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Abstract. In this paper, optimal control for a novel fractional multi-strain Tuberculosis model
is presented. The proposed model is governed by a system of fractional differential equations,
where the fractional derivative is de�ned in the Caputo sense. Modi�ed parameters are intro-
duced to account for the fractional order. Four controls variables are proposed to minimize the
cost of interventions. Necessary and suf�cient conditionsthat guarantee the existence and the
uniqueness of the solution of the resulting systems are given. The optimality system is approxi-
mated by shifted Chebyshev polynomials which transformed the system of differential equations
to a nonlinear system of algebraic equations with unknown coef�cients. The convergence analy-
sis and an upper bound of the error of the derived formula are given. Newton's iteration method is
used to solve this system of nonlinear algebraic equations.The value of the objective functional
which is obtained by the proposed method are compared with those obtained by the generalized
Euler method. It is found that, Shifted Chebyshev spectral-collocation method is better than the
generalized Euler method.

1. Introduction

It is well known that, the mathematical models are a quite important and ef�cient
tool to describe and investigate several problems in natural sciences disciplines such
as biology, physics, weather science and many other �elds ([3], [12], [15], [16], [19],
[43], [46], [44], [45]). Numerical simulations are sometimes the only way to solve
these mathematical models or to derive the desired information out of it. The accuracy
of these numerical solutions is a major factor to consider while deciding on which
numerical method is to be used in solving a mathematical model.

Recently, the theory of fractional optimal control problems has been under de-
velopment. Necessary optimality conditions have been developed for (FOCPs). For
instance, in ([4]–[7]) necessary conditions of optimization for fractional optimal con-
trol problems FOCPs in the sense of Riemann-Liouville derivative have been achieved
and solved the problem numerically using �nite difference methods. In [28], the au-
thors presented a numerical method for solving FOCPs in the Caputo sense is based
on Chebyshev polynomials approximation and �nite difference method. In [9] Baleanu
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et al., used central difference scheme for solving FOCPs. In[10] Biswas and Sen pre-
sented a numerical technique for the solution of fractionaloptimal control problems
de�ned both in terms of Riemann-Liouville and Caputo fractional derivatives. Agrawal
et al. in [8] formulated FOCPs in multi-dimensions of the state and control variables.
They used Riemann-Liouville fractional derivative with Grünwald-Letinkov approxi-
mation to get their numerical scheme. In [47], Tricaud and Chen discussed FOCPs
and their solutions by means of rational approximation. Lot� et al. in [ 29], consid-
ered FOCPs in terms of Caputo operators and solve it using theLegendre orthonormal
polynomial basis. Jafari and Trajadodi in [30] have studied FOCPs using Bernstein
polynomials.

The past three decades have seen rapid development in the fractional calculus
(fractional differential equations) �eld ([21], [27], [37]). The applications of frac-
tional calculus are becoming increasingly important in science and biology, ([43]–[44]),
control theory of dynamical systems [42], magnetic plasma [22], physics [40] and the
process can be successfully modeled by fractional differential equations (FDEs) ([38],
[39]). For certain applications the use of fractional derivatives is justi�ed since they
provide a better model than integer order derivative modelsdo since they provide a
powerful instrument for incorporation of memory and hereditary properties of the sys-
tems as opposed to the integer order models, where such effects are neglected or dif�-
cult to incorporate. The memory effect is due to the fact thatfractional derivatives are
non-local as opposed to the local behavior of integer derivatives ([1], [23]–[25]).

Spectral methods have developed rapidly over the past four decades by a huge
number of studies see for details, ([13], [17], [31], [32]). The principal advantage of
spectral methods lies in their ability to achieve accurate results with substantially fewer
degrees of freedom. In recent years, Chebyshev polynomials[11] which are families
of orthogonal polynomials on the interval[a;b] have become increasingly important in
numerical analysis, from both theoretical and practical points of view. We refer here to
the excellent book [31], for the reader who is interested in Chebyshev polynomialsof
all kinds.

Tuberculosis (TB) can be considered as one of the most important infectious dis-
eases, it is the second largest cause of mortality by infectious diseases and is a challeng-
ing disease to control [26]. It is caused by various strains of Mycobacteria. Speci�cally,
Mycobacterium tuberculosis. TB primarily affects the lungs, but it can also affect or-
gans in the central nervous system, lymphatic system, and circulatory system among
others.

Several papers considered modeling TB such as ([3], [14], [15], [34], [36], [48]).
We consider in this work a multi-strain TB model of fractional order derivatives as
extension the model of TB which given in [2]. This model includes several factors
of spreading TB such as the fast infection, the exogenous reinfection and secondary
infection along with the resistance factor [42]. The model incorporates three strains,
drug sensitive emerging, multi-drug resistant(MDR) and extensively drug-resistant
(XDR) . Sweilam and AL-Mekhla� introduced some numerical studiesof this model in
([42]–[45]).

The aim of this paper is to study optimal control of fractional multi-strain TB
model with modi�ed parameters, this modi�ed parameters areintroduced to account
for the fractional order [1]. Four controls represent the effort that prevents the failure
of treatment in active TB infectious individuals. Shifted Chebyshev spectral method, is
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used to solve such optimality system. The state and control variables are expanded in
shifted Chebyshev series with unknown coef�cients, the resultant system of algebraic
equations is solved using Newton iteration method. Two numerical methods are used to
study the optimal control problem (OCP). The methods are theshifted Chebyshev spec-
tral method (SCSM) and the generalized Euler method (GEM). Comparative studies are
implemented.

This paper is organized as follows: In Section2, a multi-strain TB model with
control is given. In Section3, formulation of the optimal control problem and the nec-
essary optimality conditions for the multi-strain TB modelare derived. In Section4,
Numerical methods for solving the optimal control problem are given, also, we derive
an approximate formula for derivatives using Chebyshev series expansion, In section
5, we study the error analysis of the introduced approximate formula, moreover the
numerical implementation of the proposed technique is given in section6. The conclu-
sions are given in section7.

2. Multi-strain TB model with controls

In the following, the fraction multi-strain TB model is presented. The population
of interest is divided into eight compartments depending ontheir epidemiological stages
as follows: susceptible(S) ; latently infected with drug sensitive TB(Ls) ; latently
infected with MDR TB(Lm) ; latently infected with XDR TB(Lx) ; sensitive drug TB
infectious(Is) ; MDR TB infectious(Im) ; XDR TB infectious(Ix) ; recoveredR. All
interpretation and meaning of this variables see Table1. One of the main assumptions
of this model is that, the total population,N; with N = S(t) + Ls(t) + Lm(t) + Lx(t) +
Is(t)+ Im(t)+ Ix(t)+ R(t); is constant in time. In other words, we assumeba = ( dN)a ;
where,ba is birth rate andda is natural death rate also, we assume there is no disease-
induced death rate, i.e.,da

s = da
m = da

x =0. Four control functionsu1(�); u2(�); u3(�)
and u4(�); and four real positive constantse1; e2; e3; and e4; will be added to the
model. The controlu1 governs the latent individualsLs that is put under treatment.
The controlsu2; u3 and u4 represents the effort in preventing the failure of treatment
in active TB infectious individualsIs, Im; Ix; respectively, e.g., supervising the patients,
helping them to take the TB medications regularly and to complete the TB treatment.
The parametersei 2 (0;1) , i = 1;2;3;4; measure the effectiveness of the controls
uk; k = 1;2;3;4; respectively, i.e., these parameters measure the ef�cacy of treatment
interventions for active and persistent latent TB individuals. The new parameters of the
model are described in Table2, this modi�ed parameters are introduced to account for
the fractional order [1]. The new system is described by fractional order derivatives as
follows:

Da
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mmba
m

LmIm
N

+ ( 1� l a
m)ba

m

� SIm
N

+ s a
m

RIm
N

+ a a
sm

LsIm
N

�
+ ea

mLm

� (da + da
m + ta

2m+ e3u3(t) + ga
m)Im; (6)
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Da
t R= Pa

1 ta
1sLs+ Pa

2 ta
2sIs+ Pa

3 ta
2mIm+ ta

2xIx + e4u4(t)Ix � s a
s ba

s
RIs
N

� s a
mba

m
RIm
N

� s a
x ba

x
RIx
N

� da R: (8)

Table 1:All variables in the system(1) –(8) and their de�nition.

Variable De�nition

S(t) The susceptible population, individuals who have never encountered
TB.

Ls(t)
The individuals infected with the drug sensitive TB strain but who are
in a latent stage,i � e, who are neither showing symptoms nor infecting
others.

Lm(t) Individuals latently infected with MDR-TB.

Lx(t) Individuals latently infected with XDR-TB.

Is(t)
Individuals infected with the drug-sensitive TB strain whoare infectious
to others (and most likely, showing symptoms as well).

Im(t) Those individuals who are infectious with the MDR-TB strain.
Ix(t) Individuals who infectious with the XDR-TB strain.
R(t) Those individuals for whom treatment was successful.

N(t)
The total population .
N = S+ Ls+ Lm+ Lx + Is+ Im+ Ix + R:

Also all parameters and their interpretation as follows:
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Table 2:All adapted parameters in the system(1) –(8) and their interpretation.
Parameter Interpretation

ba birth/recruitment rate
da per capita natural death rate

Disease dynamics
ba

r transmission coef�cient for strainr

l a
r

proportion of newly infected individuals developingLTBI with
strainr

1� l a
r

proportion of newly infected individuals progressing to active
TB with strainr due to fast infection

ea
r per capita rate of endogenous reactivation ofLr

a a
r1;a a

r2 proportion of exogenous reinfection ofLr1 due to contact withIr2
ga
r per capita rate of natural recovery to the latent stageLr

da
r per capita rate of death due toTB of strainr

Treatment related
ta
1s per capita rate of treatment forLs

ta
2r

per capita rate of treatment forIr . Note thatt2x is the rate of
successful treatment ofIx; r 2 f x;m;sg

1� s a
r ef�ciency of treatment in preventing infection with strainr

Pa
1 probability of treatment success forLs

1� Pa
1

proportion of treatedLs moved toLm due to incomplete treat-
ment or lack of strict compliance in the use of drugs

Pa
2 probability of treatment success forIs

1� Pa
2

proportion of treatedIs moved toLm due to incomplete treatment
or lack of strict compliance in the use of drugs

Pa
3 probability of treatment success forIm

1� Pa
3

proportion of treatedIm moved toLxdue to incomplete treatment
or lack of strict compliance in the use of drugs

Table 3:All parameters in the system(1) –(8) .

parameter value

ba (N� d)a ( 1
year)

a

da (1=73:45)a ( 1
year)

a

ba
s = ba

m = ba
x 14a ( 1

year)
a

l a
s = l a

m = l a
x 0:5a ( 1

year)
a

ea
s = ea

m = ea
x 0:0002a ( 1

year)
a

a a
r1;r2 0:05a ( 1

year)
a
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ga
s = ga

m = ga
x 0:00002a ( 1

year)
a

ta
1s 2a ( 1

year)
a

ta
2r : r 2 (s;m;x) ta

2s = 2a ; ta
2m = ta

2x = ( 1
year)

a

s a
r 0:25a ( 1

year)
a

Pa
r 0:88a ( 1

year)
a

da
r 0

2.1. The basic reproduction number

The basic reproduction number (R0 ) represents the expected average number of
new TB infections produced by a single TB active infected individual when in contact
with a completely susceptible population [50].

To derive a formula forR0 using the next generation method, we follow the
method of [50] and order the infected variables as

Á := ( Ls;Lm;Lx; Is; Im; Ix)0

The vector representing new infections into the infected classesF is given by

F :=
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;

The vectorV representing other �ows within and out of the infected classesÁ is given
by
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The matrix of new infectionsF and the matrix of transfers between compartments
V are the Jacobian matrices obtained by differentiatingF and V with respect to the
infected variablesÁ and evaluating at the disease free equilibrium. They take the form:

F :=
�

0 A
0 B

�
; V :=

�
C D
E F2

�
;

where,

A =

0

@
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s ba
s 0 0

0 l a
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m 0
0 0 l a
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1

A ;
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x

1

A ;

Then the basic reproduction numberR0 for the system (1)–(8) is the spectral radius of
the next generation matrix and is given by

R0 = r (FV � 1) = max(R0s;R0m;R0x); (9)

where,

R0s =
ba

s (ea
s + ( 1� l a

s )(da + ta
1s))

(ea
s + da + ta
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s (ta
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;

R0m =
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m)da )
(ea

m + da )(ta
2m+ da

m + da ) + da ga
m

;

R0x =
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x (ea
x + ( 1� l a

x )da )
(ea

x + da )(ta
2x + da

x + da ) + da ga
x
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3. Formulation of the optimal control problem

Let us consider the state system (1)–(8), in R8 with the set of admissible control
functions:

W= f (u1(�);u2(�);u3(�);u4(�)) 2 (L¥ (0;T)) j 06 u1(�);u2(�);u3(�);u4(�) 6 1;8t 2 [0;T]g:

The objective functional is given by [42] as follows:

J(uk) =
Z T

0
h (S;Ls;Lm;Lx; Is; Im; Ix;R;uk;t)dt; (10)

wherek = 1;2;3;4; and

J(u1(�);u2(�);u3(�);u4(�)) =
Z T

0
[Is(t) + Im(t) + Ix(t) + Ls(t) +

1
2

B1u2
1(t) +

1
2

B2u2
2(t)

+
1
2

B3u2
3(t) +

1
2

B4u2
4(t)]dt; (11)

where the constantsB1 , B2 , B3 and B4 are a measure of the relative cost of the inter-
ventions associated with the controlsu1 , u2 , u3 andu4 , respectively.

The main point in fraction optimal contol problems is to �nd the optimal controls
uk(t); wherek = 1;2;3;4; which minimizes the objective function (11), subject to the
following state system:

c
aDa

t S= x1(S;Ls;Lm;Lx; Is; Im; Ix;R;uk;t); (12)
c
aDa

t Ls = x2(S;Ls;Lm;Lx; Is; Im; Ix;R;uk;t); (13)
c
aDa

t Lm = x3(S;Ls;Lm;Lx; Is; Im; Ix;R;uk;t); (14)
c
aDa

t Lx = x4(S;Ls;Lm;Lx; Is; Im; Ix;R;uk;t); (15)
c
aDa

t Is = x5(S;Ls;Lm;Lx; Is; Im; Ix;R;uk;t); (16)
c
aDa

t Im = x6(S;Ls;Lm;Lx; Is; Im; Ix;R;uk;t); (17)
c
aDa

t Ix = x7(S;Ls;Lm;Lx; Is; Im; Ix;R;uk;t); (18)
c
aDa

t R= x8(S;Ls;Lm;Lx; Is; Im; Ix;R;uk;t); (19)

and satisfying the inital conditions:

S(0) = S0; Ls(0) = Ls0; Lm(0) = Lm0; Lx(0) = Lx0;

Is(0) = Is0; Im(0) = Im0; Ix(0) = Ix0; R(0) = R0:

The following expression de�nes a modi�ed objective function:

J̃ =
Z T

0
[H(S;Ls;Lm;Lx; Is; Im; Ix;R;uk;t)

�
8

å
i= 1

l ixi(S;Ls;Lm;Lx; Is; Im; Ix;R;uk;t)]dt; (20)
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whereH(S;Ls;Lm;Lx; Is; Im; Ix;R;uk;t) is the following Hamiltonian

H(S;Ls;Lm;Lx; Is; Im; Ix;R;uk; l i ;t) = h (S;Ls;Lm;Lx; Is; Im; Ix;R;uk;t)

+
8

å
i= 1

l ixi(S;Ls;Lm;Lx; Is; Im; Ix;R;uk;t): (21)

From (20) and (21), we can derive ([7]–[8]):

c
t D

a
t f

l 1 =
¶H
¶S

; c
t D

a
t f

l 2 =
¶H
¶Ls

;

c
t D

a
t f

l 3 =
¶H
¶Lm

; c
t Da

t f
l 4 =

¶H
¶Lx

; (22)

c
t D

a
t f

l 5 =
¶H
¶Is

; c
t D

a
t f

l 6 =
¶H
¶Im

;

c
t Da

t f
l 7 =

¶H
¶Ix

; c
t D

a
t f

l 8 =
¶H
¶R

;

0 =
¶H
¶uk

; (23)

c
0Da

t S=
¶H
¶ l 1

; c
0Da

t Ls =
¶H
¶ l 2

;

c
0Da

t Lm =
¶H
¶ l 3

; c
0Da

t Lx =
¶H
¶ l 4

; (24)

c
0Da

t Is =
¶H
¶ l 5

; c
0Da

t Im =
¶H
¶ l 6

;

c
0Da

t Ix =
¶H
¶ l 7

; c
0Da

t R=
¶H
¶ l 8

;

and it is also required that:

l i(b) = 0; where i = 1;2;3; : : : ;8: (25)

Eqs. (23) and (25) describe the necessary conditions in terms of a Hamiltonian for the
optimal control problem de�ned above.

THEOREM 3.1. If u�
1(�);u�

2(�); u�
3(�); and u�

4(�) are optimal controls with corre-
sponding staste S� (�); L�

s(�); L�
m(�); L�

x(�); I �
s (�); I �

m(�); I �
x (�); and R� (�) then there

exist adjoint variablesl �
1 ; l �

2 ; l �
3 ; l �

4 ; l �
5 ; l �

6 ; l �
7 ; and l �

8 satisfy the following:
(i) adjoint equations:

c
t D

a
t f

l �
1 =

¶H
¶S

= � (l �
1 (t)

� ba
s

N
I �
s (t) +

ba
m

N
I �
m(t) +

ba
x

N
I �
x (t) + da

�
� l �

2 (t)
l a

s ba
s

N
I �
s (t)

� l �
3 (t)

l a
mba

m

N
I �
m(t) � l �

4 (t)
l a

x ba
x

N
I �
s (t) � l �

5 (t)
(1� l a

s )ba
s

N
I �
s (t)

� l �
6 (t)

(1� l a
m)ba

m

N
I �
m(t) � l �

7 (t)
(1� l a

x )ba
x

N
I �
x (t)) ; (26)
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c
t Da

t f
l �

2 =
¶H
¶Ls

= � (� 1+ l �
2(t)

� ba
s a a

ssI
�
s (t)

N
+

ba
ma a

smI �
m(t)

N
+

ba
x a a

sxI
�
x (t)

N

�

+ l �
2 (t)(da + ea

s + ta
1s+ e1u�

1(t)) � l �
3 (t)

l a
mba

ma a
sm

N
I �
m(t)

� (ta
1s+ e1u�

1(t) � Pa
1 ta

1s)l
�
3 (t) � l �

4 (t)
l a

x ba
x a a

sx

N
I �
s (t)

� l �
5 (t)

ba
s a a

ss

N
I �
s (t) � l �

5 (t)ea
s � l �

6 (1� l a
m)

ba
ma a

sm

N
I �
m(t)

� l �
7 (1� l a

x )
ba

x a a
sx

N
I �
x (t)� Pa

1 ta
1sl

�
8 (t)) ; (27)

c
t D

a
t f

l �
3 =

¶H
¶Lm

= �
�

l �
3 (t)

�
a a

mmba
m

I �
m(t)
N

+ a a
mxb

a
x

I �
x (t)
N

+ da + ea
m

�

� l �
4 (t)a a

mxb
a
x l a

x
I �
x (t)
N

� l �
6 (t)

�
a a

mmba
m

I �
m(t)
N

+ ea
m

�

� l �
7 (t)(1� l a

x )a a
mxb

a
x

I �
x (t)
N

�
; (28)

c
t D

a
t f

l �
4 =

¶H
¶Lx

= �
�

l �
4 (t)

�
a a

xxb
a
x

I �
x (t)
N

+ da + ea
x

�
� l �

7 (t)
�

a a
xxb

a
x

I �
x (t)
N

� ea
x

�
; (29)

c
t D

a
t f

l �
5 =

¶H
¶Is

= � 1+ l �
1(t)ba

s
S� (t)

N
+ l �

2 (t)
�

a a
ssb

a
s

L�
s(t)
N

� l a
s ba

s
S� (t)

N

� l a
s s a

s ba
s

R� (t)
N

� ga
s

�
+ l �

5 (t)
��

da + da
s + ta

2s+ e2u�
2(t) + ga

s

�

� (1� l a
s )ba

s
S� (t)

N
� s a

s (1� l a
s )ba

s
R� (t)

N
+

ba
s a a

ss

N
L�

s(t)
�

� l �
3 (t)(ta

2s+ e2u�
2(t)� Pa

2 ta
2s)+ l �

8 (t)
�

s a
s ba

s
R� (t)

N
� Pa

2 ta
2s

��
; (30)

c
t Da

t f
l 6 =

¶H
¶Im

= �
�

� 1+ l �
1 (t)ba

m
S� (t)

N
+ l �

2 (t)
�

a a
smba

m
L�

s(t)
N

� l �
3 (t)

�
l a

mba
m

S� (t)
N

+ l a
ms a

mba
m

R� (t)
N

+
l a

mba
ma a

sm

N
L�

s(t) �
ba

ma a
mm

N
L�

m(t) + ga
m

�

� l �
4 (t)ta

2m � l �
4 (t)e3u�

3(t) + l �
4 (t)Pa

3 ta
2m

� l �
6 (t)

� ba
ma a

mm

N
L�

m(t) + ( 1� l a
m)ba

m
S� (t)

N
+ s a

m(1� l a
m)ba

m
R� (t)

N

+ a a
sm(1� l a

m)ba
m

L�
s(t)
N

� (da + da
m + ta

2m+ e3u�
3(t) + ga

m)
�

� l �
8 (t)

�
Pa

3 ta
2m � s a

mba
m

R�

N

���
; (31)

c
t D

a
t f

l �
7 =

¶H
¶Ix

= �
�

� 1+ l �
1(t)ba

x
S� (t)

N
+ l �

2 (t)a a
sxb

a
x

L�
s(t)
N

+ l �
3 (t)a a

mxb
a
x

L�
m(t)
N

� l �
4 (t)

�
l a

x s a
x ba

x
R� (t)

N
+ l a

x ba
x

S� (t)
N

+ l a
x a a

sxb
a
x

L�
s(t)
N
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+ l a
x a a

mxb
a
x

L�
m(t)
N

+ ga
x � a a

xxb
a
x

L�
x(t)
N

�

� l �
7 (t)

�
a a

xxb
a
x

L�
x(t)
N

+ ( 1� l a
x )ba

x
S�

N
+ ( 1� l a

x )ba
x a a

sx
L�

s

N

+ ( 1� l a
x )ba

x s a
x

R�

N
+ ( 1� l a

x )ba
x a a

mx
L�

m

N

+( da + da
x + ta

2x+ e4u�
4+ ga

x )
�

� l �
8 (t)

�
ta
2x+ e4u�

4� s a
x ba

x
R
N

��
; (32)

c
t D

a
t f

l �
8 =

¶H
¶R

= �
�

� l �
2 (t)ba

s l a
s s a

s
I �
s (t)
N

� l �
3 (t)ba

m l a
ms a

m
I �
m(t)
N

� l �
4 (t)ba

x l a
x s a

x
I �
x (t)
N

� l �
5 (t)(1� l a

s )ba
s s a

s
I �
s (t)
N

� l �
6 (t)(1� l a

m)ba
ms a

m
I �
m(t)
N

� l �
7 (t)(1� l a

x )ba
x s a

x
I �
x (t)
N

+ l �
8 (t)

�
s a

s ba
s

I �
s

N
+ s a

mba
m

I �
m

N
+ s a

x ba
x

I �
x

N
+ da

��
; (33)

(ii) with transversality conditionsl �
i (T) = 0, i = 1; : : : ;8.

(iii) optimality conditions:

H(S� (t);L�
s(t);L�

m(t);L�
x(t); I �

s (t); I �
m(t); I �

x (t);R� (t); l � (t);u�
k(t))

= min
06 uk6 1

H(S� (t);L�
s(t);L�

m(t);L�
x(t); I �

s (t); I �
m(t); I �

x (t);R� (t); l � (t);uk(t)) ; (34)

u�
1(t) = min

n
max

n
0;

e1L�
s(l �

2 (t) � l �
3 (t))

W1

o
;1

o
; (35)

u�
2(t) = min

n
max

n
0;

e2I �
s (l �

5 (t) � l �
3 (t))

W2

o
;1

o
; (36)

u�
3(t) = min

n
max

n
0;

e3I �
m(l �

6 (t) � l �
4 (t))

W3

o
;1

o
; (37)

u�
4(t) = min

n
max

n
0;

e4I �
x (l �

7 (t) � l �
8 (t))

W4

o
;1

o
; (38)

where the stationarity condition is¶H
¶uk

= 0; k = 1;2;3;4:

Proof. Using the conditions (22), we can get equations (26)–(33), where the Hamil-
tonian H is given by:

H = H(S;Ls;Lm;Lx; Is; Im; Ix;R; l ;uk)

= Is+ Im+ Ix + Ls+ u2
1
B1

2
+ u2

2
B2

2
+ u2

3
B3

2
+ u2

4
B4

2

+ l 1

�
ba � da S� ba

s
SIs
N

� ba
m

SIm
N

� ba
x

SIx
N

�

+ l 2

�
l a

s ba
s

SIs
N

+ s a
s l a

s ba
s

RIs
N

� a a
ssb

a
s

LsIs
N

� a a
smba

m
LsIm
N

� a a
sxb

a
x

LsIx
N

+ ga
s Is
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� (da + ea
s + ta

1s+ e1u1(t))Ls

�

+ l 3

�
l a

mba
m

SIm
N

+ s a
ml a

mba
m

RIm
N

+ a a
smba

m l a
m

LsIm
N

� a a
mmba

m
LmIm

N
� a a

mxb
a
x

LmIx
N

+ ga
mIm � (da + ea

m)Lm+ ta
1sLs+ e1u1(t)Ls � Pa

1 ta
1sLs+ ta

2sIs+ e2u2(t)Is � Pa
2 ta

2sIs
�

+ l 4

�
l a

x ba
x

SIx
N

+ s a
x l a

x ba
x

RIx
N

+ a a
sxb

a
x l a

x
LsIx
N

+ a a
mxb

a
x l a

x
LmIx
N

� a a
xxb

a
x

LxIx
N

� (da + ea
x )Lx + ga

x Ix + ta
2mIm+ e3u3(t)Im � Pa

3 ta
2mIm

�

+ l 5(a a
ssb

a
s

LsIs
N

+ ( 1� l a
s )ba

s

� SIs
N

+ s a
s

RIs
N

�
+ ea

s Ls

� (da + da
s + ta

2s+ ga
s + e2u2(t)) Is)

+ l 6

�
a a

mmba
m

LmIm
N

+ ( 1� l a
m)ba

m

� SIm
N

+ s a
m

RIm
N

+ a a
sm

LsIm
N

�
+ ea

mLm

� (da + da
m + ta

2m+ e3u3(t) + ga
m)Im

�

+ l 7

�
a a

xxb
a
x

LxIx
N

+ ( 1� l a
x )ba

x

� SIx
N

+ s a
x

RIx
N

+ a a
sx

LsIx
N

+ a a
mx

LmIx
N

�
+ ea

x Lx

� (da + da
x + ta

2x + ga
x + e4u4(t)) Ix

�

+ l 8

�
Pa

1 ta
1sLs+ Pa

2 ta
2sIs+ Pa

3 ta
2mIm+ ta

2xIx + e4u4(t)Ix � s a
s ba

s
RIs
N

� s a
mba

m
RIm
N

� s a
x ba

x
RIx
N

� da R
�

; (39)

where l i ; i = 1;2;3; : : : ;8 are the Lagrange multipliers. It is known as a co-state or
adjoint variables.

Moreover, the transversality conditionsl i(T) = 0; i = 1; : : : ;8; hold
and the optimal controls (35)–(38) can be claimed from the minimization condition

(34). �

4. Numerical methods for solving FOCP

4.1. Generalized Euler method

Generalized Euler method (GEM), is a generalization of the classical Euler's met-
hod, for more details see [33]. The headlines of this method is given as follows, let us
consider (12)–(19): Let [0;a] be the interval over which we want to �nd the solution
of the problem (12)–(19). The interval[0;a] will be subdivided intoK subintervals
[t j ;t j+ 1] of equal widthh = a

K by using the nodest j = jh; for j = 0;1;2; : : :K: The
general formula for GEM whent j+ 1 = t j + h is

S(t j+ 1) = S(t j ) +
ha

G(a + 1)
x1(S(t j );Ls(t j );Lm(t j );Lx(t j ); Is(t j ); Im(t j ); Ix(t j );R(t j );

uk(t j );t j );
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Ls(t j+ 1) = Ls(t j ) +
ha

G(a + 1)
x2(S(t j );Ls(t j );Lm(t j );Lx(t j ); Is(t j ); Im(t j ); Ix(t j );R(t j );

uk(t j );t j );

Lm(t j+ 1) = Lm(t j ) +
ha

G(a + 1)
x3(S(t j );Ls(t j );Lm(t j );Lx(t j ); Is(t j ); Im(t j ); Ix(t j );R(t j );

uk(t j );t j );

Lx(t j+ 1) = Lx(t j ) +
ha

G(a + 1)
x4(S(t j );Ls(t j );Lm(t j );Lx(t j ); Is(t j ); Im(t j ); Ix(t j );R(t j );

uk(t j );t j );

Is(t j+ 1) = Is(t j ) +
ha

G(a + 1)
x5(S(t j );Ls(t j );Lm(t j );Lx(t j ); Is(t j ); Im(t j ); Ix(t j );R(t j );

uk(t j );t j );

Im(t j+ 1) = Im(t j ) +
ha

G(a + 1)
x6(S(t j );Ls(t j );Lm(t j );Lx(t j ); Is(t j ); Im(t j ); Ix(t j );R(t j );

uk(t j );t j );

Ix(t j+ 1) = Ix(t j ) +
ha

G(a + 1)
x7(S(t j );Ls(t j );Lm(t j );Lx(t j ); Is(t j ); Im(t j ); Ix(t j );R(t j );

uk(t j );t j );

R(t j+ 1) = R(t j ) +
ha

G(a + 1)
x8(S(t j );Ls(t j );Lm(t j );Lx(t j ); Is(t j ); Im(t j ); Ix(t j );R(t j );

uk(t j );t j );

for j = 0;1; : : : ;K � 1: It is clear that if a = 1; then the GEM [9], reduces to the
classical Euler's method.

4.2. Shifted Chebyshev spectral method

It is well known Chebyshev polynomials of the �rst kind are de�ned on the interval
[� 1;1] and can be determined with the aid of the following recurrence formula [11].

Tk+ 1(z) = 2zTk(z) � Tk� 1(z); k = 1;2;3; : : : ;

whereT0(z) = 1; andT1(z) = z: In order to use these polynomials on the interval[0;L]
we de�ne the so called shifted Chebyshev polynomials of the �rst kind by introducing
the change of variablez= 2t

L � 1 . Let the shifted Chebyshev polynomialsTk( 2t
L � 1)

be denoted by

T �
k+ 1(z) = 2

� 2t
L

� 1
�

T �
k (z) � T �

k� 1(z); k = 1;2;3; : : : ;

where T �
0 (z) = 1 and T �

1 (z) = 2t
L � 1: The analytic form of the shifted Chebyshev

polynomialsT �
k (t) of degreek is given by

T �
k (t) = k

k

å
i= 0

(� 1)k� i22i k+ i � 1!
(k � i)!(2i!)Li t

i : (40)



14 N. SWEILAM AND S. AL-MEKHLAFI

Note thatT �
k (0) = ( � 1)k and T �

k (1) = 1: The functionu(t) , which is a square inte-
grable function in[0;L], may be expressed in terms of shifted Chebyshev polynomials
as

u(t) =
¥

å
i= 0

ciT �
i (t); (41)

where the coef�cientsci are given by:

ci =
2

phi

Z L

0
u(t)T �

i (t)dt; h0 = 2; hi = 1; i = 0;1; : : : : (42)

In practice, only the �rst(m+ 1) -terms of shifted Chebyshev polynomials are consid-
ered. Then we have

um(t) =
m

å
i= 0

ciT �
i (t): (43)

Da um(t)) =
m

å
i= 0

ciDa (T �
i (t)) : (44)

Therefore, fori = 1;2; : : : ;m;

Da (T �
i (t)) = i

i

å
k= da e

(� 1) i� k22k (k+ i � 1!)
(i � k)!(2k!)Li D

a tk;

= i
i

å
k= da e

(� 1) i� k22k (k+ i � 1)!G(k+ 1)
(i � k)!(2k!)G(k+ 1� a )Li t

k� a : (45)

Then

Da um(t)) =
m

å
i= 0

ciQi;k; (46)

whereQi;k is given by

Qi;k = i
i

å
k= da e

(� 1) i� k22k (k+ i � 1)!G(K + 1)
(i � k)!(2k!)G(K + 1� a )Li t

k� a : (47)

5. Error analysis

In this section, special attention is given to study the convergence analysis and
evaluate an upper bound of the error of the proposed formula.

THEOREM 5.1. (Chebyshev truncation theorem) [41] The error in approximating
u(t) by the sum of its �rst m terms is bounded by the sum of the absolute values of all
the neglected coef�cients. If

um(t) =
m

å
i= 0

ciT �
i (t): (48)
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then

ET (m) � j um(t) � u(t)j 6
¥

å
i= m+ 1

ciT �
i (t); (49)

for all u(t) , all m, and all t2 [� 1;1]:

THEOREM 5.2. The error ET (m) in approximating Da u(t) and Da um(t) is boun-
ded by

ET (m) 6
¥

å
i= m+ 1

ci

i

å
k= da e

k�d a e

å
j= 0

Qi;kt
k� 1; (50)

Proof. A combination of Eqs. (41), (43) and (44)

jET(m)j = jDa um(t) � Da u(t)j

= j
¥

å
i= m+ 1

ci

m

å
k= da e

k�d a e

å
j= 0

Qi;kt
k� 1T �

j j;

but jT �
j j 6 1 so, we can obtain

ET (m) 6 j
¥

å
i= m+ 1

ci

m

å
i= da e

k�d a e

å
j= 0

Qi;kt
k� 1j;

and subtracting the truncated series from the in�nite series, bounding each term in the
difference, and summing the bounds completes the proof of the theorem. �

5.1. Discretizations and numerical results

Consider the systems given in Eqs. (1)–(8) and (26)–(33). In order to use SCSM,
we �rst approximateS(t) , Ls(t) , Lm(t) , Lx(t) , Is(t) , Im(t) , Ix(t) , R(t) , l 1(t) , l 2(t) ,
l 3(t) , l 4(t) , l 5(t) , l 6(t) , l 7(t) and l 8(t) as follows:

S(t) =
m

å
i= 0

aiT �
i (t); Ls(t) =

m

å
i= 0

biT �
i (t); (51)

Lm(t) =
m

å
i= 0

ciT �
i (t); Lx(t) =

m

å
i= 0

diT �
i (t); (52)

Is(t) =
m

å
i= 0

eiT �
i (t); Im(t) =

m

å
i= 0

fiT �
i (t); (53)

Ix(t) =
m

å
i= 0

giT �
i (t); R(t) =

m

å
i= 0

hiT �
i (t); (54)

l 1 =
m

å
i= 0

kiT �
i (t); l 2 =

m

å
i= 0

r iT �
i (t); (55)
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l 3 =
m

å
i= 0

uiT �
i (t); l 4 =

m

å
i= 0

viT �
i (t); (56)

l 5 =
m

å
i= 0

wiT �
i (t); l 6 =

m

å
i= 0

xiT �
i (t); (57)

l 7 =
m

å
i= 0

yiT �
i (t); l 8 =

m

å
i= 0

ziT �
i (t): (58)

Now we collocate the soluation atm+ 1� d a e points tp , (p = 0;1; : : : ;m+ 1� d a e)
as:

m

å
i= da e

i

å
k= da e

aiQi;kt
k� 1
p = ba � da

m

å
i= 0

aiT �
i (tp) � ba

s
å m

i= 0aiT �
i (tp) å m

i= 0eiT �
i (tp)

N

� ba
m

å m
i= 0aiT �

i (tp)
N

m

å
i= 0

fiT �
i (tp)

� ba
x

å m
i= 0aiT �

i (tp) å m
i= 0giT �

i (tp)
N

; (59)

m

å
i= da e

i

å
k= da e

biQi;kt
k� 1
p = l a

s ba
s

å m
i= 0aiT �

i (tp) å m
i= 0eiT �

i (tp)
N

+ s a
s l a

s ba
s

å m
i= 0hiT �

i (tp) å m
i= 0eiT �

i (tp)
N

� a a
ssb

a
s

å m
i= 0biT �

i (tp) å m
i= 0eiT �

i (tp)
N

� a a
smba

m
å m

i= 0biT �
i (tp) å m

i= 0 fiT �
i (tp)

N

� a a
sxb

a
x

å m
i= 0biT �

i (tp) å m
i= 0giT �

i (tp)
N

+ ga
s

m

å
i= 0

eiT �
i (tp)

� (da + ea
s + ta

1s+ e1u1(t))
m

å
i= 0

biT �
i (tp); (60)

m

å
i= da e

i

å
k= da e

ciQi;kt
k� 1
p = l a

mba
m

å m
i= 0aiT �

i (tp) å m
i= 0 fiT �

i (tp)
N

+ s a
ml a

mba
m

å m
i= 0hiT �

i (tp) å m
i= 0 fiT �

i (t)
N

+ a a
smba

m l a
m

å m
i= 0biT �

i (t) å m
i= 0 fiT �

i (t)
N

� a a
mmba

m
å m

i= 0ciT �
i (t) å m

i= 0 fiT �
i (t)

N

� a a
mxb

a
x

å m
i= 0ciT �

i (t) å m
i= 0giT �

i (t)
N

+ ga
m

m

å
i= 0

fiT �
i (tp)
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� (da + ea
m)

m

å
i= 0

ciT �
i (tp) + ta

1s

m

å
i= 0

biT �
i (tp)

+ e1u1(t)
m

å
i= 0

biT � (tp) � Pa
1 ta

1s

m

å
i= 0

biT � (tp) + ta
2s

m

å
i= 0

eiT � (tp)

+ e2u2(t)
m

å
i= 0

eiT � (tp) � Pa
2 ta

2s

m

å
i= 0

eiT � (tp); (61)

m

å
i= da e

i

å
k= da e

diQi;kt
k� 1
p = l a

x ba
x

å m
i= 0aiT � (tp) å m

i= 0giT � (tp)
N

+ s a
x l a

x ba
x

å m
i= 0hiT � (tp) å m

i= 0giT � (tp)
N

+ a a
sxb

a
x l a

x
å m

i= 0biT � (tp) å m
i= 0giT � (tp)

N

+ a a
mxb

a
x l a

x
å m

i= 0ciT � (tp) å m
i= 0giT � (tp)

N

� a a
xxb

a
x

å m
i= 0diT � (tp) å m

i= 0giT � (tp)
N

� (da + ea
x )

m

å
i= 0

diT � (tp)

+ ga
x

m

å
i= 0

giT � (tp) + ta
2m

m

å
i= 0

fiT � (tp)

+ e3u3(t)
m

å
i= 0

fiT � (tp) � Pa
3 ta

2m

m

å
i= 0

fiT � (tp); (62)

m

å
i= da e

i

å
k= da e

eiQi;kt
k� 1
p = a a

ssb
a
s

å m
i= 0biT � (tp) å m

i= 0eiT � (tp)
N

+ ( 1� l a
s )ba

s

� å m
i= 0aiT � (tp) å m

i= 0eiT � (tp)
N

+ s a
s

å m
i= 0hiT � (tp) å m

i= 0eiT � (tp)
N

�
+ ea

s

m

å
i= 0

biT � (tp)

� (da + da
s + ta

2s+ ga
s + e2u2(t))

m

å
i= 0

eiT � (tp); (63)

m

å
i= da e

i

å
k= da e

fiQi;kt
k� 1
p = a a

mmba
m

å m
i= 0ciT � (tp) å m

i= 0 fiT � (t)
N

+ ( 1� l a
m)ba

m

� å m
i= 0aiT � (tp) å m

i= 0 fiT � (tp)
N

+ s a
m

å m
i= 0hiT � (tp) å m

i= 0 fiT � (tp)
N

+ a a
sm

å m
i= 0biT � (tp) å m

i= 0 fiT � (tp)
N

�
+ ea

m

m

å
i= 0

ciT � (tp)
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� (da + da
m + ta

2m+ e3u3(t) + ga
m)

m

å
i= 0

fiT � (tp); (64)

m

å
i= da e

i

å
k= da e

giQi;kt
k� 1
p = a a

xxb
a
x

å m
i= 0diT � (tp) å m

i= 0giT � (tp)
N

+ ( 1� l a
x )ba

x

� å m
i= 0aiT � (tp) å m

i= 0giT � (tp)
N

+ s a
x

å m
i= 0hiT � (tp) å m

i= 0giT � (tp)
N

+ a a
sx

å m
i= 0biT � (tp) å m

i= 0giT � (tp)
N

+ a a
mx

å m
i= 0ciT � (tp) å m

i= 0giT � (tp)
N

�
+ ea

x

m

å
i= 0

diT � (tp)

� (da + da
x + ta

2x + ga
x + e4u4(t))

m

å
i= 0

giT � (tp); (65)

m

å
i= da e

i

å
k= da e

hiQi;kt
k� 1
p = Pa

1 ta
1s

m

å
i= 0

biT � (tp) + Pa
2 ta

2s

m

å
i= 0

eiT � (tp) + Pa
3 ta

2m

m

å
i= 0

fiT � (tp)

+ ta
2x

m

å
i= 0

giT � (tp) + e4u4(t)
m

å
i= 0

giT � (tp)

� s a
s ba

s
å m

i= 0hiT �
i (tp) å m

i= 0eiT � (tp)
N

� s a
mba

m
å m

i= 0hiT � (tp) å m
i= 0 fiT � (tp)

N

� s a
x ba

x
å m

i= 0hiT � (tp) å m
i= 0giT � (tp)

N
� da

m

å
i= 0

hiT � (tp): (66)

m

å
i= da e

i

å
k= da e

kiQi;kt
k� 1
p = �

� m

å
i= 0

kiT � (tp)
� ba

s

N

m

å
i= 0

eiT � (tp) +
ba

m

N

m

å
i= 0

fiT � (tp)

+
ba

x

N

m

å
i= 0

giT � (tp) + da
�

�
m

å
i= 0

r iT � (tp)
l a

s ba
s

N

m

å
i= 0

eiT � (tp)

�
m

å
i= 0

uiT � (tp)
l a

mba
m

N

m

å
i= 0

fiT � (tp) �
m

å
i= 0

viT � (tp)
l a

x ba
x

N

m

å
i= 0

eiT � (tp)

�
m

å
i= 0

wiT � (tp)
(1� l a

s )ba
s

N

m

å
i= 0

eiT � (tp)

�
m

å
i= 0

xiT � (tp)
(1� l a

m)ba
m

N

m

å
i= 0

fiT � (tp)

�
m

å
i= 0

yiT � (tp)
(1� l a

x )ba
x

N

m

å
i= 0

giT � (tp)
�

; (67)
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m

å
i= da e

i

å
k= da e

r iQi;kt
k� 1
p = �

�
� 1+

m

å
i= 0

r iT � (tp)
� ba

s a a
sså m

i= 0eiT � (tp)
N

+
ba

ma a
små m

i= 0 fiT � (tp)
N

+
ba

x a a
sx

N

��

�
m

å
i= 0

giT �
�

tp +
m

å
i= 0

r iT � (tp)(da + ea
s + ta

1s+ e1u�
1(t))

�
m

å
i= 0

uiT � (tp)
l a

mba
ma a

sm

N

m

å
i= 0

fiT � (tp)

� (ta
1s+ e1u�

1(t) � P1t1s)
m

å
i= 0

uiT � (tp)

�
m

å
i= 0

viT � (tp)
l a

x ba
x a a

sx

N

m

å
i= 0

eiT � (tp)

�
m

å
i= 0

wiT � (tp)
ba

s a a
ss

N

m

å
i= 0

eiT � (tp) �
m

å
i= 0

wiT � (tp)ea
s

�
m

å
i= 0

xiT � (tp)(1� l a
m)

ba
ma a

sm

N

m

å
i= 0

fiT � (tp)

�
m

å
i= 0

yiT � (tp)(1� l a
x )

ba
x a a

sx

N

m

å
i= 0

giT � (tp) � Pa
1 ta

1s

m

å
i= 0

ziT � (tp)
�

;

(68)
m

å
i= da e

i

å
k= da e

uiQi;kt
k� 1
p = � (

m

å
i= 0

uiT � (tp)
�

a a
mmba

m
å m

i= 0 fiT � (tp)
N

+ a a
mxb

a
x

å m
i= 0giT � (tp)

N

+ da + ea
m

�
�

m

å
i= 0

viT � (tp)a a
mxb

a
x l a

x
å m

i= 0giT � (tp)
N

�
m

å
i= 0

xiT � (tp)(a a
mmba

m
å m

i= 0 fiT � (tp)
N

+ ea
m)

�
m

å
i= 0

yiT � (tp)(1� l a
x )a a

mxb
a
x

å m
i= 0giT � (tp)

N
); (69)

m

å
i= da e

i

å
k= da e

viQi;kt
k� 1
p = �

� m

å
i= 0

viT � (tp)(a a
xxb

a
x

å m
i= 0giT � (tp)

N
+ da + ea

x )

�
m

å
i= 0

yiT � (tp)
�

a a
xxb

a
x

å m
i= 0giT � (tp)

N
� ea

x

��
; (70)

m

å
i= da e

i

å
k= da e

wiQi;kt
k� 1
p = � (� 1+

m

å
i= 0

kiT � (tp)ba
s

å m
i= 0aiT � (tp)

N

+
m

å
i= 0

r iT � (tp)(a a
ssb

a
s

å m
i= 0biT � (tp)

N
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� l a
s ba

s
å m

i= 0aiT � (tp)
N

� l a
s s a

s ba
s

å m
i= 0hiT � (tp)

N
� ga

s )

+
m

å
i= 0

wiT � (tp)
�

(da + da
s + ta

2s+ e2u�
2(t) + ga

s )

� (1� l a
s )ba

s
å m

i= 0aiT � (tp)
N

� s a
s (1� l a

s )ba
s

å m
i= 0hiT � (tp)

N

+
ba

s a a
ss

N

m

å
i= 0

biT � (tp)
�

�
m

å
i= 0

uiT � (tp)(t2s+ e2u�
2(t) � Pa

2 ta
2s)

+
m

å
i= 0

ziT � (tp)(s a
s ba

s
å m

i= 0hiT � (tp)
N

� Pa
2 ta

2s)) ; (71)

m

å
i= da e

i

å
k= da e

xiQi;kt
k� 1
p = �

�
� 1+

m

å
i= 0

kiT � (tp)ba
m

å m
i= 0aiT � (tp)

N

+
m

å
i= 0

r iT � (tp)
�

a a
smba

m
å m

i= 0biT � (tp)
N

�
m

å
i= 0

uiT � (tp)( l a
mba

m
å m

i= 0aiT � (tp)
N

+ l a
ms a

mba
m

å m
i= 0hiT � (tp)

N

+
l a

mba
ma a

sm

N

m

å
i= 0

biT � (tp) �
ba

ma a
mm

N

m

å
i= 0

ciT � (tp) + ga
m)

�
m

å
i= 0

viT � (tp)t2m �
m

å
i= 0

viT � (tp)e3u�
3(t) +

m

å
i= 0

viT � (tp)Pa
3 ta

2m

�
m

å
i= 0

xiT � (tp)
� ba

ma a
mm

N

m

å
i= 0

ciT � (tp) + ( 1� l a
m)ba

m
å m

i= 0aiT � (tp)
N

+ s a
m(1� l a

m)ba
m

å m
i= 0hiT � (tp)

N
+ a a

sm(1� l a
m)ba

m
å m

i= 0biT � (tp)
N

� (da + da
m + ta

2m+ e3u�
3(t) + ga

m)
�

�
m

å
i= 0

ziT � (tp)
�

Pa
3 ta

2m � s a
mba

m
å m

i= 0hiT � (tp)
N

���
;

m

å
i= da e

i

å
k= da e

yiQi;kt
k� 1
p = �

�
� 1+

m

å
i= 0

kiT � (tp)ba
x

å m
i= 0aiT � (tp)

N

+
m

å
i= 0

r iT � (tp)a a
sxb

a
x

å m
i= 0biT � (tp)

N

+
m

å
i= 0

uiT � (tp)a a
mxb

a
x

å m
i= 0ciT � (tp)

N

�
m

å
i= 0

viT � (tp)
�

l a
x s a

x ba
x

å m
i= 0hiT � (tp)

N
+ l a

x ba
x

å m
i= 0aiT � (tp)

N
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+ l a
x a a

sxb
a
x

å m
i= 0biT � (tp)

N
+ l a

x a a
mxb

a
x

å m
i= 0ciT � (tp)

N

+ ga
x � a a

xxb
a
x

å m
i= 0giT � (tp)

N

�
�

m

å
i= 0

yiT � (tp)
�

a a
xxb

a
x

å m
i= 0diT � (tp)

N

+ ( 1� l a
x )ba

x
å m

i= 0aiT � (tp)
N

+ ( 1� l a
x )ba

x a a
sx

å m
i= 0biT � (tp)

N

+ ( 1� l a
x )ba

x s a
x

å m
i= 0hiT � (tp)

N

+ ( 1� l a
x )ba

x a a
mx

å m
i= 0ciT � (tp)

N
+ ( da + da

x + ta
2x + e4u�

4 + ga
x )

�

�
m

å
i= 0

ziT � (tp)
�

ta
2x + e4u�

4 � s a
x ba

x
å m

i= 0hiT � (tp)
N

��
; (72)

m

å
i= da e

i

å
k= da e

ziQi;kt
k� 1
p = �

�
�

m

å
i= 0

r iT � (tp)ba
s l a

s s a
s

å m
i= 0eiT � (tp)

N

�
m

å
i= 0

uiT � (tp)ba
m l a

ms a
m

å m
i= 0 fiT � (tp)

N

�
m

å
i= 0

viT � (tp)ba
x l a

x s a
x

å m
i= 0giT � (tp)

N

�
m

å
i= 0

wiT � (tp)(1� l a
s )ba

s s a
s

å m
i= 0eiT � (tp)

N

�
m

å
i= 0

xiT � (tp)(1� l a
m)ba

ms a
m

å m
i= 0 fiT � (tp)

N

�
m

å
i= 0

yiT � (tp)(1� l a
x )ba

x s a
x

å m
i= 0giT � (tp)

N

+
m

å
i= 0

ziT � (tp)
�

s a
s ba

s
å m

i= 0eiT � (tp)
N

+ s a
mba

m
å m

i= 0 fiT � (tp)
N

+ s a
x ba

x
å m

i= 0giT � (tp)
N

+ da
��

: (73)

In the following we will use the roots of shifted Chebyshev polynomialsT �
i (t) as suit-

able collocation points. By substituting the initial conditions and the transeverslty con-
ditions in Eqs. (51)–(58), we can obtain sixteen equations as follows:

m

å
i= 0

(� 1) iai = S0;
m

å
i= 0

(� 1) ibi = Ls0;
m

å
i= 0

(� 1) ici = Lm0; (74)

m

å
i= 0

(� 1) idi = Lx0;
m

å
i= 0

(� 1) iei = Is0;
m

å
i= 0

(� 1) i fi = Im0; (75)

m

å
i= 0

(� 1) igi = Ix0;
m

å
i= 0

(� 1) ihi = R0; (76)
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m

å
i= 0

(� 1) iki = l 1(t f ) = 0;
m

å
i= 0

(� 1) ir i = l 2(t f ) = 0;
m

å
i= 0

(� 1) iui = l 3(t f ) = 0; (77)

m

å
i= 0

(� 1) ivi = l 4(t f ) = 0;
m

å
i= 0

(� 1) iwi = l 5(t f ) = 0;
m

å
i= 0

(� 1) ixi = l 6(t f ) = 0; (78)

m

å
i= 0

(� 1) iyi = l 7(t f ) = 0;
m

å
i= 0

(� 1) izi = l 8(t f ) = 0: (79)

Equations (59)–(73), together with the equations (74)–(79), give (16m+ 16) of non-
linear algebraic equations wherem is the degree of shifted Chebyshev polynomials,
this algebraic equations can be solved using the Newton's iteration method for the un-
knownsai , bi , ci , di , ei , fi , gi , hi , ki , r i , ui , vi , wi , xi , yi , andzi , i = 0;1; : : : ;m.

6. Numerical experiment

The purpose of this section is to show that, SCSM designed in this paper provides
good approximations for the optimality system (1)–(8) and (26)–(33). The approximate
solutions of the proposed system are given in Figures (1–8) by using SCSM and GEM.
Also, using the initial condition(S(0);Ls(0);Lm(0);Lx(0); Is(0); Im(0); Ix(0);R(0)) =� 76

120N; 20
120N; 5

120N; 2
120N; 8

120N; 4
120N; 2

120N; 3
120N

�
, m= 8 and the parameters in Table

3. Fig. 1, shows thatS(t) + Ls(t) + Lm(t) + Lx(t) + Is(t) + Im(t) + Ix(t) + R(t)=N is
constant in time using SCSM for the controlled case when 06 uk 6 1; where k =
1;2;3;4 compared with the uncontrolled case i.e.,u1 = u2 = u3 = u4 = 0 with a = 1.
Regarding the obtained results in Fig. 2, the effect of the controller on this model is

Figure 1:Plot of S(t)+ Ls(t)+ Lm(t)+ Lx(t)+ Is(t)+ Im(t)+ Ix(t)+ R(t)=N versus t in years by
using SCSM for the controlled case when0 6 u1;u2;u3;u4 6 1, compared with the uncontrolled
case when u1 = u2 = u3 = u4 = 0.
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reliable mainly for the two state variablesIx(t) andIm(t) . The effect of the controllers
on other variables is not quite effective. Since Fig. 2, shows the numerical simulations
of the model (1)–(8) for the controlled case using SCSM when 06 uk 6 1, compared
with the uncontrolled case whenu1 = u2 = u3 = u4 = 0. We note that the numbersIm
andIx are larger in uncontrolled case compared with the controlled case. The number of
R(t);S(t) is larger in controlled case compared with the uncontrolledcase. Also, from
Table4, the value of objective functional is larger in uncontrolled case compared with
the value of objective functional in controlled case. Fig. 3, shows the control variables
u�

k in a time units of years by using SCSM.

Table 4: Comparisons between the obtained result by using SCSM in controlled case and un-
controlled case, i.e., when u1 = u2 = u3 = u4 = 0 and T= 4.

J(u1;u2;u3;u4) Ls(4) + Is(4) + Im(4) + Ix(4)
With control 16796.1772 1196

Without control 25783 3422

Table 5:The values of objective functional by using SCSM with T= 4 and differieren values of
a .

a J(u1;u2;u3;u4) Ls(4) + Is(4) + Im(4) + Ix(4)
0.90 16796.1772 1196
0.80 14685.8392 1882
0.7 15009.0953 1968
0.6 16944.1784 2055

Table 6:Comparisons between GEM and SCSM where T= 4 and differieren values ofa .

a Methods J(u1;u2;u3;u4)
1 GEM 20938

SCSM 16796.1772
0.98 GEM 19850

SCSM 18132.8658
0.95 GEM 18277

SCSM 17940.3829

Fig. 4, shows thatS(t) + Ls(t) + Lm(t) + Lx(t) + Is(t) + Im(t) + Ix(t) + R(t)=N is
constant in time using GEM for the controlled case when 06 uk 6 1. Fig. 5, shows the
control variablesu�

k by using GEM ata = 1. Fig. 6, shows the numerical simulations
of the model (1)–(8) and (26)–(33) for the controlled case using GEM at different values
of a . Fig. (6–8), show that, how the fractional model is a generalization of the integer
order model. In Table 5, the numerical value of sum the state variablesLs; Is; Im;
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and Ix at T = 4 and the objective functional, obtained by SCSM with different values
of a . In Table 6, the values of the objective functional which areobtained by SCSM
is compared with the results which obtained by GEM . From the numerical solutions,
it is found that, the results which obtained by SCSM is betterthan GEM. All results
were obtained by using MATLAB (R2013a). on a computer machine with intel(R) core
i3� 3110M @ 2:40GHz and 4GB RAM.

Figure 2: The numerical simulations of the model (1)–(8) for the controlled case when0 6
u1;u2;u3;u4 6 1, compared with the uncontrolled case when u1 = u2 = u3 = u4 = 0 by using
SCSM .
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Figure 3: The optimal control u�1;u�
2;u�

3;u�
4 in a time units of years by using SCSM.

Figure 4:Plot of S(t) + Ls(t) + Lm(t) + Lx(t) + Is(t) + Im(t) + Ix(t) + R(t)=N versus t in years
by GEM.

Figure 5: The optimal control u�1;u�
2;u�

3;u�
4 in a time units of years by using GEM.
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Figure 6: The numerical simulations for the controlled case using GEMwith differenta .
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Figure 7: The numerical simulations for the controlled case with different values ofa using
SCSM.
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Figure 8: The optimal control u�1;u�
2;u�

3;u�
4 in a time units of years by using SCSM.

7. Conclusions

In this paper, numerical solutions of the optimal control problem for multi-strain
TB model are presented. Modi�ed parameters are introduced to account for the frac-
tional order model. Four controls functionsu1; u2; u3; and u4; are introduced, these
controls are given to reduce the number of active infected and latent TB individuals of
�rst strain. The controlsu2; u3;and u4; represents the effort that prevents the failure
of treatment in active TB infectious individualsIs; Im; and Ix; e.g., supervising the
patients, helping them to take the TB medications regularlyand to complete the TB
treatment, while the controlu1 governs the latent individualsLs under treatment with
anti-TB drugs. Necessary and suf�cient conditions that guarantee the existence and
the uniqueness of the solution of the resulting systems are given. The optimality sys-
tem is approximated by shifted Chebyshev polynomials whichtransformed the model
problem to a system of algebraic equations with unknown coef�cients. It is solved nu-
merically using Newton's iteration method. Some �gures aregiven to demonstrate how
the fractional model is a generalization of the integer order model. Comparative studies
are implemented between SCSM and GEM, It can be concluded from the numerical
results presented in this paper that, the proposed method isbetter than GEM. Moreover,
It can be concluded that fractional models have the potential to describe more complex
dynamics than the integer models and can include easily the memory effect present in
many real world phenomena.
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