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Abstract. In this paper, optimal control for a novel fractional mudtrain Tuberculosis model
is presented. The proposed model is governed by a systeraabifmal differential equations,
where the fractional derivative is de ned in the Caputo senslodi ed parameters are intro-
duced to account for the fractional order. Four controlsades are proposed to minimize the
cost of interventions. Necessary and suf cient condititimst guarantee the existence and the
uniqueness of the solution of the resulting systems arengiVae optimality system is approxi-
mated by shifted Chebyshev polynomials which transforrhedsystem of differential equations
to a nonlinear system of algebraic equations with unknovef cients. The convergence analy-
sis and an upper bound of the error of the derived formulaimeangNewton's iteration method is
used to solve this system of nonlinear algebraic equatibhse.value of the objective functional
which is obtained by the proposed method are compared wigetbbtained by the generalized
Euler method. It is found that, Shifted Chebyshev specifibcation method is better than the
generalized Euler method.

1. Introduction

It is well known that, the mathematical models are a quitedrtgnt and ef cient
tool to describe and investigate several problems in nbhseiances disciplines such
as biology, physics, weather science and many other eldls [12], [15], [16], [19],
[43], [46], [44], [45]). Numerical simulations are sometimes the only way to solv
these mathematical models or to derive the desired inféomatt of it. The accuracy
of these numerical solutions is a major factor to consideitemteciding on which
numerical method is to be used in solving a mathematical inode

Recently, the theory of fractional optimal control probkeimas been under de-
velopment. Necessary optimality conditions have beenldpee for (FOCPS). For
instance, in ({]-[7]) necessary conditions of optimization for fractionaliogl con-
trol problems FOCPs in the sense of Riemann-Liouville dive have been achieved
and solved the problem numerically using nite differencethrods. In £€], the au-
thors presented a numerical method for solving FOCPs in #jmu® sense is based
on Chebyshev polynomials approximation and nite diffexemethod. In§] Baleanu
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et al., used central difference scheme for solving FOCPELUhBiswas and Sen pre-
sented a numerical technique for the solution of fractiaimal control problems
de ned both in terms of Riemann-Liouville and Caputo fractal derivatives. Agrawal
et al. in [8] formulated FOCPs in multi-dimensions of the state and bvariables.
They used Riemann-Liouville fractional derivative withi@Gwald-Letinkov approxi-
mation to get their numerical scheme. Wi/], Tricaud and Chen discussed FOCPs
and their solutions by means of rational approximation. kttal. in [29], consid-
ered FOCPs in terms of Caputo operators and solve it usingependre orthonormal
polynomial basis. Jafari and Trajadodi i&C] have studied FOCPs using Bernstein
polynomials.

The past three decades have seen rapid development in thierie calculus
(fractional differential equations) eld d1], [27], [37]). The applications of frac-
tional calculus are becoming increasingly important iesce and biology, {3]-[44]),
control theory of dynamical systeméZ], magnetic plasmaZZ], physics 0] and the
process can be successfully modeled by fractional diftekeequations (FDES) {4,
[39)). For certain applications the use of fractional deriv@siis justi ed since they
provide a better model than integer order derivative modelsince they provide a
powerful instrument for incorporation of memory and hetadi properties of the sys-
tems as opposed to the integer order models, where suclsediecneglected or dif -
cult to incorporate. The memory effect is due to the fact fredtional derivatives are
non-local as opposed to the local behavior of integer déves ([1], [23]-[29]).

Spectral methods have developed rapidly over the past fecadks by a huge
number of studies see for details1 g, [17], [31], [37]). The principal advantage of
spectral methods lies in their ability to achieve accuraseiits with substantially fewer
degrees of freedom. In recent years, Chebyshev polynofdidlsvhich are families
of orthogonal polynomials on the intervi@; b] have become increasingly important in
numerical analysis, from both theoretical and practicah{zoof view. We refer here to
the excellent bookd1], for the reader who is interested in Chebyshev polynondéls
all kinds.

Tuberculosis (TB) can be considered as one of the most impoirifectious dis-
eases, itis the second largest cause of mortality by imfestiliseases and is a challeng-
ing disease to controbf]. Itis caused by various strains of Mycobacteria. Spedlyca
Mycobacterium tuberculosis. TB primarily affects the lgngut it can also affect or-
gans in the central nervous system, lymphatic system, andlaiory system among
others.

Several papers considered modeling TB such @s[([4], [15], [34], [3€], [49]).
We consider in this work a multi-strain TB model of fractibroader derivatives as
extension the model of TB which given i]] This model includes several factors
of spreading TB such as the fast infection, the exogenou$eation and secondary
infection along with the resistance facter. The model incorporates three strains,
drug sensitive emerging, multi-drug resistgiMDR) and extensively drug-resistant
(XDR). Sweilam and AL-Mekhla introduced some numerical studiéghis model in
([47-{49)).

The aim of this paper is to study optimal control of fractibnaulti-strain TB
model with modi ed parameters, this modi ed parameters imteoduced to account
for the fractional orderl]. Four controls represent the effort that prevents theifail
of treatment in active TB infectious individuals. Shiftetlébyshev spectral method, is
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used to solve such optimality system. The state and cordridlvies are expanded in
shifted Chebyshev series with unknown coef cients, thailtast system of algebraic
equations is solved using Newton iteration method. Two migakmethods are used to
study the optimal control problem (OCP). The methods arshiifged Chebyshev spec-
tral method (SCSM) and the generalized Euler method (GEMM@arative studies are
implemented.

This paper is organized as follows: In Sectipna multi-strain TB model with
control is given. In SectioB, formulation of the optimal control problem and the nec-
essary optimality conditions for the multi-strain TB moaeé derived. In Sectio4,
Numerical methods for solving the optimal control problema given, also, we derive
an approximate formula for derivatives using Chebysheiesarxpansion, In section
5, we study the error analysis of the introduced approximateméla, moreover the
numerical implementation of the proposed technique isrgimesection6. The conclu-
sions are given in section

2. Multi-strain TB model with controls

In the following, the fraction multi-strain TB model is perged. The population
of interest is divided into eight compartments dependintheir epidemiological stages
as follows: susceptibl€S); latently infected with drug sensitive TBLg); latently
infected with MDR TB (L) ; latently infected with XDR TB(Ly) ; sensitive drug TB
infectious(ls) ; MDR TB infectious(Ir) ; XDR TB infectious(ly) ; recoveredr. All
interpretation and meaning of this variables see Tabl@ne of the main assumptions
of this model is that, the total populatioN, with N = S(t) + Lg(t) + Lm(t) + Lx(t) +
Is(t)+ Im(t)+ Ix(t)+ R(t); is constantin time. In other words, we assubie= (dN)&;
where,b? is birth rate andd? is natural death rate also, we assume there is no disease-
induced death rate, i.ed? = d& = d2=0. Four control functionsi;( ); ux(); us()
and uy( ); and four real positive constants; &; e;3; and g; will be added to the
model. The controli; governs the latent individuallss that is put under treatment.
The controlsuy; uz anduy represents the effort in preventing the failure of treattmen
in active TB infectious individualss, Im; lx; respectively, e.g., supervising the patients,
helping them to take the TB medications regularly and to deteghe TB treatment.
The parameterg 2 (0;1), i = 1;2;3;4; measure the effectiveness of the controls
ug; k= 1;2;3;4; respectively, i.e., these parameters measure the ef chtrgatment
interventions for active and persistent latent TB indidtiu The new parameters of the
model are described in Tab® this modi ed parameters are introduced to account for
the fractional orderd]. The new system is described by fractional order deriestas
follows:

DiS=b? d?sS b2— Sls b2 =—= Slm b2 =—= Sl’(
DiLs= /abas—g+ a/%&’R'S‘+ £ls agsbgﬁ ad b2 Llx
N N N
(d% + & + ti+ elul(t)) Ls; )

1)
lem

apa
aSXbX
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Im R

DiLm=12b2 ="+ s2I 2ba Irn+ Flm+ a2 b2l a SIm+(1 PA)taLs
Ll Lol
+au®ls+(1 POt ekt)ls adubi—1"  ambdi
(d%+ &)Lm; 3)
DfLyx= /aba%+ 21 2b2 R'X+ Flu+ abé’/&’LS'X aﬁ]xbflfl':llx
Lyl
+H(1 PHtim* ew()ls agbi <~ (d+ &)Ly )
Df1s=aghd S +(1 10)b8 i+ sInE 4 el
(d? + dsa + 5+ £ + eux(t))ls (5)
Ll Shn Lol
Df Im = aqmbi n,:lm*'(l I )b N~ FSm W*'aSm st + €hlm
(d2 + d2 + t3, + esus(t) + G)lm; (6)
Lyl Sk . 4Rl Ll Lol
DfIx=aghd <7 +(1 1)b¢ S5+ 885+ asy * ame . + &b
(d®+ df + 15+ g + equa(t)) I (7

Dfa R: P:LathL5+ Patéasls'l' Péatéamlm"' tzaxl)("' e4u4(t)lx

RI RI
ba S aba m
N

s@pd = R'X dR: (8)

Table 1:All variables in the systeril) —(8) and their de nition.

Variable

De nition

St

The susceptible population, individuals who have neveoentered
TB.

The individuals infected with the drug sensitive TB strairt tvho are

g

Ls(t) in a latent stagd, e, who are neither showing symptoms nor infecti
others.

Lin(t) Individuals latently infected with MDR-TB.

Lx(t) Individuals latently infected with XDR-TB.

I(t) Individuals infected With the drug-sensitive TB strain wdre infectious
to others (and most likely, showing symptoms as well).

Im(t) Those individuals who are infectious with the MDR-TB strain

Ix(t) Individuals who infectious with the XDR-TB strain.

R(t) Those individuals for whom treatment was successful.

N(t) The total population .

N= S+ Ls+ Lin+ Lx+ Is+ Im+ Ix+ R

Also all parameters and their interpretation as follows:
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Table 2:All adapted parameters in the systd) —(8) and their interpretation.

Parameter Interpretation
ba birth/recruitment rate
d@ per capita natural death rate
Disease dynamics
b2 transmission coef cient for strain
E proportion of newly infected individuals developihd Bl with
strainr
1182 propc_)rtion o_f newly infect(_ed individuals progressing tdiee
TB with strainr due to fast infection
per capita rate of endogenous reactivatioh,of
aj;a% proportion of exogenous reinfection bf; due to contact with,,
per capita rate of natural recovery to the latent stagge
a? per capita rate of death duenB of strainr
Treatment related
t2 per capita rate of treatment fbg
ta per capita rate of treatment fdy. Note thatty, is the rate of
2 successful treatment &f;r 2 f x; m; sg
1 s? ef ciency of treatment in preventing infection with strain
P2 probability of treatment success fiog
2 proportion of treated.s moved toL, due to incomplete treat-
1 P} . : )
ment or lack of strict compliance in the use of drugs
Ps probability of treatment success fiar
1 pa proportion of treatetk moved tol,, due to incomplete treatment
2 or lack of strict compliance in the use of drugs
P§ probability of treatment success figy
1 P proportion of treatedl, moved toLydue to incomplete treatment

or lack of strict compliance in the use of drugs

Table 3:All parameters in the systeii) —(8).

parameter value
b? (N d)? (e)°
d? (1=7345)% (5a3)°
b& = b2 = b2 147 (2)°
1&=12=12 0:5% ()
@ =egl=gl 0:0002 (755)°
ad., 0:05 (7a5)?
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E=@=¢ 0:00002 (75)*
8 2 ()"
ir2(smx | tg=2% t5,= t5=(ym
s2 0:25% (755
pa 0:88” (755
da 0

2.1. The basic reproduction number
The basic reproduction numbeR{) represents the expected average number of
new TB infections produced by a single TB active infectedvitiial when in contact
with a completely susceptible populatics].
To derive a formula forRy using the next generation method, we follow the
method of p(] and order the infected variables as
A= (LsiLmi L Is; 3 1)

The vector representing new infections into the infectedsg s~ is given by
1

18b3 ¢+ 521203 e
I fbR S+ sal fbf S
1202+ 21202
(L 18)ba(3e+ 85
(1 12)bA(Se+safe
(1 1B+ s2R)

The vectoV representing other ows within and out of the infected ctssA is given
1

by
0
a pa Lsl a pald apa lLsl
aSSbS ﬁ‘S asmbm ?\lm aSXbX IS\IX

+Els (d%+ e+ thLs;
+Rlm+ aZ p3I 350 +(1 PHAL+(1 P

A anbibh @+ gln

ad
mm¥m ~N
Lsl Ll
v * gt 232125+ afbfl 2 _
: Lyl . !
+(1 P??)tgmlm a)?xbfﬁ (da"'ef)l-x,

aZpd i+ ls (04 a4 1+ @)l

ad hatmm+ a2 B+ el (d?+ da+ g+ td)lm;

adbiBE+ (1 1 2)b2 + alle + ad )+ ey
(d2+ d2 + g + t3)lx;
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The matrix of new infectiond= and the matrix of transfers between compartments
V are the Jacobian matrices obtained by differentiaffngnd V with respect to the
infected variabled\ and evaluating at the disease free equilibrium. They tadéctm:

_ O0A . _ CD .
F= g5 ¢ V¥ Eg
where,
0 1&p2 0 o 1!
A=@ o |32pa 0
0 0 1apd
(1 1&)bd 0 0
B=@ 0 (1 by 0 A
0 0 (1 1&)bd
0 (d?+ e +t3) 0 0
C=@ (1+PN, (d*+€&}) 0o A
0 0 (d2 + €2)
0 7 0 0 1
D= @ ( 1+ Pt & 0 A,
0 ( 1+PO, &
(d%+ dé + &€ + t5) 0 0
R=0@ 0 (0 + df + g+ 1) 0 A
0 0 (d%+dd+ o +15)
0 @ 0 o 1
E=@ 0 & 0 A;
0 0 €&

Then the basic reproduction numidgy for the system1)—(8) is the spectral radius of
the next generation matrix and is given by

Ro=r(FV 1)= maxXRos; Rom; Rox); 9
where,
o - ba(e+(1 1)+ 1)
T (@ 0 (G A+ 0+ (L 07
_ ba(ea+(1 [1§)d%) .
Ron= @+ do)(ig,+ g+ 0+ g
Rox = bi (g +(1 [17)d¥)

(g8 + dA)(t5+ da+ d3)+ dag?
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3. Formulation of the optimal control problem

Let us consider the state system)+(8), in R® with the set of admissible control
functions:

W= £ (ug( );uz( );us( );ua()) 2 (L¥(0;T)) 06 ua( );uz( );us( );ua( ) 6 1,8t 2 [0;T]g:

The objective functional is given byiP] as follows:
Z7
Ju) = h(SLsLmLxlsImi I R ugt)dt; (10)
0

wherek = 1;2;3;4; and
2T 1 1
I()w):us0sua() = IO+ 1m0+ 1O+ L)+ SBIED + 5BoUB(0)

+ ZBAB(0+ 2BaB(]dt (11)

where the constantd;, By, B3 and B, are a measure of the relative cost of the inter-
ventions associated with the contraig, uz, uz anduy, respectively.

The main point in fraction optimal contol problems is to gkt optimal controls
uk(t); wherek = 1;2;3;4; which minimizes the objective functiol (), subject to the
following state system:

SDES= x1(S Ls;Lmi Ly Is; Imi I Ry Ui 1); (12)
aDf Ls = x2(S Ls; Lm; Ly Isi Imi 1x; R Ui 1) (13)
aDf Lm = x3(S; Ls; Lm; Lx; Is; Im; Ix; R; Ui £); (14)
aDf Lx = Xa(SiLs;Lm; L Isi Im; I R U 1); (15)
SDf1s = X5(S Ls; LmiLxi Is; Im; Ix; Ry Ui t); (16)
aDf Im = X6(S; Ls; Lm; Lx; Is; Im; Ix; Ry Ui 1); (17)
aDf 1k = x7(S Ls Lmi Lxi Isi Im; Ix; Ry U 1); (18)

SDER= xg(S Ls;Lm; Ly Is; Imi Ix; R Ui 1); (19)

and satisfying the inital conditions:

S0)= S; Ls(0)= Lsp; Lm(0) = Loy  Lx(0) = Lxo;
1s(0) = lso;  Im(0) = lmo;  1x(0) = Ixo; R(0)= Ro:
The following expression de nes a modi ed objective furonti

Zt
J= [H(SLsLmiLxls Imilx; Riugt)
0

1iXi(S; Ls; Lm; L Is; Im; Ix; R U £)]dt; (20)
1

1" Qoo
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whereH (S, Ls; Lm; Lx; Is; Im; Ix; R; Uk; t) is the following Hamiltonian

H(S Ls; Lim; L Is; Im; s Ry s 1i58) = h(S;Ls; Lm; Ly Is; Im; 1x; R Uk t)

8
+ & 1iXi(SLs;Lm Ly Is; Im; s R ug 1)+ (21)

i=1
From (20) and 1), we can derive ({]-[8]):
H H
fDﬁllzﬁ; thiIZZ ﬂ_Ls;
H H
H H
thiIS:”—IS; fDﬁlﬁzﬂTm;
H H
fDﬁl?zﬂ—IX, thafIS:ﬁ’
H
e (23)
H H
cpace= M'. cpay - M.
60 5= M1 00t Ls Ml
H H
ngaLmz ﬂTs; tha Lx= ﬂT; (24)
H H
6DfIs= ﬂTs; 6Df Im= e
H H
cpap = M.
e TR Rl TP
and it is also required that:
li(b)= 0; wherei= 1;2;3;:::;8: (25)

Egs. 3 and @5) describe the necessary conditions in terms of a Hamiltofuathe
optimal control problem de ned above.

THEOREM3.1. If uy();uy(); ug(); and y( ) are optimal controls with corre-
sponding staste $); Ls(); Lm(); Le(): 1s()s Im(): 1x(); and R() then there
exist adjoint variabled ,; I ,; I3, 14, I5; I 4; |7, and/ g satisfy the following:

(i) adjoint equations:

i = e (L0 B+ PR+ B 0t 1,08
I 5t mPm bmlm(t) 40 XbX| (0 150 E1D
ROICLILLING 7(0&! ) (26)
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ana a.-a
(D12 = ;,TS— ( 1+ 1,0 2 astls(t)+ asl:lqlm(t) b af\)l(lx(t)
aana

FO €+ au®) 150 % ()

aaa

(+ e PRI 140 3

/s(t)bgagﬂ O 1s0& 1401 )baasmlm(t)
HeWHL & MO, (27)
Dils= = 15 agebd Bl agbi il e dte e
4(t>amxba/a'xh‘f) o) adbi ™ + €
O 1 Dag0e = (28)
iy == 10 a0 agbiil & ;o)
fDﬁl5=11[[—:= 1+ 1,068 20 10 agpzBl yap2 20
resabe R0 @ g atr e gr e+ @
ST IR APIRLICIE Lo
LSO eup) PRI 1(0) sabaRT“’ P (30)
D3/ 6= %: 11,065 21,0 agpa = 150 150520
+13s2ba Rl\ﬁt) ’ablj sm_(ty Pmdmm . g
L0t 14O+ 14O,
o) 2n2m o+ (1120080 saa 1 2pa RO
rag1 163 (@ dg s i es)+ )
Ia(t) Patd, sé’bai : (31)
CHEERUE 1+11(t>ba5—“’+lz(t)a§“aLS,jt) 20
14 12595 R 0 4 a5 SO g gapa )

N N
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+1gagh Wy g agpa bV

() S L
13+ (1 1 Dbadss

+(1 /f)bfsf%ﬂl I £)b3 2

7 (t) axxba

WA+ et ) 1o0) B, sEBTT 1 (32

°DF I = 717]2 I,(t)b21 s alsrflt) | o(t)ba] 353 ml\(lt)
/4(t)bflfsflxlflt) Is@)(1 18)bas a'slflt)
I6(H)(1 /r%)br%sé%% 1)1 lf)bxasf'xlflt)
+ 1g(t) saba:fﬁsaba',(l% sabaINX+da ; (33)

(i) with transversality conditions; (T)= 0, i= 1;:::;8.
(iii) optimality conditions:

H(S (1);Ls(t); Lin(1); L (D)5 15 (1) 1m0 5 15 (1); R ()51 (1); U (1))
=omng(s (t); Ls(t); Lin(t); Ly (1) Is (05 1 (1) L (1) R (1)1 (1) u(1)); (34)

uy(t) = mlnnmax 0. &iks (IZS\Z I3(t))0;10; (35)
W) = min max 0; 2 (’5(\;’/2 O, (36)
us(®) = min max 0; 2! 6‘\23 L®)°,°. 37)
Uy(t) = mlnnmax 0; Gl (17(\;\)/4 IS(t))o;lo; (38)

where the stationarity condition i :L: 0; k= 1;2;3;4:

Proof. Using the conditions2), we can get equation2€)—(33), where the Hamil-
tonian H is given by:

H =H(S Ls; Lm; Lx;ls; Im; s R 1 UK)

— ZBl ZBZ 283 284
—IS+Im+IX+LS+u12+u22+u32+u42

+11 b? d?S baSIS baSlm bask

Sk LSI

15 18b2 =+ s a/abaR'S adbl =" a anmeSIm

é”xba S+ s
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(d?+ € + tls"' eru(t)) Ls

Sk le

e /;;ﬂb;zW+ Sal aba "+ ag b3l AT

Ll Ll
aduba " adb!

+ ghlm (A% + eh)lm+ tils* aun(t)ls Ptfls+ thls+ eu(t)ls  Pitsls

S RI Ldl L L
a2 SNe s ong R agpeyald, go peyalol ggpalib
(@ + g)Lx+ flx"'tgmlm"' esus(t)lm  P§tsIm
+I5(adbd =F+(1 12)b3 Wls+ss Re gL,
(d%+ o + 5+ & + ept(t)1s)
Ll Shy Lol
bR (L IS SR a® ¢
(d@+ d@ + t§,+ esus(t) + )Im
+17 af‘xbal-x +(1 I)‘(a)bf %'FS R|x+ aaLs|x+ a Lmlx al,

N N Aoy TameyT T &
(d?+ d? + t5+ of + equa(t)) Ix

RI
+ g PRtALs+ PHtdls+ PRE Im+ t3 1+ equa(t)ly aba °
aba le aba RIX daR . (39)

wherel; i = 1;2;3;:::;8 are the Lagrange multipliers. It is known as a co-state or
adjoint variables.

Moreover, the transversality conditiohgT) = 0; i = 1;:::;8; hold

and the optimal control86)—(38) can be claimed from the minimization condition
(39).

4. Numerical methods for solving FOCP

4.1. Generalized Euler method

Generalized Euler method (GEM), is a generalization of thssical Euler's met-
hod, for more details se&f]. The headlines of this method is given as follows, let us
consider 12—(19): Let [0;a] be the interval over which we want to nd the solution
of the problem 12)—(19). The interval[0;a] will be subdivided intoK subintervals
[tj;tj+1] of equal widthh= 2 by using the nodes; = jh; for j = 0;1;2;:::K: The
general formula for GEM whety, 1 = tj+ his

a

h
Stj+1) = St)) + Ga+ 1)

Uk(tj)stj);

xa(S(t)); Ls(tj); Lm(t;); L) 1s(t)): Im(t;); Ix(t)) s R(E);
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Ls(tj+1) = Ls(tj)+ G(t:i‘j_l)XZ(S(tj);Ls(tj);Lm(tj);Lx(tj);|s(tj);|m(tj);|x(tj);R(tj);
U(tj);t));

Lm(tj+1) = Lm(tj) + G(ahij_l)XS(s(tj)iLs(tj)iLm(tj)iLx(tj)i|s(tj);|m(tj);|x(tj);R(tj);
Uk(tj);t));

Lulto1) = Lalt)+ a3 L)L) L) ) ) ) REE )
Uk(tj);t));

Is(tj+1) = 1s(tj) + G(Tj_l)xs(s(tj);Ls(tj);l—m(tj);l—x(tj);|s(tj);|m(tj)i|x(tj);R(tj);
uk(tj);t));

Im(tj+1) = Im(tj)+ G(Til)XG(S(tj);Ls(tj);l-m(tj);l—x(tj);|S(tj);|m(tj);|X(tJ);R(tJ);
Uk(tj);t));

Ix(tj+1) = Ix(tj)) + G(:76;1)X7(5('tj);Ls(tj);Lm('fj);Lx(tj);|s('fj);|m('fj);lx(tj);R(tj);
U(tj);t));

Rit+2) = R+ g3 Xe(S0): L) L) L)1) ) ) RO

Uk(tj)stj);

for j = 0;1;:::;K  1: It is clear that ifa = 1; then the GEM §], reduces to the
classical Euler's method.

4.2. Shifted Chebyshev spectral method

Itis well known Chebyshev polynomials of the rst kind areded on the interval
[ 1;1] and can be determined with the aid of the following recuregiocmula [L1].

Tw1(d = 22W(2) Tk 1(2); k= L2300,

whereTy(2) = 1; andTi(2) = z In order to use these polynomials on the intefal
we de ne the so called shifted Chebyshev polynomials of tist kind by introducing
the change of variable = % 1. Let the shifted Chebyshev polynomiéﬁs(% 1)
be denoted by

)

Tw1(0 = 2 T 1T.(@ T 132; k=123

where Ty (2 = 1 and T, (2) = % 1: The analytic form of the shifted Chebyshev
polynomialsT, (t) of degreek is given by

k+i 1!

® nEni (40)

k o
T ()= kg ( Dk 22
i=0
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Note thatT, (0) = ( 1)k and T, (1) = 1. The functionu(t) , which is a square inte-
grable function in[0; L], may be expressed in terms of shifted Chebyshev polynomials
as ¥
ut) = acT (); (41)
i=0
where the coef cients; are given by:
2 %L
G=— ul®)T (t)dt; hg=2;, h=1; i=0;1;:::: (42)
phi o
In practice, only the rst(m+ 1)-terms of shifted Chebyshev polynomials are consid-
ered. Then we have

(= & oT, ) (43)
i=0
Dun(t) = & &D*(T; (1): (44)

i=0
Therefore, fori = 1;2;:::;m;

k+i 10

DW?O»=iéi; NP MG A
i ik=é;ae( u k22k(i (kk)!Jr(;k!)lc)a(!lfftkir 1;)|_i “ 2 (45)
Then
D"un(0)= & oQu )
whereQ; is given by
Qi = | é (1) ko (KHD DIGKED g “

k=dae (i RI(2KHGK+1 a)l

5. Error analysis

In this section, special attention is given to study the eogence analysis and
evaluate an upper bound of the error of the proposed formula.

THEOREM5.1. (Chebyshev truncation theorem)] The error in approximating
u(t) by the sum of its rst m terms is bounded by the sum of the atesealues of all
the neglected coef cients. If
m
um(t)= @ T, (1): (48)
i=0
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then ¥
Er(m) j um(t) ut)j6 & T (1); (49)

i=mt+1

forall u(t), all m,andall t2 [ 1;1]:

THEOREM5.2. The error E-(m) in approximating B u(t) and D? uy(t) is boun-

ded by
4 i kdae

Erf(mM6 4 ¢ a a Qu*5h (50)
i=m+1 k=dae j=0

Proof. A combination of Egs.41), (43) and @4)

JEr(m)j = jD%um(t) DAu(t)]
éé m kdoae
=jda aa a au'mi
i=m+1 k=dae j=0
butjT;j6 1 so, we can obtain
m kd ae

Er(m) 6 j a ¢ca a Q’d;
i=m+1 i=dae j=0

and subtracting the truncated series from the in nite sef®unding each term in the
difference, and summing the bounds completes the proofatthorem.

5.1. Discretizations and numerical results

Consider the systems given in Eq$){(8) and 6)—(33). In order to use SCSM,
we rst approximateS(t), Ls(t), Lm(t), Lx(t), Is(t), Im(t), Ix(t), R(t), I 1(t), I 2(t),
I3(t), 14(t), Is5(t), Ie(t), I 7(t) andl g(t) as follows:

st = goaﬂ 0 L= iénobm (v (51)
Lin(t) = gocm ;L= godm (®): (52)
)= g aT (0 Il = gofm (v (53)
() = |éong 0 RO)= gohm (v (54)

I;|_:g1 kT (1); Izzgl’i'ﬁ (); (55)

0 i=0
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% a9

I3=auT (t); la= @ VT (1); (56)
i=0 i=0
o 9

Is=awT (t); le= axT (1); (57)
i=0 i=0
3 3

Iz=avyT (t); ls= a zT (1): (58)

i=0 i=0
Now we collocate the soluation at+ 1 d ae pointstp, (p= 0;1;::;;m+ 1 d ae)
as:
oood o aloaT (tp)&loaT (t
é é aiQi;ktE 1=ba daé a4T| (tp) bsa i=0 i (D)N i=0 i (p)
daek=dae i=0
iTi (tp) &
i= 0
ailoaiTi (tp)&iZo0iT; (tp)
b;(a|0|DN|OI|D; (59)

£ 4 pouk 1o apadilodT (9)aloaT ()
f s ¥s
i= daek=dae P N
al abaal OhT (tp)a| o€, (tp)
N
apa alobiT (th)aZoaT (tp)
N
aditobiT (tp) Ao fiT; (tp)
mb N
abaa| ObT (tp)a| 00T, (tp) + ngT (tp)
N iz0

(d? + €€ + tfs+ e (t)) a biTi (tp); (60)
i=0
m i
o o a; oa{T (tp)a| OfT (tp)
a a Cithk l_laba i=
i=daek=dae N
AlohiT (tp) &l fiT; (t)
+Sr?,/néf,ba i=0 PN|0
Alobi T (AT (1)
+a§n‘prﬁlr?1 i=0 ™ NlO
2&0oGT (DAL FT (1)
m m N
m
a baal OC|T (t)Nal OgIT (t) + gié fIT| (tp)
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(d?+ em)a T (tp)+ tlsa biT; (tp)

i=0
m
+ eu(t) é biT (tp) Pftfsé biT (tp)+ 5, &T (tp)
i=0 i=0 i=0
% g
+euwt)a eT () Pitia eT (t); (61)
i=0 i=0
ém éi dIQI ktk 1_ Iabaal Oa‘T (tp)al Ong (tp)
i=daek=dae N
+ S)?/)flb)?émoth (tp)éi@ogiT (tp)
N
" aéaxbal aéirgobiT (tp)l\léirgogi-r (tp)
+ad bal? aa| oGiT (tp )Na| 0GiT (tp)
AT,dT (tp) &2, (t m
agg 2200 T WAEOT ) (e ) 4 4T (1)
i=0
g g
+£aar (tp)+thha fiT (tp)
i=0 i=0
g g
+eaut)a fiT (tp) Piti,a fiT (tp); (62)
i=0 i=0
m i °
é é aQ ktk 1_assbaal ObT (tp)a| OQT (tp)
i=daek=dae N
+(1 a)ba aI Oa‘T (t )N i= OQT (tp)
m
+ Séaal OhT (tP)Nal OQT (tp) + eé’é_ biT (tp)
i=
g
(d%+ df + 5+ &€ + eua(t) A &T (tp); (63)
=0
ém él fQudk T=ad aa| oGT (t)&Zo fiT (1)
i=daek=dae N
+(1 13)pa aiZoaT (tp)N| ofiT (tp)
+ Sgémoh|T (tp),\léIZOflT (tp)
g m ) 2 m i m
+ aéamalzoblT (tP)NalzoflT (tp) + eﬁ]é_ aT (tp)
i=0
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m
(d?+ g3+ i+ esus(t) + g) @ T (tp); (64)
i=0
ém él 6Qutk 1= a baa| 00T (tp) 200 T (tp)
XX
i=daek=dae N
+(1 I;(’:l)b;(a émoa*T (tp)NémogiT (tp)
+ SaéirgohiT (tp)émogiT (tp)
N
aaal ObT (tp)al OgIT (tp)
N
m
+ ar?’nxal OCIT (tD)Nal OgIT (tp) + e)? é d|T (tp)
i=0
g
(d%+ d2 + 5+ of + exua(t)) a gT (tp); (65)

m i
a & hQut '=pP7 tlsa biT (tp)+ Patzs aT (tp)+ Patzma fiT (tp)
da

i=daek=dae i=0 i=0 i=0

+ t2xa giT (tp)+ equa(t) a gt (tp)

i= i=0
aba al OhT (tp)al OQT (tp)
N
baal OhT (tp) &z OfiT (tp)
N
m h am m
sg 22T (D8200T @) e 4 (i (o)
i=0
g 3 k1 g bg ¢ ba &
a a kQixty "= a kT (tp) ,\Sl aeT (tp)+ ,\rln a fiT (tp)
i=daek=dae i=0 i=0 i=0
bi § r L
+rag’l (t)+d®  anT ()= a aT (tp)
N i=0 i=0 i
iy /aba : /aba »
auT (tp) a fiT (tp) a viT ()= a aT (tp)
i=0 =0 i=0
p 1 13)ba §
& wT (m)% 4 aT (to)
i=0 i=0
p 1 12)ba g
A xT (1) TR 5 T ()
i=0 i=
g 1 12)b2 g
AT (D0 g T (1) (67
i=0 i=0
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m i m anagm
a a rnQdp = 1+ A riT (tp) P asaioaT ()
i=daek=dae i=0 N
N biadnailo fiT (tp) . biag
N N
o
aarT tp+ a nT (tp)(d® + €€ + ti+ eruy(t))
i=0 i=0
gn | abaa o
auT (tp)Tsm a fiT (tp)
i=0 i=0
m
(t&+ euy(t)  Piti) § uT (tp)
i=0
gn I a aaa gn
auT (t)—=——"aeaT (t)
i=0 1=
m b&a& & g 2
awT (tp) aeT () awT (tp)e
i=0 i=0 i=0
cran baa o
axT (tp)(1 12208 fiT (tp)
i=0 I—O
% b2a2 & g
avyT () 1= Sxa aT (tp) Pitia zT (tp) ;
i=0 i=0
(68)
U o am fiT (t amoagT (t
& & = (AuT () afybs =0t 1)y gp pednod T ()
i=daek=dae i=0
m am
+d?+ 3 é viT (tp)a%xbflf%w
i=0
m am ¢
A XT (tp)afehs 20t ) )
i=0
o al,aT (t
AT ()1 1 Dagbp d=0dT 1), (69
i=0
m | m
A & vouti = AT () agbtdE9T (), gay e
i=daek=dae i=0 N
m
B yT () agopdEdT® g (70)
i=0

nod o' aloaT (t
a a wQuts = ( 1+ KT (tp)pd == —F N (tp)
i=daek=dae i=0

+
i

37T (t
T (p)(agps =00 T L)

Qo3

0
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o m .
Iabaalzoa*NT (tp) Isazssazbaal OhNT (tp) %a)
m
+AWT (tp) (d+ a8 + 5+ ety(t)+ &)
i=0

g m . g m .
Iéa)bsaalzoaT (tp) Séa(l Iéa)bsaaI:OhIT (tp)

(1 N N
saéas gﬂ gn asa
+ BESZ BT (1) AT ()t () PR
i=0 i=0
I aMohT (t
¢ 8 a7 ((s2bz BENT ) payg), )
i=0
m i m am A
4 & xQu'= 1+ A KT (ppgtEearle)
i=daek=dae i=0
+ g |'|T (tp) mbaal ObT (tp)
i=0 N
m
9 apadicoal (tp) aga ad2ohiT (tp)
E.OulT (tp)(I mbm N +128s3p2 N
apa
. "’Aﬂ A 6T 1) el amméQT (to)+ &)
. _
_aoViT (tp)tom a0V|T (tp) &3us(t) + a viT (tp)Pits,
1= | i=0
c';n aaa o a aT (t
AxT () 5 g o7 ) e(1 1 py R
i=
aM hiT (t aMm biT (t
rsa 1bg =T )y gz ) g)pa doBT ()
(d? + di + thy+ esus(t) + gf)
m am
82T (t) Potg, sapatizonl ()
i=0 N
m i
a & Qs '= 1+ a kT (tp)ba%-r(tp)
i=daek=dae i=0
m
+ é I'|T (tp)as baal ObT (tp)
i=0 N
m s m .
+ A uT (tpaghy 20T )
i=0 N
m am gl _
é T (tp) Ia abizai:OhIT (tp) + lxab;(aalzoa‘T (tp)

N

i
o
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+]832p2 é—irgobiT (tp) +]aga baéirQOCiT (tp)

N xamx X N
am m
+ gxa a;?xbf al:ogll\lT (tp) a le (t ) axxbaal OdNT (tp)
aloaT (tp) Al biT (tp)
+(1 /;(a)bf |0N P+(1 a)ba a |0N [
aohiT (tp)
(1 1 9)bgsgdzoi T ()

b1 12b2ag 00T ) L (o y g2y ia + quy+ )

N
o am hT (t
82T () G+ au, sppg =0Tl )
i=0
&g g T (t
8 & 20ul= AT (pnfasp il (D)
i=daek=dae i=0
I fiT (tp)
T (t bala aal 0 P
IE:iOUI (tp) mT N
o ANLaiT (tp)
T (t bala adi=oUi P
EbvI (p) SX N
o T (tp)
T (t:)(1 a ba aa| 08 [
I?.OWl (P)( s) N
3 am fiT (t
AXT () | pbgsy =T
i=0 N
o am agT (t
AyT () 1)b7sy 208 T
i=0 N
g aloaT (t am fiT (t
+aZiT (tp) Ssba i= ON (P) Sr?]br}‘i] i O;\l (p)
i=0
am .
sfbxa%”tph da - (73)

In the following we will use the roots of shifted ChebysheWpmmialsT; (t) as suit-
able collocation points. By substituting the initial cotioins and the transeversity con-
ditions in Eqgs. $1)—(58), we can obtain sixteen equations as follows:

A( V'a=% A&( D'bi=Ly A( 1'ci= Lo (74)
i=0 i=0 i=0
Al Dd=Lo &( D'e=ln A( 1'fi=lm; (75)
i=0 i=0 i=0

a( D'g=lo; &( H'hi=Ro; (76)

i=0 i=0



22 N. SWEILAM AND S. AL-MEKHLAFI

al Dk=11t)=0 &( D'ri=1I2t)=0 &( D'ui=1I3tr)=0; (77)
i=0 i=0 i=0
A Dvi=1l4t)=0; &( D'wi=1str)=0 &( Dx=le(ts)=0; (78)
i=0 i=0 i=0
al Dyi=17t)=0 a( D'z=1lgts)=0: (79)
i=0 i=0

Equations $9)—(73), together with the equationg4—(79), give (16m+ 16) of non-
linear algebraic equations where is the degree of shifted Chebyshev polynomials,
this algebraic equations can be solved using the Newtaration method for the un-
knownsa;, b, ¢, di, &, fi, g, hi, ki, ri, Ui, vi, W, X, yi,andz, i= 0;1;:::;m

6. Numerical experiment

The purpose of this section is to show that, SCSM designedusrpaper provides
good approximations for the optimality systei(8) and 6)—(33). The approximate
solutions of the proposed system are given in Figures (1y-8stmg SCSM and GEM.
Also, using the initial cond|t|0r(S(0) LS(O) Lm(0); Lx(0); 15(0); Im(0); 1x(0); R(0)) =

17260N, ZN; 35N 15N; 155N 1a6N; 130N 15N . m= 8 and the parameters in Table
3. Fig. 1, shows thaf§(t) + Ls(t) + Lm(t)+ Lx(t)+ Is(t) + Im(t) + Ix(t) + R(t)=N is
constant in time using SCSM for the controlled case wheh ) 6 1; wherek =
1;2;3;4 compared with the uncontrolled case is.~= u, = u3= us= 0 with a = 1.
Regarding the obtained results in Fig. 2, the effect of thetrodler on this model is

Figure 1:Plot of t)+ Lg(t)+ Lm(t)+ Lx(t)+ Is(t)+ Im(t)+ Ix(t)+ R(t)=N versus t in years by
using SCSM for the controlled case wh@6 us;Uuy;us;us 6 1, compared with the uncontrolled
case when 4= up= uz= uy = 0.
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reliable mainly for the two state variablégt) and|,(t). The effect of the controllers
on other variables is not quite effective. Since Fig. 2, shtive numerical simulations
of the model 1)—(8) for the controlled case using SCSM whei6 @ 6 1, compared
with the uncontrolled case whan = u, = us = us = 0. We note that the numbelg
andly are larger in uncontrolled case compared with the contt@iéese. The number of
R(t); (t) is larger in controlled case compared with the uncontratesk. Also, from
Table4, the value of objective functional is larger in unitotked case compared with
the value of objective functional in controlled case. Figsi3ows the control variables
U, in atime units of years by using SCSM.

Table 4: Comparisons between the obtained result by using SCSM imoded case and un-
controlled case, i.e., whem & up= uz3=us=0and T= 4.

J(ug;Up;ug;Ug) | Ls(4)+ Is(4)+ Im(4)+ 1x(4)
With control 16796.1772 1196
Without control 25783 3422

Table 5:The values of objective functional by using SCSM with Z and differieren values of
a.

a | J(ugup;uz;ug) | Ls(4)+ 15(4) + Im(4) + 1x(4)
0.90 16796.1772 1196
0.80 | 14685.8392 1882
0.7 15009.0953 1968
0.6 16944.1784 2055

Table 6:Comparisons between GEM and SCSM where Z and differieren values of .

a | Methods| J(ur;up;us;us)

1 GEM 20938
SCSM 16796.1772

0.98 GEM 19850
SCSM 18132.8658

0.95| GEM 18277
SCSM 17940.3829

Fig. 4, shows thaB(t) + Lg(t) + Lm(t) + Lx(t) + Is(t) + Im(t) + Ix(t) + R(t)=N is
constant in time using GEM for the controlled case whénh @ 6 1. Fig. 5, shows the
control variablesy, by using GEM ata = 1. Fig. 6, shows the numerical simulations
of the model 1)—(8) and @6)—(33) for the controlled case using GEM at different values
of a. Fig. (6-8), show that, how the fractional model is a gerizatibn of the integer
order model. In Table 5, the numerical value of sum the stat@blesls; Is; Imn;
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andly at T = 4 and the objective functional, obtained by SCSM with défervalues
of a. In Table 6, the values of the objective functional which ab¢ained by SCSM
is compared with the results which obtained by GEM . From thieerical solutions,
it is found that, the results which obtained by SCSM is bettan GEM. All results
were obtained by using MATLAB (R2013a). on a computer maehiith intel(R) core
i3 311M @ 240GHzand 45B RAM.

Figure 2: The numerical simulations of the mod&)<(8) for the controlled case whef 6
Uz;Up;ug;uy 6 1, compared with the uncontrolled case when=uu, = uz = us = 0 by using
SCSM.
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Figure 3: The optimal control y; u,;ug;u, in a time units of years by using SCSM.

Figure 4:Plot of Jt)+ Lg(t)+ Lm(t) + Lx(t) + Is(t)+ Im(t) + Ix(t)+ R(t)=N versus t in years
by GEM.

Figure 5: The optimal control y; u,;Us; U, in a time units of years by using GEM.
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Figure 6: The numerical simulations for the controlled case using GEith differenta .
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Figure 7: The numerical simulations for the controlled case withedéht values ofa using
SCSM.
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Figure 8: The optimal control y; u,; ug; U, in a time units of years by using SCSM.

7. Conclusions

In this paper, numerical solutions of the optimal contrallgem for multi-strain
TB model are presented. Modi ed parameters are introduoexttount for the frac-
tional order model. Four controls functiomns; up; us; andug; are introduced, these
controls are given to reduce the number of active infectetlatent TB individuals of
rst strain. The controlsuy; usz;and u; represents the effort that prevents the failure
of treatment in active TB infectious individuals; Im; and ly; e.g., supervising the
patients, helping them to take the TB medications regulang to complete the TB
treatment, while the contral; governs the latent individualss under treatment with
anti-TB drugs. Necessary and suf cient conditions thatrgatee the existence and
the uniqueness of the solution of the resulting systems isemg The optimality sys-
tem is approximated by shifted Chebyshev polynomials whighsformed the model
problem to a system of algebraic equations with unknown ciesits. It is solved nu-
merically using Newton's iteration method. Some gures green to demonstrate how
the fractional model is a generalization of the integer ordedel. Comparative studies
are implemented between SCSM and GEM, It can be concluded tlhe numerical
results presented in this paper that, the proposed methedtes than GEM. Moreover,
It can be concluded that fractional models have the potenti@escribe more complex
dynamics than the integer models and can include easily #raary effect present in
many real world phenomena.
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