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Abstract. In this paper we recover a generalization of the classical Bernstein operators intro-

duced by Morigi and Neamtu in 2000. Specifically, we focus on a sequence of operators that

reproduce the exponential functions exp(µt) and exp(2µt) , µ > 0 . We study its convergence,

this including qualitative and quantitative theorems, an asymptotic formula and saturation results.

We also show their shape preserving properties by considering generalized convexity. Finally,

a comparison is stated, that shows that in a certain sense and for certain family of illustrative

functions the new sequence approximates better than the classical Bernstein polynomials.

1. Introduction and preliminaries

The n th classical Bernstein operator assigns to each single function f ∈ R
[0,1] the

polynomial function Bn f , defined for t ∈ [0,1] by

Bn f (t) = Bn( f ;t) =
n

∑
k=0

f

(

k

n

)

pn,k(t), pn,k(t) :=

(

n

k

)

tk (1− t)n−k .

It is well known that if f ∈ C [0,1] , then the sequence of functions Bn f converges to

f as n tends to infinity uniformly on [0,1] , providing this way a simple and construc-

tive proof to the Weierstrass Approximation Theorem. These operators present a nice

estructure, hold fixed the affine functions, interpolate continuous functions at the end

points of the interval [0,1] and preserve the classical convexities of all orders.

Due mainly to these basic properties, these operators, and a long list of variations

and extensions of them that we do not cite in this note, have been of constant interest

in the field of approximation theory. In this paper we consider a special case of a mod-

ification introduced in [13] by Morigi and Neamtu, which is associated with classical

exponential functions.

We denote respectively by exp and log the natural exponential and logarithmic

functions, although we are also writing et for the value of exp(t) . As usual, we denote

by ei the polynomial functions defined by ei(t) = t i .
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Throughout the paper we consider a fixed real parameter µ > 0 and consider the

exponential function expµ , defined by expµ(t) = eµt . Its inverse function is denoted

here by logµ , i.e. logµ is the logarithmic function with base eµ .

The aforesaid modification of our interest in this paper is defined for f ∈ R
[0,1] ,

n ∈ N = {1,2, . . .} and t ∈ [0,1] by

Gn f (t) = Gn( f ;t) =
n

∑
k=0

f

(

k

n

)

e−µk/neµt pn,k(an(t)), (1)

where

an (t) =
eµt/n −1

eµ/n −1
.

Its close connection with the Bernstein operators is now displayed:

Gn f (t) = expµ(t)Bn

(

f

expµ

;an(t)

)

. (2)

Notice that for each n∈N , an is an increasing and convex real continuous function

satisfying an (0) = 0, an (1) = 1 and an (t) > 0 for t ∈ [0,1]. As a direct consequence,

Gn is a positive operator that also interpolates continuous functions at the endpoints of

[0,1] . On the other hand, whereas Bn hold fixed the functions e0 and e1 , as we have

just recalled, it can be checked easily that the operators Gn reproduce expµ and exp2
µ ,

i.e.

Gn(expµ ;x) = eµx, Gn(exp2
µ ;x) = e2µx. (3)

Our aim with this paper is to investigate in depth the operators Gn , n ∈ N , re-

vealing new properties. Firstly, we study the convergence, this including qualitative

and quantitative theorems, an asymptotic formula and saturation results. Roughly

speaking, we point up in advance that the role played by the so-called Korovkin set

{e0,e1,e2} for the study of the convergence properties of Bn will now be played by the

set {e0,expµ ,exp2
µ} , which trivially turns out to be an extended complete Tchebychev

system.

We study as well some shape preserving properties, and state a comparison that

shows that in a certain sense and for certain family of illustrative functions the new

sequence approximates better than the classical Bernstein operators. In this respect, we

shall see that it is convenient to consider a notion of generalized convexity related to

the functions expµ and exp2
µ .

We notice that in [6] a particular case of the general King-type operators related to

exponential functions was studied, and we point up that very recently in [1] and [10],

respective modifications of the Szász-Mirakyan operators and the Phillips Operators

that reproduce only one exponential type function have been investigated.

It is also important mentioning that under the setting of approximation theory by

linear operators, although the general sequence of operators introduced by Morigi and

Neamtu in [13] has received further attention in subsequent papers, see [3], [12] and [2],

no results had dealt earlier with the quantitative aspects of the approximation process
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that they represent, neither had gone so far away concerning the shape preserving prop-

erties. On the other hand, although for the sake of completeness we prove the uniform

convergence of the particular process we are dealing with, this had been proved earlier.

The asymptotic formula had been announced, but the authors have found no proof of it.

We end this introductory section with a lemma that shows some basic identities

that we shall use throughout the text. No proof is required as it can be derived by

direct calculations, maybe with the eventual use of some mathematical software like

Mathematica.

LEMMA 1. For each n ∈ N and x ∈ [0,1] , the following identities hold:

Gne0(x) = eµ(x−1)
(

eµ/n + 1− eµx/n
)n

,

Gn(exp3
µ ;x) = eµx

(

eµ(x+1)/n + eµx/n − eµ/n
)n

,

Gn(exp4
µ ;x) = eµx

(

eµ(x+2)/n + eµ(x+1)/n + eµx/n − eµ/n − e2µ/n
)n

.

2. Convergence properties

Five theorems are stated in this section. The first one shows that Gn represents

an approximation process for the functions of the space C[0,1] . Later, the approx-

imation error is estimated by proving a quantitative result. Then, searching for the

so-called optimal order of convergence, following this way the classical pattern when

studying sequences of linear operators, we prove an asymptotic formula analogous to

the classical one stated by Voronovskaja in 1932 for the Bernstein operators, that reads

as follows: if f ∈C[0,1] and f ′′(x) exists, then

lim
n→∞

2n(Bn f (x)− f (x)) = x(1− x) f ′′(x). (4)

And finally in this section, two results show the so-called trivial class and saturation

class of the sequence Gn .

We make use of the first modulus of continuity, defined for f ∈ C(I) ( I being a

compact real interval) and δ > 0 by

ω( f ;δ ) = {sup | f (t)− f (x)| : t,x ∈ I, |t − x|6 δ}

(no confusion will arise about the interval I to be considered when we just write

ω( f ,δ )).

Moreover, for each x ∈ (0,1) , we shall consider the functions ex and expµ,x de-

fined for t ∈ [0,1] by

ex(t) = t − x, expµ,x(t) = eµt − eµx.

By elementary calculus, one can prove that for x ∈ (0,1) and t ∈ [0,1] , whenever

µ > 1,

e2
x(t) 6 exp2

µ,x(t), (5)
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and, concerning the images of the first powers of expµ,x under Gn , for x ∈ [0,1] , using

(3) and Lemma 1, one finds that

Gn

(

expµ,x;x
)

= Gn

(

expµ ;x
)

− eµx
Gne0(x) = eµx (1−Gne0(x))

= eµx
(

1− eµ(x−1)
(

eµ/n + 1− eµx/n
)n)

, (6)

Gn

(

exp2
µ,x;x

)

= Gn

(

exp2
µ ;x
)

−2eµx
Gn(expµ ;x)+ e2µx

Gne0(x)

= e2µx (Gne0(x)−1) = e2µx
(

eµ(x−1)
(

eµ/n + 1− eµx/n
)n

−1
)

, (7)

Gn

(

exp4
µ,x;x

)

= Gn

(

exp4
µ ;x
)

−4eµx
Gn(exp3

µ ;x)+ 6e2µx
Gn(exp2

µ ;x)

−4e3µx
Gn(expµ ;x)+ e4µx

Gne0(x)

= eµx
[

2e3µx + eµ(4x−1)
(

eµ/n + 1− eµx/n
)n

−4eµx
(

eµ(x+1)/n + eµx/n − eµ/n
)n

+
(

eµ(x+2)/n + eµ(x+1)/n + eµx/n − eµ/n − e2µ/n
)n]

. (8)

THEOREM 1. If f ∈C[0,1] , then Gn f converges to f uniformly on [0,1] .

Proof. As Gn is a sequence of linear positive operators, and {e0,expµ ,exp2
µ} is an

extended complete Tchebychev system, then the famous Popoviciu–Bohman–Korovkin

theorem (see for instante [4]) guaranties the validity of the statement if the thesis is

fulfilled for the functions e0 , expµ and exp2
µ . After (3), this amounts to prove the

uniform convergence of Gne0 to e0 , and this is what we are checking right now.

The pointwise convergence corresponds to the limit (see Lemma 1)

lim
n→∞

eµ(x−1)
(

eµ/n + 1− eµx/n
)n

= 1,

that can be proved with ease. As for the uniform convergence, we first proceed with a

brief analytic study of the function Gne0 . One has that

(Gne0)
′(t) = µeµ(t−1)(1 + eµ/n−2eµt/n)(1 + eµ/n− eµt/n)n−1,

Gne0(0) = 1 = Gne0(1),

(Gne0)
′(0) = µ

(

1− e−µ/n
)

> 0, (Gne0)
′(1) = µ

(

1− eµ/n
)

< 0.

From that, one obtains that Gne0(t)> 1 for t ∈ (0,1) and that Gne0 attains its maximum

value within [0,1] at the point t = n
µ log

(

1+eµ/n

2

)

. As a consequence,

sup
t∈[0,1]

Gne0(t) = Gne0

(

n

µ
log

(

1 + eµ/n

2

))

= 4−ne−µ
(

1 + eµ/n
)2n

. (9)
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The easy to check fact that this last sequence tends to 1 as n tends to infinity proves

the uniform convergence of Gne0 towards e0 and ends the proof of the theorem. �

THEOREM 2. Let f ∈C[0,1] , x ∈ (0,1) and let δ > 0 . Then

|Gn f (x)− f (x)|6 | f (x)|(Gne0(x)−1)+

(

Gne0(x)+
e2µx (Gne0(x)−1)

δ 2

)

ω
(

f ◦ logµ ;δ
)

.

If µ > 1 , then ω
(

f ◦ logµ ;δ
)

can be replaced by ω ( f ;δ ) .

Proof. It follows directly by applying the already classical Shisha and Mond tech-

nique (see [14]). We have that

| f (t)− f (x)| =
∣

∣

∣

(

f ◦ logµ

)

(eµt)−
(

f ◦ logµ

)

(eµx)
∣

∣

∣

6 ω
(

f ◦ logµ ;
∣

∣eµt − eµx
∣

∣

)

6

(

1 +
(eµt − eµx)2

δ 2

)

ω
(

f ◦ logµ ;δ
)

,

and directly from that, using (7) and the fact that Gne0(t) > 1 for t ∈ [0,1] ,

|Gn f (x)− f (x)| 6 | f (x)|(Gne0(x)−1)+



Gne0(x)+
Gn

(

exp2
µ,x;x

)

δ 2



ω
(

f ◦ logµ ;δ
)

= | f (x)|(Gne0(x)−1)+

(

Gne0(x)+
e2µx (Gne0(x)−1)

δ 2

)

ω
(

f ◦ logµ ;δ
)

.

This completes the proof of the main statement. The case when µ > 1 follows analo-

gously from the following equation, derived from (5):

| f (t)− f (x)| 6

(

1 +
e2

x(t)

δ 2

)

ω ( f ;δ ) 6

(

1 +
(eµt − eµx)2

δ 2

)

ω ( f ;δ ) . �

REMARK 1. If in the previous theorem we take

δ 2 = λn(x) := Gne0(x)−1,

then the estimate in the thesis reads as

|Gn f (x)− f (x)| 6 | f (x)|λn(x)+
(

1 + e2µx + λn(x)
)

ω
(

f ◦ logµ ;
√

λn(x)
)

.

From it, taking into account (9), an uniform estimate of the difference between Gn f

and f is easily derived.

Thus, the rapidity of convergence of Gn f (x) towards f (x) is controlled by the

rapidity of convergence of Gne0(x) towards e0(x) = 1, or equivalently, the one of λn(x)
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towards 0, and this is given by the following limit, that can be calculated by elementary

calculus:

lim
n→∞

n(Gne0(x)−1) = lim
n→∞

nλn(x) (10)

= lim
n→∞

n
(

eµ(x−1)
(

eµ/n + 1− eµx/n
)n

−1
)

= µ2x(1− x).

A sort of comparison with the operators Bn goes quickly. It is well-known that for

f ∈C[0,1]

|Bn f (x)− f (x)| 6 2ω
(

f ;
√

τn(x)
)

,

where τn(x) := Bne2(x)−x2 . Then the rapidity of convergence of Bn f (x) towards f (x)
is controlled by the one of Bne2(x) towards e2(x) = x2 . Recall that τn(x) = x(1−x)/n ,

and compare with (10).

THEOREM 3. If f ∈C[0,1] has a second derivative at a point x ∈ (0,1) , then

lim
n→∞

2n(Gn ( f ;x)− f (x)) = x(1− x)
(

f ′′(x)−3µ f ′(x)+ 2µ2 f (x)
)

. (11)

Proof. By Taylor’s theorem, we have

f (t) =
(

f ◦ logµ

)

(

eµt
)

=
(

f ◦ logµ

)

(eµx)+
(

f ◦ logµ

)′
(eµx)expµ,x(t)

+

(

f ◦ logµ

)′′
(eµx)

2
exp2

µ,x(t)+ hx(t)exp2
µ,x(t),

where hx(t) := h(t − x) and h is a continuous function which vanishes at 0 . Applying

the operator Gn and then evaluating at the point x we obtain

Gn f (x) = f (x)Gne0(x)+
(

f ◦ logµ

)′
(eµx)Gn

(

expµ,x;x
)

+

(

f ◦ logµ

)′′
(eµx)

2
Gn

(

exp2
µ,x;x

)

+Gn

(

hx exp2
µ,x;x

)

.

Since

(

f ◦ logµ

)′
(eµx) = e−µxµ−1 f ′ (x) ,

(

f ◦ logµ

)′′
(eµx) = e−2µx

(

µ−2 f ′′ (x)− µ−1 f ′ (x)
)

,

directly from (6) and (7) we have

Gn f (x)− f (x) = (Gne0(x)−1)

(

f (x)−
3

2µ
f ′(x)+

1

2µ2
f ′′(x)

)

+Gn

(

hx exp2
µx;x

)

.
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If we multiply by n the previous expression and make use of the limit (10), the

proof of the theorem will be over if we prove that

lim
n→∞

nGn

(

hx exp2
µ,x;x

)

= 0.

From Cauchy-Schwarz inequality we can write

n

∣

∣

∣Gn

(

hx exp2
µ,x;x

)∣

∣

∣6

√

Gn (h2
x;x)

√

n2Gn

(

exp4
µ,x;x

)

.

Now, Theorem 1 allows to write

lim
n→∞

Gn(h
2
x ;x) = h2

x(x) = 0,

and from (8), some calculations, maybe with the aid of some mathematical software,

give us

lim
n→∞

n2
Gn

(

exp4
µx;x

)

= 3e4µxµ4x2(1− x)2. (12)

This completes the proof of the theorem. �

A natural step after stating an asymptotic formula is to solve the saturation prob-

lem. With that purpose, we first take a look at the differential operator that appears in

the right-hand side of (11). It is an easy exercise to get the following expression related

to it:

x(1− x)
(

f ′′(x)−3µ f ′(x)+ 2µ2 f (x)
)

=
1

w2(x)

(

1

w1(x)

(

f (x)

w0(x)

)′)′

,

where

w0(x) = w1(x) = eµx, w2(x) =
e−2µx

x(1− x)
.

With the obvious modifications the results in [9, Section 5] apply to the operators Gn ,

and immediately the following two results appear. Notice that a fundamental system of

solutions of the second order differential equation f ′′ − 3µ f ′ + 2µ2 f = 0 is given by

the functions expµ and exp2
µ .

THEOREM 4. Let f ∈C[0,1] and let 0 < a < b < 1 . Then for each x ∈ (a,b)

2n(Gn f (x)− f (x)) = o(1)

if and only if f is a solution of the differential equation f ′′−3µ f ′+2µ2 f = 0 in (a,b) .

THEOREM 5. Let f ∈ C[0,1] , let 0 < a < b < 1 and let M > 0 . Then for each

x ∈ (a,b)
2n |Gn f (x)− f (x)| 6 M + o(1)

if and only if, for almost every t ∈ (a,b)

| f ′′(t)−3µ f ′(t)+ 2µ2 f (t)| 6 M.
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3. Shape preserving properties

It was already pointed out in the introduction that, for each n ∈ N , the operator

Gn is positive, hold fixed the functions expµ and exp2
µ , and interpolates the continuous

functions at the end points of the interval [0,1] .
Now we are searching for further shape preserving properties. We begin by com-

puting the first two derivatives of Gn f/expµ :

(

Gn f

expµ

)′

(t) = na′n (t)
n−1

∑
k=0

[

f

expµ

(

k + 1

n

)

−
f

expµ

(

k

n

)

]

pn−1,k(an(t)), (13)

(

Gn f

expµ

)′′

(t) = na′′n (t)
n−1

∑
k=0

[

f

expµ

(

k + 1

n

)

−
f

expµ

(

k

n

)

]

pn−1,k(an(t)) (14)

+n(n−1)a′n (x)2
n−2

∑
k=0

[

f

expµ

(

k + 2

n

)

−2
f

expµ

(

k + 1

n

)

+
f

expµ

(

k

n

)

]

pn−2,k(an(t)).

As an(t) is increasing and convex, we deduce from the previous expressions that if

for f ∈C[0,1] , f/expµ is increasing, then so is Gn f/expµ ; and if in addition f/expµ

is convex, then Gn f/expµ is also convex. However, the sole convexity of f/expµ does

not imply the convexity of Gn f/expµ . Counterexamples appear easily after taking

f = e0 .

It is convenient to recover these shape preserving properties, and add some others,

in terms of generalized convexities with respect to the functions expµ and exp2
µ . After

[11], we consider the following definition and results in this direction. Notice that

{expµ ,exp2
µ} is an extended complete Tchebychev system.

DEFINITION 1. A function f ∈R
(0,1) is said to be convex with respect to {expµ} ,

denoted by f ∈ C (expµ) , if

∣

∣

∣

∣

eµt0 eµt1

f (t0) f (t1)

∣

∣

∣

∣

> 0, 0 < t0 < t1 < 1.

f is said to be convex with respect to {expµ ,exp2
µ} , denoted by f ∈ C (expµ ,exp2

µ) , if

∣

∣

∣

∣

∣

∣

eµt0 eµt1 eµt2

e2µt0 e2µt1 e2µt2

f (t0) f (t1) f (t2)

∣

∣

∣

∣

∣

∣

> 0, 0 < t0 < t1 < t2 < 1.

Note that if f ∈C[0,1] , then both previous non-strict inequalities with the determi-

nants will hold, by continuity, respectively for 0 6 t0 < t1 6 1 and 0 6 t0 < t1 < t2 6 1.

PROPOSITION 1. Let f ∈C1[0,1] . Then the following items are equivalent:
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1. f ∈ C (expµ) ,

2. f/expµ is increasing,

3. f ′(t) > µ f (t) for t ∈ [0,1] .

Proof. It suffices to use the definition of convexity with respect to {expµ} and

work out the derivative of f/expµ . �

PROPOSITION 2. Let f ∈C2[0,1] . Then the following items are equivalent:

1. f ∈ C (expµ ,exp2
µ) ,

2. ( f/expµ)′′(t) > µ( f/expµ)′(t) for t ∈ [0,1] ,

3. f ′′(t)−3µ f ′(t)+ 2µ2 f (t) > 0 for t ∈ [0,1] .

Proof. It suffices to work out the first two derivatives of f/expµ , and use the

definition of convexity with respect to {expµ ,exp2
µ} together with a characterization

given in [5] that ensures its equivalence with the classical convexity of the function

( f/expµ)◦ logµ on the interval [1,eµ ] . �

REMARK 2. The functions expµ and exp2
µ are frequently said to form a Haar

system or the Haar pair (expµ ,exp2
µ) . Under this denomination, convexity with respect

to {expµ ,exp2
µ} is usually called (expµ ,exp2

µ)-convexity. Moreover, the monotony of

f/expµ is usually named as the expµ -monotony of f .

On the other hand, following [7], as expµ and exp2
µ form a fundamental system

of solutions of the differential equation f ′′−3µ f ′ +2µ2 f = 0, then the (expµ ,exp2
µ)-

convexity is equivalent to the fact of being sub-L , L being the differential operator

defined as L f := f ′′−3µ f ′+ 2µ2 f .

We are coming back now to the shape preserving properties of Gn . First of all,

following [15],

f ∈ C (expµ ,exp2
µ) ⇒ Gn f (t) > f (t), 0 6 t 6 1. (15)

Secondly, we wrote after (13) and (14) with other terminology that

f ∈ C (expµ) ⇒ Gn f ∈ C (expµ).

Moreover, using (13), (14), the easy to check inequality a′′n(t) 6 a′n(t) for t ∈ [0,1] , and

Proposition 2, we can write in short that

− f ∈ C (expµ)

( f/expµ) convex

}

⇒

(

Gn f

expµ

)′′

> µ

(

Gn f

expµ

)′

⇔ Gn f ∈ C (expµ ,exp2
µ).
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Finally, making items (3) in both Proposition 1 and Proposition 2 enter the scene and

using the fact that the classical convexity of f/expµ amounts to f ′′(t)− 2µ f ′(t) +

µ2 f (t) > 0 for t ∈ [0,1] , we have that

− f ∈ C (expµ) ⇔ µ f > f ′

f
expµ

convex⇔ f ′′−2µ f ′+ µ2 f > 0

}

⇒ f ′′−3µ f ′+2µ2 f > 0⇔ f ∈C (expµ ,exp2
µ).

4. Comparison with Bernstein polynomials

Next theorem uses the asymptotic formulae fulfilled by Bn and Gn to state a sort of

weak result that shows that for certain family of illustrative functions the new sequence

approximates better than the classical Bernstein operators.

THEOREM 6. Let f ∈C2[0,1] . Suppose that there exists n0 ∈ N such that

f (t) 6 Gn f (t) 6 Bn f (t), for all n > n0, t ∈ (0,1). (16)

Then

f ′′(t) > 3µ f ′(t)−2µ2 f (t) > 0, t ∈ (0,1). (17)

In particular, f ′′(x) > 0 .

Conversely, if (17) holds with strict inequalities at a given point x ∈ (0,1) , then

there exists n0 ∈ N such that for n > n0

f (x) < Gn f (x) < Bn f (x).

Proof. From (16) we have that

0 6 2n(Gn f (t)− f (t)) 6 2n(Bn f (t)− f (t)) , n > n0, t ∈ (0,1).

Then, using (4) and (11),

0 6 f ′′(t)−3µ f ′(t)+ 2µ2 f (t) 6 f ′′(t)

from which (17) follows directly.

Conversely, if (17) holds with strict inequalities for a given x∈ (0,1) , then directly

0 < f ′′(x)−3µ f ′(x)+ 2µ2 f (x) < f ′′(x),

and using again (4) and (11), the proof follows. �

REMARK 3. It is of interest to point up that, according to Proposition 1 and Propo-

sition 2, condition (17) is satisfied by the functions f such that f ∈ C (expµ) and

f ∈ C (expµ ,exp2
µ) . Among them one finds, after an elementary analysis, the illustra-

tive families of functions given by

f (t) = t p, p >
3µ + 1 +

√

µ2 + 6µ + 1

2
,

and

f (t) = exp(qt), q > 2µ .
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f (x) = x5, n = 5, µ = 4 f (x) = x5, n = 5, µ = 1

f (x) = exp(7x), n = 4, µ = 5 f (x) = exp(7x), n = 4, µ = 0.5

Figure 1.

The graphics given in Figure 1 intend to show that a stronger version of Theorem

6 could be stated. We finish the paper with it in the form of a conjecture, insisting on

the subsequent fact that the sequence Gn seems to represent a nice approximation tool

to bear in mind. The thick line, the dotted line and the dashed one represent respec-

tively the function f to be approximated, Bn f and Gn f according to the information

captioned at the bottom of each single graph.

CONJECTURE 1. If f ∈C[0,1] is such that f ∈C (expµ) and f ∈C (expµ ,exp2
µ) ,

then for all n ∈ N and all t ∈ [0,1] , one has that f (t) 6 Gn f (t) 6 Bn(t) .
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