NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS
WITH m–POINT INTEGRAL BOUNDARY CONDITIONS

TUĞBA ŞENLİK CERDİK, NUKET AYKUT HAMAL AND FULYA YORUK DEREN

(Communicated by J. Tariboon)

Abstract. In this paper, we consider the existence and uniqueness of solution for a fractional order differential equation involving the Riemann-Liouville fractional derivative. By applying some standard fixed point theorems, we obtain new results on the existence and uniqueness of solution.

1. Introduction

In this paper, we focus on the existence and uniqueness of solutions for nonlinear fractional differential equation given by

\[
\begin{cases}
-D^p x(t) = A_1 f_1(t,x(t)) + A_2 f_2(t,x(t)), & n - 1 < p \leq n, n \geq 2, \quad t \in (0, 1), \\
D^{\gamma+k} x(0) = 0, & 0 \leq k \leq n - 2, \\
D^{\gamma} x(1) = \sum_{i=1}^{m-1} \alpha_i \int_{\eta_{i-1}}^{\eta_i} D^{\gamma} x(s) dA(s)
\end{cases}
\]

where $0 < \gamma < 1$, $p - \gamma > n - 1$, $0 < q < 1$, $n, k \in \mathbb{N}$ and $0 = \eta_0 < \eta_1 < \ldots < \eta_{m-2} < \eta_{m-1} = 1$, $\alpha_i \geq 0$ for $i \in \{1, 2, \ldots, m-1\}$. $\int_{\eta_{i-1}}^{\eta_i} D^{\gamma} x(s) dA(s)$ is the Riemann-Stieltjes integral with positive measure. A is a function of bounded variation with $\sum_{i=1}^{m-1} \alpha_i \int_{\eta_{i-1}}^{\eta_i} s^{p-\gamma-1} dA(s) \neq 1$. Here, D^p denotes the Riemann-Liouville fractional derivative of order p and f_1, f_2 are given continuous functions, A_1, A_2 are real constants such that A_1 or A_2 is different from zero.

Recently, boundary value problems for fractional differential equations are of great importance for the researchers due to their applications such as economics, engineering and other fields. Also, this topic has been developed very quickly on the existence results for nonlinear fractional differential equations with local/nonlocal boundary conditions; for example, see [8, 18, 1, 6, 11, 16, 17, 10, 4, 3, 14, 9, 5, 13] and the references

Keywords and phrases: Integral boundary condition, fractional differential equation, fixed point theory.
therein. For instance, Agarwal et al. [1] discussed the following integro-differential equation

\[
\begin{aligned}
-D^\alpha x(t) &= Af(t,x(t)) + B l^\beta g(t,x(t)), \quad 2 < \alpha \leq 3, \quad t \in [0,1], \\
D^\delta x(0) &= 0, \quad D^{\delta+1}x(0) = 0, \quad D^{\delta}x(1) - D^{\delta}x(\eta) = a,
\end{aligned}
\]

where \(0 < \delta \leq 1, \quad \alpha - \delta > 3, \quad 0 < \beta < 1, \quad 0 < \eta < 1, \quad D^{(\cdot)} \) denotes the Riemann-Liouville fractional derivative of order \((\cdot)\), \(f, g \) are given continuous functions, and \(A, B, a \) are real constants. Here, they studied the existence of solutions for a boundary value problem of integro-differential equations via Sadovskii’s fixed point theorem for condensing maps.

The paper is structured as follows. After introducing the basic definitions and lemmas which are required to prove our main results, we prove an existence and uniqueness results by means of the Leray-Schauder’s nonlinear alternative theorem, the Banach’s fixed point theorem and the Boyd-Wong Contraction Principle.

2. Preliminaries

In this section, we give some basic definitions and lemmas which are useful for the presentation of our main results.

Definition 1. [15, 12] The Riemann Liouville fractional integral of order \(p \in \mathbb{R}^+ \) for a function \(h : (0,\infty) \to \mathbb{R} \) is defined by

\[
I_{0+}^p h(t) = \frac{1}{\Gamma(p)} \int_0^t (t-s)^{p-1} h(s)ds,
\]

provided that the right hand side is pointwise defined on \((0, +\infty)\).

Definition 2. [15, 12] The Riemann-Liouville fractional derivative of order \(p > 0 \) for a function \(h : (0,\infty) \to \mathbb{R} \) is defined by

\[
D_{0+}^p h(t) = \left(\frac{d}{dt}\right)^n I_{0+}^{n-p} h(t) = \frac{1}{\Gamma(n-p)} \left(\frac{d}{dt}\right)^n \int_0^t (t-s)^{n-p-1} h(s)ds,
\]

where \(n \) is the smallest integer greater than or equal to \(p \), provided that the right-hand side is defined pointwise.

Lemma 1. [12] Let \(u \in C(0,1) \cap L(0,1) \) with a fractional derivative of order \(p \) \((p > 0)\) that belongs to \(C(0,1) \cap L(0,1) \). Then

\[
I_{0+}^p D_{0+}^p u(t) = u(t) + c_1 t^{p-1} + c_2 t^{p-2} + \ldots + c_n t^{p-n},
\]

for some \(c_i \in \mathbb{R}, \quad i = 1, \ldots, n, \) where \(n \) is the smallest integer greater than or equal to \(p \).
By using the substitution $x(t) = I^\gamma y(t) = D^{-\gamma} y(t)$, one can transform the fractional BVP (1) to the following form:

$$
\begin{cases}
-D^p y(t) = A_1 f_1(t, I^\gamma y(t)) + A_2 I^\gamma f_2(t, I^\gamma y(t)), & t \in (0, 1), \\
y^{(k)}(0) = 0, \ 0 \leq k \leq n - 2, & y(1) = \sum_{i=1}^{m-1} \alpha_i \int_{\eta_{i-1}}^{\eta_i} y(s) dA(s).
\end{cases}
$$

(2)

To obtain the solution of the fractional BVP (2), the following lemma is essential.

Lemma 2. For any $h \in C[0, 1]$, the unique solution of the linear fractional BVP

$$
\begin{cases}
-D^p y(t) = h(t), & t \in (0, 1), \\
y^{(k)}(0) = 0, \ 0 \leq k \leq n - 2, & y(1) = \sum_{i=1}^{m-1} \alpha_i \int_{\eta_{i-1}}^{\eta_i} y(s) dA(s)
\end{cases}
$$

(3)

is

$$y(t) = -I^p h(t) + \frac{t^p - 1}{1 - \sum_{i=1}^{m-1} \alpha_i \int_{\eta_{i-1}}^{\eta_i} s^p - 1 dA(s)} \left(I^p h(1) - \sum_{i=1}^{m-1} \alpha_i \int_{\eta_{i-1}}^{\eta_i} I^p h(s) dA(s) \right).$$

Proof. By Lemma 1, the solutions of equation (3) are

$$y(t) = -I^p h(t) - c_1 t^p - 1 - c_2 t^{p-2} - \ldots - c_n t^{p-n},$$

where $c_i \ (i = 1, 2, \ldots, n) \in \mathbb{R}$ are arbitrary constants. By the conditions $y^{(k)}(0) = 0, \ 0 \leq k \leq n - 2$, we obtain $c_2 = \ldots = c_n = 0$. Then we conclude that

$$y(t) = -I^p h(t) - c_1 t^p - 1.$$

(4)

Now, by the condition $y(1) = \sum_{i=1}^{m-1} \alpha_i \int_{\eta_{i-1}}^{\eta_i} y(s) dA(s)$, we can get

$$c_1 = \frac{1}{1 - \sum_{i=1}^{m-1} \alpha_i \int_{\eta_{i-1}}^{\eta_i} s^p - 1 dA(s)} \left[-I^p h(1) + \sum_{i=1}^{m-1} \alpha_i \int_{\eta_{i-1}}^{\eta_i} I^p h(s) dA(s) \right].$$

Combining this value with (4), we obtain

$$y(t) = -I^p h(t) + \frac{t^p - 1}{1 - \sum_{i=1}^{m-1} \alpha_i \int_{\eta_{i-1}}^{\eta_i} s^p - 1 dA(s)} \left(I^p h(1) - \sum_{i=1}^{m-1} \alpha_i \int_{\eta_{i-1}}^{\eta_i} I^p h(s) dA(s) \right).$$

The proof is complete. □
Notice that, the solution of the equation $-D^p x(t) = h(t)$ depends on the boundary conditions given by (1) can be expressed as

$$x(t) = I^p y(t)$$

$$= I^p \left[-I^{p-\gamma} h(t) + \frac{t^{p-\gamma-1}}{1 - \sum_{i=1}^{m-1} \alpha_i \int_{\eta_{i-1}}^{\eta_i} s^{p-\gamma-1} dA(s)} \left(I^{p-\gamma} h(1) - \sum_{i=1}^{m-1} \alpha_i \int_{\eta_{i-1}}^{\eta_i} I^{p-\gamma} h(s) dA(s) \right) \right]$$

$$= -I^p h(t) + \frac{1}{1 - \sum_{i=1}^{m-1} \alpha_i \int_{\eta_{i-1}}^{\eta_i} s^{p-\gamma-1} dA(s)} \left(I^{p-\gamma} h(1) - \sum_{i=1}^{m-1} \alpha_i \int_{\eta_{i-1}}^{\eta_i} I^{p-\gamma} h(s) dA(s) \right)$$

$$\times \frac{1}{\Gamma(p)} \int^t_0 (t-s)^{p-\gamma-1} s^{p-\gamma-1} ds$$

$$= -I^p h(t) + \frac{1}{1 - \sum_{i=1}^{m-1} \alpha_i \int_{\eta_{i-1}}^{\eta_i} s^{p-\gamma-1} dA(s)} \left(I^{p-\gamma} h(1) - \sum_{i=1}^{m-1} \alpha_i \int_{\eta_{i-1}}^{\eta_i} I^{p-\gamma} h(s) dA(s) \right)$$

$$\times \left\{ \frac{t^{p-1}}{\Gamma(p)} \int^1_0 (1 - \nu)^{p-\gamma-1} \nu^{p-\gamma-1} d\nu \right\}$$

$$= -I^p h(t) + \frac{t^{p-1} \Gamma(p-\gamma)}{\Gamma(p) \left[1 - \sum_{i=1}^{m-1} \alpha_i \int_{\eta_{i-1}}^{\eta_i} s^{p-\gamma-1} dA(s) \right] \left(I^{p-\gamma} h(1) - \sum_{i=1}^{m-1} \alpha_i \int_{\eta_{i-1}}^{\eta_i} I^{p-\gamma} h(s) dA(s) \right)}.$$

Assume that $\mathcal{C} = C([0,1], \mathbb{R})$ denotes the Banach space endowed with the norm defined by $\|u\| = \sup_{t \in [0,1]} |u(t)|$.

Next, we introduce an operator $\mathcal{T} : \mathcal{C} \rightarrow \mathcal{C}$ as

$$(\mathcal{T} x)(t) = -A_1 \int^t_0 \frac{(t-s)^{p-1}}{\Gamma(p)} f_1(s, x(s)) ds - A_2 \int^t_0 \frac{(t-s)^{p+q-1}}{\Gamma(p+q)} f_2(s, x(s)) ds$$

$$+ t^{p-1} \theta \left[A_1 \int^1_0 \frac{(1-s)^{p-\gamma-1}}{\Gamma(p-\gamma)} f_1(s, x(s)) ds + A_2 \int^1_0 \frac{(1-s)^{p-\gamma+q-1}}{\Gamma(p-\gamma+q)} f_2(s, x(s)) ds \right.$$

$$- A_1 \sum_{i=1}^{m-1} \alpha_i \int_{\eta_{i-1}}^{\eta_i} \int^t_0 \frac{(s-\eta)^{p-\gamma-1}}{\Gamma(p-\gamma)} f_1(\eta, x(\eta)) d\eta dA(s)$$

$$- A_2 \sum_{i=1}^{m-1} \alpha_i \int_{\eta_{i-1}}^{\eta_i} \int^t_0 \frac{(s-\eta)^{p-\gamma+q-1}}{\Gamma(p-\gamma+q)} f_2(\eta, x(\eta)) d\eta dA(s) \left. \right], \quad (5)$$

where

$$\theta = \frac{\Gamma(p-\gamma)}{\Gamma(p) \left[1 - \sum_{i=1}^{m-1} \alpha_i \int_{\eta_{i-1}}^{\eta_i} s^{p-\gamma-1} dA(s) \right]}.$$
It can be said that \(x \) is a solution of the fractional BVP (1) if and only if \(x \) is a fixed point of the operator \(\mathcal{T} \) on \(C \). For easy statement, denote

\[
\Lambda_1 = |A_1| \left[\frac{1}{\Gamma(p+1)} + \theta \left(\frac{1}{\Gamma(p-\gamma+1)} + \sum_{i=1}^{m-1} \alpha_i \int_{\eta_i-1}^{\eta_i} \int_0^{s} \frac{(s-\eta)^{p-\gamma-1}}{\Gamma(p-\gamma)} \, d\eta \, dA(s) \right) \right],
\]

\[
\Lambda_2 = |A_2| \left[\frac{1}{\Gamma(p+q+1)} + \theta \left(\frac{1}{\Gamma(p-\gamma+q+1)} + \sum_{i=1}^{m-1} \alpha_i \int_{\eta_i-1}^{\eta_i} \int_0^{s} \frac{(s-\eta)^{p-\gamma+q-1}}{\Gamma(p-\gamma+q)} \, d\eta \, dA(s) \right) \right].
\]

3. Main results

By using the Leray-Schauder’s nonlinear alternative theorem [2], the Banach’s fixed point theorem and Boyd-Wong Contraction Principle [7], we deal with the existence of solution for the fractional BVP (1).

Theorem 1. Suppose that \(f_1, f_2 : [0, 1] \times \mathbb{R} \rightarrow \mathbb{R} \) are continuous functions and \(f_1(t, 0) \neq 0 \) or \(f_2(t, 0) \neq 0 \) on \(t \in [0, 1] \). Assume that:

1. \(f_1(t, x) \) is decreasing in \(x \) for all \(t, x \in [0, 1] \times \mathbb{R} \).

2. There exist functions \(w, w_1 \in L^1([0, 1], \mathbb{R}^+) \) and nondecreasing functions \(\psi, \psi_1 : \mathbb{R}^+ \rightarrow \mathbb{R}^+ \) such that

\[
|f_1(t, x)| \leq w(t)\psi(\|x\|), \quad |f_2(t, x)| \leq w_1(t)\psi_1(\|x\|),
\]

for all \((t, x) \in [0, 1] \times \mathbb{R} \).

3. There exists a constant \(\lambda > 0 \) such that

\[
\lambda \psi(\|x\|) \geq |A_1| \|p\| \Lambda_1 + \psi_1(\|x\|) \|p_1\| \Lambda_1 > 1.
\]

Then, the fractional BVP (1) has at least one solution on \([0, 1] \).

Proof. By taking into account the operator \(\mathcal{T} : C \rightarrow C \) with

\[
(\mathcal{T}x)(t) = -A_1 \int_0^t \frac{(t-s)^{p-1}}{\Gamma(p)} f_1(s, x(s)) \, ds - A_2 \int_0^t \frac{(t-s)^{p+q-1}}{\Gamma(p+q)} f_2(s, x(s)) \, ds
\]

\[
+ t^{p-1} \theta \left[A_1 \int_0^1 \frac{(1-s)^{p-\gamma-1}}{\Gamma(p-\gamma)} f_1(s, x(s)) \, ds
\]

\[
+ A_2 \int_0^1 \frac{(1-s)^{p-\gamma+q-1}}{\Gamma(p-\gamma+q)} f_2(s, x(s)) \, ds
\]

\[
- A_1 \sum_{i=1}^{m-1} \alpha_i \int_{\eta_i-1}^{\eta_i} \int_0^{s} \frac{(s-\eta)^{p-\gamma-1}}{\Gamma(p-\gamma)} f_1(\eta, x(\eta)) \, d\eta \, dA(s)
\]

\[
- A_2 \sum_{i=1}^{m-1} \alpha_i \int_{\eta_i-1}^{\eta_i} \int_0^{s} \frac{(s-\eta)^{p-\gamma+q-1}}{\Gamma(p-\gamma+q)} f_2(\eta, x(\eta)) \, d\eta \, dA(s),
\]
we take the equation $x = \lambda \mathcal{T}x$ for $\lambda \in (0, 1)$ and let x be a solution. After that, the following is obtained.

\[
\|x\| = \|\lambda (\mathcal{T}x)\| \\
\leq |A_1| \psi(||x||)|w|| \left[\frac{1}{\Gamma(p + 1)} + \theta \left(\frac{1}{\Gamma(p - \gamma + 1)} \right) \right] \\
+ \sum_{i=1}^{m-1} \alpha_i \int_{\eta_{i-1}}^{\eta_i} \int_0^s \frac{(s-\eta)^{p-\gamma+1}}{\Gamma(p-\gamma)} d\eta dA(s) \right] \\
+ |A_2| \psi(||x||)|w_1|| \left[\frac{1}{\Gamma(p + q + 1)} + \theta \left(\frac{1}{\Gamma(p - \gamma + q + 1)} \right) \right] \\
+ \sum_{i=1}^{m-1} \alpha_i \int_{\eta_{i-1}}^{\eta_i} \int_0^s \frac{(s-\eta)^{p-\gamma+q+1}}{\Gamma(p-\gamma+q)} d\eta dA(s) \right] \\
\leq \psi(||x||)|w||A_1 + \psi_1(||x||)|w_1||A_2,
\]

and consequently

\[
\frac{\|x\|}{\psi(||x||)|w||A_1 + \psi_1(||x||)|w_1||A_2} \leq 1.
\]

From (A2), there exists t such that $||x|| \neq t$. Let us set

\[
K = \{x \in C([0,1], \mathbb{R}) : \|x\| < t\}.
\]

Obviously, the operator $\mathcal{T} : \bar{K} \to C([0,1], \mathbb{R})$ is completely continuous. From the choice of K, there is no $x \in \partial K$ such that $x = \lambda \mathcal{T}(x)$ for some $\lambda \in (0,1)$. As a result, by the Leray-Schauder’s nonlinear alternative theorem, \mathcal{T} has a fixed point $x \in \bar{K}$ which is a solution of the fractional BVP (1). The proof is completed. \square

Theorem 2. Assume that $f_1, f_2 : [0,1] \times \mathbb{R} \to \mathbb{R}$ are continuous functions and $f_1(t,0) \neq 0$ or $f_2(t,0) \neq 0$ on $t \in [0,1]$ satisfying the condition

\[
(A_3) \quad |f_1(t,x) - f_1(t,y)| \leq L_1|x-y|, \quad |f_2(t,x) - f_2(t,y)| \leq L_2|x-y|, \quad \text{for} \ t \in [0,1], \\
L_1, L_2 > 0, \ x,y \in \mathbb{R}.
\]

Then the fractional BVP (1) has a unique solution if $L < \frac{1}{\Lambda_1 + \Lambda_2}$, where $L = \max\{L_1, L_2\}$.

Proof. Let $\sup_{t\in[0,1]} |f_1(t,0)| = M_1$ and $\sup_{t\in[0,1]} |f_2(t,0)| = M_2$. Assume that $M = \max\{M_1, M_2\}$, Choosing $r > \frac{(\Lambda_1 + \Lambda_2)M}{1 - L(\Lambda_1 + \Lambda_2)}$, we indicate that $\mathcal{T}K_r \subset K_r$, where $K_r = \{x \in C : \|x\| \leq r\}$. For $x \in K_r$, from (A3) $|f_1(s,x(s))| \leq |f_1(s,x(s)) - f_1(s,0)| + |f_1(s,0)| \leq L_1r + M_1$, $|f_2(s,x(s))| \leq |f_2(s,x(s)) - f_2(s,0)| + |f_2(s,0)| \leq L_2r + M_2$. By
\[(A_3), \text{ for } x \in K_r, \text{ we obtain that} \]

\[
\|(\mathcal{T}x)\|
\leq (Lr + M) \sup_{t \in [0,1]} \left\{ |A_1| \left[\frac{1}{\Gamma(p+1)} + \theta \left(\frac{1}{\Gamma(p-\gamma+1)} + \sum_{i=1}^{m-1} \alpha_i \int_{\eta_{i-1}}^{\eta_i} \int_0^s \frac{(s-\eta)^{p-r+1}}{\Gamma(p-\gamma)} d\eta dA(s) \right) \right] + |A_2| \left[\frac{1}{\Gamma(p+q+1)} + \theta \left(\frac{1}{\Gamma(p-\gamma+q+1)} + \sum_{i=1}^{m-1} \alpha_i \int_{\eta_{i-1}}^{\eta_i} \int_0^s \frac{(s-\eta)^{p-r+q+1}}{\Gamma(p-\gamma+q)} d\eta dA(s) \right) \right] \right\}

\leq (Lr + M)(\Lambda_1 + \Lambda_2) < r.

If \(x, y \in \mathcal{C} \), and \(t \in [0,1] \), then

\[
\|\mathcal{T}x - \mathcal{T}y\|
\leq \sup_{t \in [0,1]} \left\{ |A_1| \int_0^t \frac{(t-s)^{p-1}}{\Gamma(p)} |f_1(s, x(s)) - f_1(s, y(s))| ds + |A_2| \int_0^t \frac{(t-s)^{p+q-1}}{\Gamma(p+q)} |f_2(s, x(s)) - f_2(s, y(s))| ds + \theta t^{p-1} \left[|A_1| \left[\frac{1}{\Gamma(p-\gamma)} \int_0^1 (1-s)^{p-\gamma-1} |f_1(s, x(s)) - f_2(s, y(s))| ds \right] + |A_2| \left[\frac{1}{\Gamma(p-\gamma+q)} \int_0^1 (1-s)^{p-\gamma+q-1} |f_2(s, x(s)) - f_2(s, y(s))| ds \right] \right] \}

\leq L \left\{ |A_1| \left[\frac{1}{\Gamma(p+1)} + \theta \left(\frac{1}{\Gamma(p-\gamma+1)} + \sum_{i=1}^{m-1} \alpha_i \int_{\eta_{i-1}}^{\eta_i} \int_0^s \frac{(s-\eta)^{p-\gamma+1}}{\Gamma(p-\gamma)} d\eta dA(s) \right) \right] + |A_2| \left[\frac{1}{\Gamma(p+q+1)} + \theta \left(\frac{1}{\Gamma(p-\gamma+q+1)} + \sum_{i=1}^{m-1} \alpha_i \int_{\eta_{i-1}}^{\eta_i} \int_0^s \frac{(s-\eta)^{p-\gamma+q+1}}{\Gamma(p-\gamma+q)} d\eta dA(s) \right) \right] \right\} \|x - y\|

\leq L(\Lambda_1 + \Lambda_2) \|x - y\|.

As \(L < 1/\Lambda_1 + \Lambda_2 \), \(\mathcal{T} \) is a contraction. Hence, by the Banach’s fixed point theorem, the fractional BVP (1) has a unique solution. The proof is completed. \(\square \)
EXAMPLE 1. Consider the following fractional boundary value problem
\[\begin{cases}
-D^{3/2}x(t) = f_1(t,x(t)) + t^{1/3}f_2(t,x(t)), & 1 < p \leq 2, \quad t \in (0,1), \\
D^{1/4}x(0) = D^{1/4}x(1) = \frac{1}{2} \int_0^1 D^{1/4}x(s)ds + \frac{1}{2} \int_0^1 D^{1/4}x(s)ds.
\end{cases}\]
(6)

Here \(n = 2, \quad p = 3/2, \quad \gamma = 1/4, \quad q = 1/3, \quad a_1 = 1/2, \quad a_2 = 0, \quad a_3 = 1/2, \quad \eta_0 = 0, \quad \eta_1 = 1/4, \quad \eta_2 = 1/3, \quad \eta_3 = 1, \) and \(A(s) = s, \quad f_1(t,x) = \frac{1}{t^2+10}\cos x, \quad f_2(t,x) = \frac{1}{t^2+12}\sin x. \)

As \(|f_1(t,x) - f_1(t,y)| \leq \frac{1}{10}|x - y|\), and \(|f_2(t,x) - f_2(t,y)| \leq \frac{1}{12}|x - y|\). Then, \((A_3)\) is satisfied with \(L = \max\{L_1,L_2\} = \frac{1}{10}. \) Further, \(\Lambda_1 = 2.122, \quad \Lambda_2 = 1.659 \) and
\[L(\Lambda_1 + \Lambda_2) \approx 0.3781 < 1.\]

Therefore, by the conclusion of Theorem 2, the fractional BVP (6) has a unique solution.

Now we present another variant of existence-uniqueness result. This result is based on Boyd-Wong Contraction Principle.

DEFINITION 3. Assume that \(E \) is a Banach space and \(T : E \to E \) is a mapping. If there exists a continuous nondecreasing function \(\psi : \mathbb{R}^+ \to \mathbb{R}^+ \) such that \(\psi(0) = 0 \) and \(\psi(\epsilon) < \epsilon \) for all \(\epsilon > 0 \) with the property:
\[||Tx - Ty|| \leq \psi(||x - y||), \quad \forall x, y \in F.\]

then, we say that \(T \) is a nonlinear contraction.

THEOREM 3. (Boyd-Wong Contraction Principle) [7] Suppose that \(B \) is a Banach space and \(T : B \to B \) is a nonlinear contraction. Then \(T \) has a unique fixed point in \(B. \)

THEOREM 4. Assume that \(f_1,f_2 : [0,1] \times \mathbb{R} \to \mathbb{R} \) are continuous functions and \(H_1, \quad H_2 > 0 \) satisfying the condition
\[(A_4) \quad |f_1(t,x) - f_1(t,y)| \leq \frac{|x - y|}{H_1 + |x - y|}, \quad |f_2(t,x) - f_2(t,y)| \leq \frac{|x - y|}{H_2 + |x - y|}, \quad \text{for } t \in [0,1], x,y \in \mathbb{R}.\]

Then the fractional BVP (1) has a unique solution on \([0,1].\)

\textbf{Proof.} We define an operator \(\mathcal{T} : \mathcal{C} \to \mathcal{C} \) as in (5) and a continuous nondecreasing function \(\psi : \mathbb{R}^+ \to \mathbb{R}^+ \) by
\[\psi(\epsilon) = \frac{H\epsilon}{H + \epsilon}, \quad \forall \epsilon \geq 0.\]
where \(\Lambda_1 + \Lambda_2 \leq H \leq \min\{H_1, H_2\} \). We notice that the function \(\psi \) satisfies \(\psi(0) = 0 \) and \(\psi(\varepsilon) < \varepsilon \) for all \(\varepsilon > 0 \). For any \(x, y \in \mathcal{C} \), and for each \(t \in [0, 1] \), we obtain

\[
\| \mathcal{T}x - \mathcal{T}y \|
\leq \sup_{t \in [0, 1]} \left\{ |A_1| \int_0^t \left(\frac{(t-s)^{p-1}}{\Gamma(p)} \right) |f_1(s,x(s)) - f_1(s,y(s))| \, ds \\
+ |A_2| \int_0^t \left(\frac{(t-s)^{p+q-1}}{\Gamma(p+q)} \right) |f_2(s,x(s)) - f_2(s,y(s))| \, ds \\
+ \theta t^{p-1} \left[|A_1| \int_0^1 \left(\frac{(1-s)^{p-\gamma-1}}{\Gamma(p-\gamma)} \right) |f_1(s,x(s)) - f_1(s,y(s))| \, ds \\
+ |A_2| \int_0^1 \left(\frac{(1-s)^{p-\gamma+q-1}}{\Gamma(p-\gamma+q)} \right) |f_2(s,x(s)) - f_2(s,y(s))| \, ds \\
+ \left| A_1 \right| \sum_{i=1}^{m-1} \left[\int_{\eta_{i-1}}^{\eta_i} \int_0^s \left(\frac{(s-\eta)^{p-\gamma-1}}{\Gamma(p-\gamma)} \right) |f_1(\eta,x(\eta)) - f_1(\eta,y(\eta))| \, d\eta \, dA(s) \\
+ \left| A_2 \right| \sum_{i=1}^{m-1} \left[\int_{\eta_{i-1}}^{\eta_i} \int_0^s \left(\frac{(s-\eta)^{p-\gamma+q-1}}{\Gamma(p-\gamma+q)} \right) |f_2(\eta,x(\eta)) - f_2(\eta,y(\eta))| \, d\eta \, dA(s) \right] \right\} \\
\leq \left| \frac{\Lambda_1}{H_1 + |x-y|} \right| + \left| \frac{\Lambda_2}{H_2 + |x-y|} \right| \\
\leq \psi(||x-y||).
\]

Then, we get \(||Tx - Ty|| \leq \psi(||x-y||) \). Hence, \(T \) is a nonlinear contraction. Thus, by Theorem 3 the operator \(T \) has a unique fixed point which is the unique solution of the fractional BVP (1). The proof is completed. □

Example 2. Consider the following fractional boundary value problem

\[
\begin{align*}
-D^{5/2}x(t) &= f_1(t,x(t)) + I^{1/2}f_2(t,x(t)), \quad 2 < p \leq 3, \quad t \in (0, 1), \\
D^{1/4}x(0) &= D^{5/4}x(0) = 0, \quad D^{1/4}x(1) = \frac{1}{2} \int_0^1 D^{1/4}x(s) \, ds + \frac{1}{2} \int_0^1 D^{1/4}x(s) \, ds. \quad (7)
\end{align*}
\]

Here \(n = 3, \quad p = 5/2, \quad \gamma = 1/4, \quad q = 1/2, \quad a_1 = 1/2, \quad a_2 = 1/2, \quad a_3 = 0, \quad \eta_0 = 0, \quad \eta_1 = 1/8, \quad \eta_2 = 1/4, \quad \eta_3 = 1 \) and \(A(s) = s \), \(f_1(t,x) = \frac{\sin t}{t+1} \cdot \frac{|x|}{1+|x|} \), \(f_2(t,x) = \frac{1}{t^2 + 1} \cdot \frac{|x|}{2+|x|} \). We choose \(H_1 = 1, \quad H_2 = 2, \quad H = 0.9 \) and we obtain \(\Lambda_1 = 0.6717, \quad \Lambda_2 = 0.167 \) and \(\Lambda_1 + \Lambda_2 = 0.8387 \leq H = 0.9 \leq \min\{H_1, H_2\} = 1 \). Clearly

\[
|f_1(t,x) - f_1(t,y)| \leq \frac{|x-y|}{1+|x-y|}, \quad |f_2(t,x) - f_2(t,y)| \leq \frac{|x-y|}{2+|x-y|},
\]

for \(t \in [0, 1], \quad x, y \in \mathbb{R} \).

Hence, by Theorem 4, the fractional BVP (7) has a unique solution.
REFERENCES

(Received June 4, 2018)

Tuğba Senlik Cerdik
35100, Bornova, İzmir, Turkey
e-mail: tubasenlik@gmail.com

Nuket Aykut Hamal
Department of Mathematics, Ege University
35100, Bornova, İzmir, Turkey
e-mail: nuket.aykut@ege.edu.tr

Fulya Yoruk Deren
Department of Mathematics, Ege University
35100, Bornova, İzmir, Turkey
e-mail: fulya.yoruk@ege.edu.tr