston, SC 29424-0001, USA
e-mail: maroncellidm@cofc.edu

Jesús Rodríguez
Department of Mathematics
Box 8205, North Carolina State University
Raleigh, NC, 27695-8205, USA
e-mail: rodrigu@ncsu.edu