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COMPLETE CONVERGENCE AND COMPLETE MOMENT

CONVERGENCE FOR ARRAYS OF ROWWISE WIDELY ORTHANT

DEPENDENT RANDOM VARIABLES AND AN APPLICATION

XIANG HUANG

(Communicated by Z. S. Szewczak)

Abstract. Some general results on complete convergence and complete moment convergence for

arrays of rowwise widely orthant dependent random variables is established. As an application,

the complete consistency for the estimators in non-parametric model is established.

1. Introduction

Many statistical procedures depend on such sums as ∑n
i=1 aniXni , so the study of

the limit properties of this type of weighted sums of random variables is of great inter-

est. There are many papers concern the limit properties of weighted sums of random

variables, one important topic of which is compete convergence, the concept of which

was first introduced by Hsu and Robbins [1] as follows:

A sequence {Un,n > 1} of random variables converges completely to a constant

C if for any ε > 0,
∞

∑
n=1

P(|Un −C|> ε) < ∞.

From the Borel-Cantelli lemma, one can obtain that Un →C almost surely.

Let {Un,n > 1} be a sequence of random variables and an > 0, bn > 0, q > 0. If

∞

∑
n=1

anE{bn
−1|Un|− ε}q

+ < ∞ for all ε > 0,

then the result above was defined as complete moment convergence by Chow [2]. It is

easy to check that complete moment convergence implies complete convergence. Con-

sequently, complete moment convergence is much stronger than complete convergence.

The concept of widely orthant dependent random variables was introduced by

Wang et al. [3] as follows.
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DEFINITION 1.1. A finite collection of random variables X1,X2, · · · ,Xn is said to

be widely upper orthant dependent (WUOD) if there exists a finite real number gU(n)
such that for all finite real numbers xi,1 6 i 6 n ,

P(X1 > x1,X2 > x2, · · · ,Xn > xn) 6 gU(n)
n

∏
i=1

P(Xi > xi). (1.1)

A finite collection of random variables X1,X2, · · · ,Xn is said to be widely lower orthant

dependent (WLOD) if there exists a finite real number gL(n) such that for all finite real

numbers xi,1 6 i 6 n ,

P(X1 6 x1,X2 6 x2, · · · ,Xn 6 xn) 6 gL(n)
n

∏
i=1

P(Xi 6 xi). (1.2)

If X1,X2, · · · ,Xn are both WUOD and WLOD, then X1,X2, · · · ,Xn are said to be widely

orthant dependent (WOD), and gU(n) , gL(n) are called dominating coefficients. A se-

quence of random variables {Xn,n > 1} is said to be WOD if every finite subcollection

is WOD.

An array of random variables {Xni,1 6 i 6 kn,n > 1} is said to be rowwise WOD

if for every n > 1, {Xni,1 6 i 6 kn} are WOD.

With various dominating coefficients, the WOD structure reveals many other de-

pendence structures. Wang et al. [3] offered some examples to show that WOD random

variables contain negatively dependent random variables, positively dependent random

variables, and some other classes of dependent random variables, also they presented

some examples to show that the opposite is not true. By letting xi →−∞ in (1.1) and

xi → ∞ in (1.2) for each 1 6 i 6 n , it is easy to show that gU(n) > 1, gL(n) > 1. If

both (1.1) and (1.2) hold with gU(n) = gL(n) = M for each n > 1, where M > 1 is a

constant, then the random variables are called extended negatively dependent (END),

which was introduced by Liu [4]. If both (1.1) and (1.2) hold with gU(n) = gL(n) = 1

for all n > 1, then the random variables are called negatively orthant depenent (NOD),

which was introduced by Lehmann [5] (cf. also Joag-Dev and Proschan [6]). Joag-Dev

and Proschan [6] also pointed out that negatively associated (NA) random variables

must be NOD and NOD is not necessarily NA, so NA random variables are WOD.

Recently, Sung et al. [7] established the following complete convergence for NOD

random variables.

THEOREM 1.1. Let {Xni,1 6 i 6 kn,n > 1} be an array of rowwise NOD ran-

dom variables, {cn,n > 1} be a sequence of positive constants, and {bn,n > 1} be a

sequence of positive constants such that lim
n→∞

bn = ∞. Suppose that

(i) ∑∞
n=1 cn ∑

kn
i=1 P(|Xni| > ε) < ∞ ∀ε > 0 ,

(ii) ∑∞
n=1 cn

(

∑
kn
i=1 P(|Xni| > 1/bn)

)N1

< ∞ for some N1 > 0 ,

(iii) bn ∑
kn
i=1 EX2

niI(|Xni| 6 1/bn) → 0 , n → ∞ , and

(iv) ∑∞
n=1 cn exp{−N2bn} < ∞ for some N2 > 0 .
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Then for all ε > 0 ,

∞

∑
n=1

cnP

(∣

∣

∣

∣

∣

kn

∑
i=1

(Xni −EXniI(|Xni| 6 1/bn))

∣

∣

∣

∣

∣

> ε

)

< ∞.

The result above is very general and meaningful. As applications of the result,

Sung et al. [7] presented some corollaries which improve and extend the existing ones.

Qiu et al. [8] extended Theorem 1.1 to END random variables and presented more

applications of the result. The aim of this paper is not only to extend the result of

Theorem 1.1 for NOD random variables as well as the corresponding result in Qiu et

al. [8] for END random variables to the case of WOD random variables, but also to

establish the complete moment convergence, which is much stronger than complete

convergence. As applications, we further investigate complete consistency for the esti-

mators in non-parametric model. These results generalize and improve some existing

ones for dependent or independent random variables.

Next let us recall the concept of stochastic domination, which is weaker than that

of identical distribution.

DEFINITION 1.2. A sequence {Xn,n > 1} of random variables is said to be stochas-

tically dominated by a random variable X if there exists a positive constant C such that

P(|Xn| > x) 6 CP(|X | > x)

for all x > 0 and n > 1.

Throughout the paper, let g(n)= max{gU(n),gL(n)} . Let C be a positive constant

whose value may be different in different places. The symbol ⌊x⌋ denotes the integer

part of x . let c( f ) denote the set of continuity points of the function f on A and

‖x‖ denote the Euclidean norm of x ∈ R
m . Let logx = lnmax(x,e) and I(A) be the

indicator function of the set A .

2. Main results

2.1. Complete convergence and complete moment convergence

In this subsection, the main results will be presented. The first one concerns the

complete convergence for arrays of WOD random variables.

THEOREM 2.1. Let {Xni,1 6 i 6 kn,n > 1} be an array of rowwise WOD ran-

dom variables, {cn,n > 1} be a sequence of positive constants, and {bn,n > 1} be a

sequence of positive constants such that limn→∞ bn = ∞. Suppose that

(i) ∑∞
n=1 cn ∑

kn
i=1 P(|Xni| > ε) < ∞ ∀ε > 0 ;

(ii) ∑∞
n=1 cng(n)

(

∑
kn
i=1 P(|Xni| > 1/bn)

)N1

< ∞ for some N1 > 0 ;

(iii) bn ∑
kn
i=1 EX2

niI(|Xni| 6 1/bn) → 0 , n → ∞;

(iv) ∑∞
n=1 cng(n)exp{−N2bn} < ∞ for some N2 > 0 .
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Then for all ε > 0 ,

∞

∑
n=1

cnP

(∣

∣

∣

∣

∣

kn

∑
i=1

(Xni −EXniI(|Xni| 6 1/bn))

∣

∣

∣

∣

∣

> ε

)

< ∞. (2.1)

THEOREM 2.2. Under the conditions of Theorem 2.1, if ∑
kn

i=1 EXniI(|Xni|6 1/bn)
→ 0 as n → ∞ , then for all ε > 0 ,

∞

∑
n=1

cnP

(∣

∣

∣

∣

∣

kn

∑
i=1

Xni

∣

∣

∣

∣

∣

> ε

)

< ∞.

Based on the result above, we can obtain the following result for WOD random

variables. The result can be applied to prove the complete consistency of weighed

estimators in either nonparametric or semi-parametric regression models.

COROLLARY 2.1. Let {Xni,1 6 i 6 n,n > 1} be an array of rowwise WOD ran-

dom variables such that EXni = 0 and {Xni} are stochastically dominated by a random

variable X satisfying E|X |2p < ∞ for some p > 1 . Let the dominating coefficients

g(n) = O(nt) for some t > 0 . Assume that {ani,1 6 i 6 n,n > 1} is an array of con-

stants satisfying

max
16i6n

|ani| = O(n−1/p), (2.2)

n

∑
i=1

a2
ni = o((logn)−1). (2.3)

Then ∑n
i=1 aniXni converges completely to zero.

REMARK 2.1. Sung [9] obtained the corresponding result for NOD random vari-

ables. It is deserved to mention that the coefficients g(n) are only required to be poly-

nomial increasing, and the moment condition is independent of the coefficients g(n) .

Since WOD structure contains NOD structure as a special case, Corollary 2.1 extends

the corresponding result of Sung [9] from NOD settings to WOD settings.

THEOREM 2.3. Let q > 0 and {Xni,1 6 i 6 kn,n > 1} be an array of rowwise

WOD random variables, {cn,n > 1} be a sequence of positive constants, and {bn,n >

1} be a sequence of positive constants such that lim
n→∞

bn = ∞. Suppose that conditions

(ii) and (iii) in Theorem 2.1 and the following conditions hold:

(a) ∑∞
n=1 cn ∑

kn
i=1 E|Xni|

qI(|Xni| > ε) < ∞ ∀ ε > 0;

(b) ∑∞
n=1 cng(n)b−N3

n < ∞ for some N3 > 0 ;

(c) bs
n ∑

kn
i=1 E|Xni|

sI(|Xni| > 1/bn) → 0 for some s > 0 .

Then for all ε > 0 ,

∞

∑
n=1

cnE

{∣

∣

∣

∣

∣

kn

∑
i=1

(Xni −EXniI(|Xni| 6 1/bn))

∣

∣

∣

∣

∣

− ε

}q

+

< ∞. (2.4)
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THEOREM 2.4. Under the conditions of Theorem 2.3, if ∑
kn
i=1 EXniI(|Xni|6 1/bn)

→ 0 as n → ∞ , then for all ε > 0 ,

∞

∑
n=1

cnE

{∣

∣

∣

∣

∣

kn

∑
i=1

Xni

∣

∣

∣

∣

∣

− ε

}q

+

< ∞.

COROLLARY 2.2. Let α > 1/2 , α p > 1 . Let {Xni,1 6 i 6 n,n > 1} be an array

of WOD random variables stochastically dominated by a random variable X satisfying

E|X |p < ∞ . Assume further that EXni = 0 if p > 1 and g(n) = O(nt) for some t > 0 .

Then for any ε > 0 and 0 < q < p,

∞

∑
n=1

nα p−αq−2E

{∣

∣

∣

∣

∣

n

∑
i=1

Xni

∣

∣

∣

∣

∣

− εnα

}q

+

< ∞. (2.5)

REMARK 2.2. Chow [2] obtained the result

∞

∑
n=1

nα p−α−2E

{∣

∣

∣

∣

∣

n

∑
i=1

Xi

∣

∣

∣

∣

∣

− εnα

}

+

< ∞

for a sequence of independent and identically distributed random variables with EX1 =
0, α > 1

2
, p > 1, α p > 1 and E{|X1|

p + |X1| log(1 + |X1|)} < ∞ . Compared to this

classical result, we have the following improvements or generalizations:

(1) The result of Chow [2] was considered for one-indexed independent and

identically distributed random variables, while Corollary 2.2 is established for double-

indexed WOD random variables with stochastic domination, which is much weaker

than that of Chow [2];

(2) The value of p is extended from p > 1 to any p > 0 and the exponent q is

extended from q ≡ 1 to any 0 < q < p ;

(3) For p = 1, the moment condition in Chow [2] is improved to E|X | < ∞ and

the zero mean assumption is no more needed in Corollary 2.2.

2.2. Consistency for estimators in non-parametric model

In this subsection, we will investigate the complete consistency for weighted esti-

mators in non-parametric model for WOD random errors based on the result established

in section 2.1.

Consider the following nonparametric regression model:

Yni = f (xni)+ εni, i = 1,2, · · · ,n, n > 1, (2.6)

where xni are fixed design points from A , where A ⊂ R
m is a given compact set for

some m > 1, f (·) is an unknown regression function defined on A , and εni are random

errors. A natural estimator of f (·) is known as the following weighted regression

estimator:

f̂n(x) =
n

∑
i=1

ωni(x)Yni, (2.7)
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where x ∈ A , and ωni(x) = ωni(x;xn1,xn2, · · · ,xnn) , i = 1,2, · · · ,n are weight functions.

The above estimator was first proposed by Stone [10] and adapted by Georgiev

[11] and then studied by many authors. For more details one can refer to Roussas [12],

Roussas et al. [13], Fan [14], Liang and Jing [15], Wang et al. [16] and so on.

Before presenting the result of complete consistency for the estimator (2.7), the

following assumptions on weight functions ωni(x) is needed:

(H1)
n

∑
i=1

ωni(x) → 1, n → ∞; (H2)
n

∑
i=1

|ωni(x)| 6 C < ∞ ∀ n;

(H3)
n

∑
i=1

|ωni(x)| · | f (xni)− f (x)|I(‖xni − x‖ > a) → 0, n → ∞, ∀ a > 0.

According to the assumptions above, we obtain the following result on complete con-

sistency of the nonparametric regression estimator f̂n(x) .

THEOREM 2.5. Suppose that (H1)–(H3) hold. Let {εni,1 6 i 6 n,n > 1} be an

array of rowwise zero mean WOD random errors stochastically dominated by a random

variable ε satisfying E|ε|2p < ∞ for some p > 1 . Assume that g(n) = O(nt) for some

t > 0 . If

max
16i6n

|ωni(x)| = O(n−1/p) (2.8)

and

n

∑
i=1

(ωni(x))
2 = o((logn)−1). (2.9)

Then for all x ∈ c( f ) ,

f̂n(x) → f (x) completely. (2.10)

REMARK 2.3. Condition (2.9) can be easily satisfied. For example, if max
16i6n

|ωni(x)|

= O(n−1/p) for some 1 6 p < 2, then it is easy to see that

n

∑
i=1

(ωni(x))
2 6 Cn1−2/p = o((logn)−1).

Moreover, it differs from the result in Wang et al. [16] that the moment condition in

Theorem 2.5 is independent of the coefficients g(n) .

3. Proofs of the main results

We first give some lemmas which are essential in proving our main results. From

Wang et al. [3], one can easily obtain the following important properties for WOD

random variables.
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LEMMA 3.1. Let random variables X1,X2, · · · ,Xn be WOD.

(i) If f1, f2, · · · , fn are all nondecreasing (or nonincreasing) functions, then ran-

dom variables f1(X1), f2(X2), · · · , fn(Xn) are WOD.

(ii) For each n > 1 , one has that

E

(

n

∏
i=1

X+
i

)

6 g(n)
n

∏
i=1

EX+
i .

Inspired by Sung et al. [7], we can obtain the following exponential inequality for

WOD random variables.

LEMMA 3.2. Let {Xn,n > 1} be a sequence of WOD random variables with

EXn = 0 and |Xn| 6 dn,n > 1 , where {dn,n > 1} is a sequence of positive constants.

Then for any t ∈ R ,

E exp

{

t
n

∑
i=1

Xi

}

6 g(n)exp

{

t2

2

n

∑
i=1

etdiEX2
i

}

.

Proof. Noting that for all x , 1 + x 6 ex 6 1 + x + x2

2
e|x| , we have that for each

1 6 i 6 n ,

EetXi 6 1 + tEXi +
t2

2
E
(

X2
i et|Xi|

)

= 1 +
t2

2
E

(

X2
i et|Xi|

)

6 1 +
t2

2
etdiEX2

i 6 exp

{

t2

2
etdi EX2

i

}

.

Then it follows from Lemma 3.1 that

E exp

{

t
n

∑
i=1

Xi

}

= E
n

∏
i=1

exp{tXi} 6 g(n)
n

∏
i=1

E exp{tXi}

6 g(n)
n

∏
i=1

exp

{

t2

2
etdiEX2

i

}

= g(n)exp

{

t2

2

n

∑
i=1

etdiEX2
i

}

. �

The next one is the Fuk-Nagaev type inequality for WOD random variables, which

can be found in Wang et al. [16].

LEMMA 3.3. Let 0 < γ 6 2 . Let {Xn,n > 1} be a sequence of WOD random

variables with EXn = 0 for each n > 1 when 1 6 γ 6 2 . Then for all n > 1 , x > 0 and

y > 0 ,

P

(∣

∣

∣

∣

∣

n

∑
i=1

Xi

∣

∣

∣

∣

∣

> x

)

6

n

∑
i=1

P(|Xi| > y)+ 2g(n)exp

{

x

y
−

x

y
ln

(

1 +
xyγ−1

∑n
i=1 E|Xi|γ

)}

.

The last lemma is an important property for stochastic domination. One can refer

to Wu [17] for example.
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LEMMA 3.4. Let {Xni,1 6 i 6 n,n > 1} be an array of rowwise random variables

stochastically dominated by a random variable X . Then for any a > 0 and b > 0 ,

E|Xni|
aI (|Xni| 6 b) 6 C1 [E|X |aI (|X | 6 b)+ baP(|X | > b)] ,

E|Xni|
aI (|Xni| > b) 6 C2E|X |aI (|X | > b) ,

where C1 and C2 are positive constants.

With the lemmas above accounted for, we will present the proofs of the results.

Proof of Theorem 2.1. The set of all natural numbers can be partitioned into two

subsets

N1 =

{

n :
kn

∑
i=1

P(|Xni| > 1/bn) 6 1

}

, and N2 = N−N1.

Therefore, applying condition (ii), we have

∑
n∈N2

cnP

(∣

∣

∣

∣

∣

kn

∑
i=1

(Xni −EXniI(|Xni| 6 1/bn))

∣

∣

∣

∣

∣

> ε

)

6 ∑
n∈N2

cn 6 ∑
n∈N2

cn

(

kn

∑
i=1

P(|Xni| > 1/bn)

)N1

< ∞.

Hence it suffices to prove

∑
n∈N1

cnP

(∣

∣

∣

∣

∣

kn

∑
i=1

(Xni −EXniI(|Xni| 6 1/bn))

∣

∣

∣

∣

∣

> ε

)

< ∞, ∀ε > 0. (3.1)

Since bn →∞ as n → ∞ , there exists a positive constant M such that 1/bn < ε/[4(N1 +
1)] for all n > M . For fixed n > 1, denote that

Xni(1) = −1/bnI(Xni < −1/bn)+ XniI(|Xni| 6 1/bn)+ 1/bnI(Xni > 1/bn),

Xni(2) = −1/bnI(Xni < −1/bn), Xni(3) = 1/bnI(Xni > 1/bn),

Xni(4) = XniI(1/bn < |Xni| 6 ε/[4(N1 + 1)]).

From Lemma 3.1, it is easy to show that {Xni(l)−EXni(l),1 6 i 6 kn,n > 1} , l = 1,2,3,

are all arrays of rowwise WOD random variables. Therefore,

∑
n∈N1

cnP

(

kn

∑
i=1

(Xni −EXniI(|Xni| 6 1/bn)) > ε

)

6 ∑
n∈N1

cnP

(

kn
⋃

i=1

{|Xni| > ε/[4(N1 + 1)]}

)

+ ∑
n∈N1

cnP

(

kn

∑
i=1

(XniI(|Xni| 6 ε/[4(N1 + 1)])−EXniI(|Xni| 6 1/bn)) > ε

)

=: I1 + I2.
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From (i), we have

I1 6

∞

∑
n=1

cn

kn

∑
i=1

P(|Xni| > ε/[4(N1 + 1)]) < ∞.

For I2 , noting that I2 < ∞ for n ∈ N1 and n 6 M , so we only need to consider the case

n ∈ N1 and n > M . It is to show that

kn

∑
i=1

(XniI(|Xni| 6 ε/[4(N1 + 1)])−EXniI(|Xni| 6 1/bn))

=
kn

∑
i=1

(Xni(1)−EXni(1))+
kn

∑
i=1

(−Xni(2)+EXni(2))+
kn

∑
i=1

(−Xni(3)+EXni(3))+
kn

∑
i=1

Xni(4).

Hence, we have that

I2 6 C + ∑
n∈N1,n>M

cnP

(

kn

∑
i=1

(Xni(1)−EXni(1)) > ε/4

)

+ ∑
n∈N1,n>M

cnP

(

kn

∑
i=1

(−Xni(2)+ EXni(2)) > ε/4

)

+ ∑
n∈N1,n>M

cnP

(

kn

∑
i=1

(−Xni(3)+ EXni(3)) > ε/4

)

+ ∑
n∈N1,n>M

cnP

(

kn

∑
i=1

Xni(4) > ε/4

)

=: C + I21 + I22 + I23 + I24.

It follows from the definition of Xni(1) that |Xni(1)−EXni(1)|6 2/bn and (Xni(1))2 =

1/b2
nI(|Xni|> 1/bn)+X2

niI(|Xni|6 1/bn) . Note that 1/bn

kn

∑
i=1

P(|Xni|> 1/bn) = o(1) for

any n ∈ N1 . Applying Lemma 3.2 with t = 4(N2 + 1)bn/ε , from Markov’s inequality

and condition (iii) one has that for any n ∈ N1 and n > M ,

P

(

kn

∑
i=1

(Xni(1)−EXni(1)) > ε/4

)

6 g(n)exp

{

−
ε

4
t +

t2

2
e

2t
bn

kn

∑
i=1

E(Xni(1)−EXni(1))2

}

6 g(n)exp

{

−
ε

4
t +

t2

2
e

2t
bn

kn

∑
i=1

E(Xni(1))2

}

6 g(n)exp

{

−(N2 + 1)bn +
8(N2 + 1)2

ε2
exp

{

8(N2 + 1)

ε

}

bno(1)

}

6 g(n)exp{−(N2 + 1)bn + o(1)bn}

6 Cg(n)exp{−N2bn}.
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Consequently, from condition (iv) one has that

I21 6 C ∑
n∈N1,n>M

cng(n)exp{−N2bn} < ∞.

For I22 , from the definition of Xni(2) one can also have that |Xni(2)−EXni(2)|6 2/bn .

Applying Lemma 3.2 again with t = 4(N2 + 1)bn/ε , we have by Markov’s inequality

that for all n ∈ N1 and n > M ,

P

(

kn

∑
i=1

(−Xni(2)+ EXni(2)) > ε/4

)

6 g(n)exp

{

−
ε

4
t +

t2

2
e

2t
bn

kn

∑
i=1

E(−Xni(2)+ EXni(2))2

}

6 g(n)exp

{

−
ε

4
t +

t2

2
e

2t
bn

kn

∑
i=1

1

b2
n

P(|Xni| > 1/bn)

}

6 g(n)exp{−(N2 + 1)bn + o(1)bn}

6 Cg(n)exp{−N2bn} .

Hence, from condition (iv) again one can obtain that

I22 6 C ∑
n∈N1,n>M

cng(n)exp{−N2bn} < ∞.

Similar to the proof of I22 < ∞ , we can obtain I23 < ∞.

Finally, we will prove I24 < ∞. It follows from the definition of WOD random

variables that for n ∈ N1 ,

P

(

kn

∑
i=1

XniI(1/bn < |Xni| 6 ε/[4(N1 + 1)]) > ε/4

)

6 P
(

there exist at least ⌊N1 + 1⌋′s Xni such that Xni > 1/bn

)

= P







⋃

16 j1<···< j⌊N1+1⌋6kn

(Xn j1 > 1/bn, · · · ,Xn j⌊N1+1⌋
> 1/bn)







6 g(n) ∑
j1,..., j⌊N1+1⌋

⌊N1+1⌋

∏
i=1

P(Xn ji > 1/bn)

6 g(n)

(

kn

∑
i=1

P(|Xni| > 1/bn)

)⌊N1+1⌋

6 g(n)

(

kn

∑
i=1

P(|Xni| > 1/bn)

)N1

,
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which together with condition (ii) obtains that

I24 6 ∑
n∈N1,n>M

cng(n)

(

kn

∑
i=1

P(|Xni| > 1/bn)

)N1

< ∞.

Consequently, we have proved I2 < ∞ and thus

∑
n∈N1

cnP

(

kn

∑
k=1

(Xnk −EXnkI(|Xnk| 6 1/bn)) > ε

)

< ∞. (3.2)

Noting that {−Xni,1 6 i 6 kn,n > 1} is also an array of rowwise WOD random vari-

ables, replacing Xni by −Xni for each 1 6 i 6 kn , n > 1 in (3.2), we have that

∑
n∈N1

cnP

(

kn

∑
k=1

(−Xnk + EXnkI(|Xnk| 6 1/bn)) > ε

)

< ∞. (3.3)

(3.1) follows from (3.2) and (3.3) immediately. The proof is completed. �

Proof of Theorem 2.2. Noting that
kn

∑
i=1

EXniI(|Xni|6 1/bn)→ 0, we obtain that for

any n large enough,
∣

∣

∣

∣

∣

kn

∑
i=1

EXniI(|Xni| 6 1/bn)

∣

∣

∣

∣

∣

6 ε/2.

Hence, it follows from Theorem 2.1 that

∞

∑
n=1

cnP

(∣

∣

∣

∣

∣

kn

∑
i=1

Xni

∣

∣

∣

∣

∣

> ε

)

6 C
∞

∑
n=1

cnP

(∣

∣

∣

∣

∣

kn

∑
i=1

(Xni −EXniI(|Xni| 6 1/bn))

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

kn

∑
i=1

EXniI(|Xni| 6 1/bn)

∣

∣

∣

∣

∣

> ε

)

6 C
∞

∑
n=1

cnP

(
∣

∣

∣

∣

∣

kn

∑
i=1

(Xni −EXniI(|Xni| 6 1/bn))

∣

∣

∣

∣

∣

> ε/2

)

< ∞. �

Proof of Corollary 2.1. Letting cn = 1, bn = logn , kn = n , g(n) = O(nt) and

replacing Xni by aniXni for each 1 6 i 6 n , n > 1 in Theorem 2.2. In order to prove

Corollary 2.1, we only need to check that all the conditions of Theorem 2.2 hold. For

condition (i), it follows from (2.2) and Lemma 3.4 that
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∞

∑
n=1

n

∑
i=1

P(|aniXni| > ε)

6 ε−1
∞

∑
n=1

n

∑
i=1

E|aniXni|I(|aniXni| > ε)

6 C
∞

∑
n=1

n1−1/pE|X |I(|X | > n1/pε)

= C
∞

∑
n=1

n1−1/p
∞

∑
j=n

E|X |I( j1/pε < |X | 6 ( j + 1)1/pε)

= C
∞

∑
j=1

E|X |I( j1/pε < |X | 6 ( j + 1)1/pε)
j

∑
n=1

n1−1/p

6 C
∞

∑
j=1

j2−1/pE|X |I( j1/pε < |X | 6 ( j + 1)1/pε)

6 CE|X |2p < ∞.

For condition (ii), taking N1 > t + 1, then it follows from Markov’s inequality, (2.2)

and Lemma 3.4 that

∞

∑
n=1

g(n)

(

n

∑
i=1

P(|aniXni| > (logn)−1)

)N1

6 C
∞

∑
n=1

nt

(

n

∑
i=1

(logn)2pE|aniXni|
2p

)N1

6 C
∞

∑
n=1

nt
(

n−1(logn)2pE|X |2p
)N1

6 C
∞

∑
n=1

nt−N1(logn)2pN1 < ∞.

For condition (iii), from (2.3) and Lemma 3.4 again, one can obtain that

logn
n

∑
i=1

Ea2
niX

2
niI(|aniXni| 6 (logn)−1) 6 C logn

n

∑
i=1

a2
niEX2 → 0, n → ∞.

Condition (iv) holds obviously by taking N2 > t + 1. Hence it remains to prove

n

∑
i=1

EaniXniI(|aniXni| 6 (logn)−1) → 0.
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From EXni = 0, (2.2) and Lemma 3.4 one can easily get that

∣

∣

∣

∣

∣

n

∑
i=1

EaniXniI(|aniXni| 6 (logn)−1)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

n

∑
i=1

EaniXniI(|aniXni| > (logn)−1)

∣

∣

∣

∣

∣

6

n

∑
i=1

E|aniXni|I(|aniXni| > (logn)−1)

6 (logn)2p−1
n

∑
i=1

E|aniXni|
2pI(|aniXni| > (logn)−1)

6 C(logn)2p−1
n

∑
i=1

|ani|
2pE|X |2p

6 Cn−1(logn)2p−1 → 0, n → ∞.

Consequently, all the conditions of Theorem 2.2 are satisfied and the desired result

follows from Theorem 2.2 immediately. �

Proof of Theorem 2.3. Denote for any n > 1 that

Sn =
kn

∑
i=1

(Xni −EXniI(|Xni| 6 1/bn)),

then we have that

∞

∑
n=1

cnE

{
∣

∣

∣

∣

∣

kn

∑
i=1

(Xni −EXniI(|Xni| 6 1/bn))

∣

∣

∣

∣

∣

− ε

}q

+

=
∞

∑
n=1

cn

∫ 1

0
P

(

|Sn| > ε + t1/q
)

dt +
∞

∑
n=1

cn

∫ ∞

1
P

(

|Sn| > ε + t1/q
)

dt

=: J1 + J2.

To prove J1 < ∞ , we first prove (2.1) holds. According to the conditions of Theorem

2.3, it suffices to show that conditions (i) and (iv) of Theorem 2.1 are satisfied. For all

ε > 0, it follows from Markov’s inequality and condition (a) that

∞

∑
n=1

cn

kn

∑
i=1

P(|Xni| > ε) 6 ε−q
∞

∑
n=1

cn

kn

∑
i=1

E|Xni|
qI(|Xni| > ε) < ∞.

Hence, condition (i) of Theorem 2.1 holds.

For condition (iv), noting that exp{−N2bn}= o(b−N3
n ) for all N2 > 0 and N3 > 0,

from condition (b) one can easily obtain that

∞

∑
n=1

cng(n)exp{−N2bn} 6 C
∞

∑
n=1

cng(n)b−N3
n < ∞.
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Therefore, (2.1) holds true under the assumptions of Theorem 2.3. It follows from

Theorem 2.1 that

J1 6

∞

∑
n=1

cnP(|Sn| > ε) < ∞.

In the following, we will prove J2 < ∞ . One can easily obtain that

J2 6

∞

∑
n=1

cn

∫ ∞

1
P

(

max
16i6kn

|Xni| > t1/q

)

dt

+
∞

∑
n=1

cn

∫ ∞

1
P

(∣

∣

∣

∣

∣

kn

∑
i=1

(XniI(|Xni| 6 t1/q)−EXniI(|Xni| 6 1/bn))

∣

∣

∣

∣

∣

> t1/q

)

dt

=: J21 + J22.

From condition (a) and the fact that E|X | =
∫ ∞

0 P(|X | > t)dt , we obtain that

J21 6

∞

∑
n=1

cn

kn

∑
i=1

∫ ∞

0
P(|Xni|I(|Xni| > 1) > t1/q)dt =

∞

∑
n=1

cn

kn

∑
i=1

E|Xni|
qI(|Xni| > 1) < ∞.

Denote for each 1 6 i 6 kn and n > 1 that

Uni = −t1/qI(Xni < −t1/q)+ XniI(|Xnk| 6 t1/q)+ t1/qI(Xni > t1/q),

Vni = t1/qI(Xni < −t1/q)− t1/qI(Xni > t1/q).

Therefore,
∣

∣

∣

∣

∣

kn

∑
i=1

(XniI(|Xni| 6 t1/q)−EXniI(|Xni| 6 1/bn))

∣

∣

∣

∣

∣

6

∣

∣

∣

∣

∣

kn

∑
i=1

(Uni −EUni)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

kn

∑
i=1

(Vni −EVni)

∣

∣

∣

∣

∣

+
kn

∑
i=1

E|Xni|I(1/bn < |Xni| 6 t1/q).

Moreover, from Markov’s inequality and condition (c) , we have that

sup
t>1

t−1/q
kn

∑
i=1

E|Xni|I(1/bn < |Xni| 6 t1/q) 6

kn

∑
i=1

P(|Xni| > 1/bn) → 0, n → ∞,

which implies that for any t > 1 and all n large enough,

kn

∑
i=1

E|Xni|I(1/bn < |Xni| 6 t1/q) <
1

3
t1/q.

Therefore,

J22 6 C
∞

∑
n=1

cn

∫ ∞

1
P

(∣

∣

∣

∣

∣

kn

∑
i=1

(Vni −EVni)

∣

∣

∣

∣

∣

>
1

3
t1/q

)

dt

+C
∞

∑
n=1

cn

∫ ∞

1
P

(
∣

∣

∣

∣

∣

kn

∑
i=1

(Uni −EUni)

∣

∣

∣

∣

∣

>
1

3
t1/q

)

dt

=: J23 + J24.
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It follows from condition (a) that

J23 6 C
∞

∑
n=1

cn

∫ ∞

1
t−1/q

kn

∑
i=1

E|Vni|dt

= C
∞

∑
n=1

cn

kn

∑
i=1

∫ ∞

1
P(|Xni| > t1/q)dt

6 C
∞

∑
n=1

cn

kn

∑
i=1

E|Xni|
qI(|Xni| > 1) < ∞.

For J24, let γ = 2, x = 1
3
t1/q , y = 1

3λ t1/q with λ > max{q,N3,N3/s,q/s} in Lemma

3.3, one can get that

J24 6 C
∞

∑
n=1

cn

kn

∑
i=1

∫ ∞

1
P

(

|Uni −EUni| >
1

3λ
t1/q

)

dt

+C
∞

∑
n=1

cng(n)
∫ ∞

1

(

1 +
t2/q

9λ ∑
kn

i=1 E(Uni −EUni)2

)−λ

dt

=: J25 + J26.

It follows from condition (c) and limn→∞ bn = ∞ that for all n large enough (such that

at least 1/bn 6 1),

sup
t>1

max
16i6kn

t−1/q|EUni| 6 sup
t>1

max
16i6kn

t−1/qE|Uni|

6 sup
t>1

max
16i6kn

{t−1/qE|Xni|I(|Xni| 6 1/bn)

+t−1/qE|Xni|I(1/bn < |Xni| 6 t1/q)+ P(|Xni| > t1/q)}

6 1/bn + 2
kn

∑
i=1

P(|Xni| > 1/bn) → 0, n → ∞.

Hence from |Uni| 6 |Xni| and condition (a) , one can obtain that

J25 6 C
∞

∑
n=1

cn

kn

∑
i=1

∫ ∞

1
P

(

|Uni| >
1

4λ
t1/q

)

dt

6 C
∞

∑
n=1

cn

kn

∑
i=1

∫ ∞

1
P

(

|Xni| >
1

4λ
t1/q

)

dt

6 C
∞

∑
n=1

cn

kn

∑
i=1

E|Xni|
qI(|Xni| >

1

4λ
) < ∞.

It follows from the definition of Uni that U2
ni = t2/qI(|Xni| > t1/q)+ X2

niI(|Xni| 6 t1/q) .
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Hence, by Cr inequality we have that

J26 6 C
∞

∑
n=1

cng(n)

∫ ∞

1
t−2λ/q

(

kn

∑
i=1

E(Uni −EUni)
2

)λ

dt

6 C
∞

∑
n=1

cng(n)

∫ ∞

1
t−2λ/q

(

kn

∑
i=1

EU2
ni

)λ

dt

6 C
∞

∑
n=1

cng(n)
∫ ∞

1
t−2λ/q

(

kn

∑
i=1

EX2
niI(|Xni| 6 1/bn)

)λ

dt

+C
∞

∑
n=1

cng(n)

∫ ∞

1
t−2λ/q

(

kn

∑
i=1

EX2
niI(1/bn < |Xni| 6 t1/q)

)λ

dt

+C
∞

∑
n=1

cng(n)

∫ ∞

1

(

kn

∑
i=1

P(|Xni| > t1/q)

)λ

dt

=: J27 + J28 + J29.

It follows from condition (iii) that bn

kn

∑
i=1

EX2
ni

I(|Xni
|6 1/bn) < 1 for all n large enough.

Noting that λ > N3 and λ > q , we have by condition (b) that

J27 = C
∞

∑
n=1

cng(n)bn
−λ

(

bn

kn

∑
i=1

EX2
niI(|Xni| 6 1/bn)

)λ
∫ ∞

1
t−2λ/qdt

6 C
∞

∑
n=1

cng(n)b−λ
n < ∞.

Now we will estimate J28 . Recall that λ > max{q,N3,N3/s,q/s} . It follows from

condition (c) that bs
n ∑

kn
i=1 E|Xni|

sI(|Xni|> 1/bn) < 1 for all n large enough. If 0 < s 6

2, from condition (b) we obtain that

J28 6 C
∞

∑
n=1

cng(n)b−sλ
n

∫ ∞

1
t−sλ/q

(

bs
n

kn

∑
i=1

E|Xni|
sI(1/bn < |Xni| 6 t1/q)

)λ

dt

6 C
∞

∑
n=1

cng(n)b−sλ
n

∫ ∞

1
t−sλ/qdt < ∞,

providing that λ > N3/s and λ > q/s . If s > 2, we also have

J28 6 C
∞

∑
n=1

cng(n)b−2λ
n

∫ ∞

1
t−2λ/q

(

bs
n

kn

∑
i=1

E|Xni|
sI(1/bn < |Xni| 6 t1/q)

)λ

dt

6 C
∞

∑
n=1

cng(n)b−2λ
n

∫ ∞

1
t−2λ/qdt < ∞,
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providing that λ > N3 and λ > q .

Finally, we will prove J29 < ∞ . Note that 1/bn < 1 6 t1/q for all n large enough.

Therefore, we have by condition (b) again and λ > N3/s , λ > q/s that

J29 6 C
∞

∑
n=1

cng(n)b−sλ
n

∫ ∞

1
t−sλ/q

(

bs
n

kn

∑
i=1

E|Xni|
sI(|Xni| > 1/bn)

)λ

dt

6 C
∞

∑
n=1

cng(n)b−sλ
n

∫ ∞

1
t−sλ/qdt < ∞.

Consequently, the proof of the theorem is completed. �

Proof of Theorem 2.4. By some similar arguments as the proof of Theorem 2.2,

one can obtain the desired result immediately from (2.4) and ∑
kn

i=1 EXniI(|Xni|6 1/bn)→
0. The detail is omitted. �

Proof of Corollary 2.2. Let cn = nα p−2 , kn = n , bn = nr , 0 < r < min{α −
1/p,2α −1} and replace Xni by n−α Xni for each 1 6 i 6 n , n > 1 in Theorem 2.4. It

suffices to check that all the conditions of Theorem 2.4 hold.

For condition (a), it follows from Lemma 3.4 that

∞

∑
n=1

nα p−2
n

∑
i=1

n−αqE|Xni|
qI(|Xni| > nαε)

6 C
∞

∑
n=1

nα p−αq−1E|X |qI(|X | > nα ε)

= C
∞

∑
n=1

nα p−αq−1
∞

∑
j=n

E|X |qI( jα ε < |X | 6 ( j + 1)α ε)

= C
∞

∑
j=1

E|X |qI( jα ε < |X | 6 ( j + 1)αε)
j

∑
n=1

nα p−αq−1

6 C
∞

∑
j=1

jα p−αqE|X |qI( jα ε < |X | 6 ( j + 1)α ε)

6 C
∞

∑
j=1

E|X |pI( jα ε < |X | 6 ( j + 1)αε) 6 CE|X |p < ∞.

Condition (b) holds trivially by choosing N3 sufficiently large such that α p + t − 2−
rN3 < −1. For condition (c), note that r < α −1/p . Therefore, by choosing s = p , we

can obtain from Lemma 3.4 that

nrp
n

∑
i=1

n−α pE|Xni|
pI(|Xni| > nα−r) 6 CE|X |pn1−(α−r)p → 0, n → ∞.

For condition (ii), choosing N1 large enough such that α p+ t−2− [(α− r)p−1]N1 <
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−1, one can obtain from Lemma 3.4 and Markov’s inequality that

∞

∑
n=1

nα p−2g(n)

(

n

∑
i=1

P(|n−αXni| > n−r)

)N1

6 C
∞

∑
n=1

nα p+t−2

(

n

∑
i=1

P(|X | > nα−r)

)N1

6 C
∞

∑
n=1

nα p+t−2−[(α−r)p−1]N1(E|X |p)N1 < ∞.

For condition (iii), if p > 2, then

nr
n

∑
i=1

E|n−αXni|
2I(|Xni| 6 nα−r) 6 Cnr−2α+1 → 0, n → ∞.

If p < 2, it follows from 0 < r < α − 1/p that 1−α p +(p− 1)r < 1/p−α < 0 if

p > 1 or 1−α p +(p−1)r 6 1−α p < 0 if 0 < p 6 1. Hence,

nr
n

∑
i=1

E|n−αXni|
2I(|n−αXni| 6 n−r) 6 nr(p−1)

n

∑
i=1

E|n−αXni|
p

6 Cn1−α p+(p−1)r → 0, n → ∞.

Finally, we still need to prove that

n

∑
i=1

n−αEXniI(|Xni| 6 nα−r) → 0, n → ∞.

Note from 0 < r < α −1/p that 1−α p+(p−1)r < 0. If p > 1, we have by EXni = 0

and Lemma 3.4 that
∣

∣

∣

∣

∣

n

∑
i=1

n−αEXniI(|Xni| 6 nα−r)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

n

∑
i=1

n−αEXniI(|Xni| > nα−r)

∣

∣

∣

∣

∣

6 n−α
n

∑
i=1

E|Xni|I(|Xni| > nα−r)

6 n−α
n

∑
i=1

n(α−r)(1−p)E|Xni|
pI(|Xni| > nα−r)

6 Cn1−α p+(p−1)rE|X |pI(|X | > nα−r) → 0, n → ∞;

and if 0 < p 6 1, we also have by Lemma 3.4 that
∣

∣

∣

∣

∣

n

∑
i=1

n−αEXniI(|Xni| 6 nα−r)

∣

∣

∣

∣

∣

6 n−α
n

∑
i=1

E|Xni|I(|Xni| 6 nα−r)

6 n−α
n

∑
i=1

n(α−r)(1−p)E|Xni|
pI(|Xni| 6 nα−r)

6 Cn1−α p+(p−1)rE|X |p → 0, n → ∞.
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Consequently, the desired result follows immediately from Theorem 2.4. The proof is

completed. �

Proof of Theorem 2.5. For any a > 0 and x ∈ c( f ) , we obtain from (2.6) and (2.7)

that

|E f̂n(x)− f (x)| 6

n

∑
i=1

|ωni(x)| · | f (xni)− f (x)|I(‖xni − x‖ 6 a)

+
n

∑
i=1

|ωni(x)| · | f (xni)− f (x)|I(‖xni − x‖ > a)

+| f (x)| ·

∣

∣

∣

∣

∣

n

∑
i=1

ωni(x)−1

∣

∣

∣

∣

∣

. (3.4)

It follows from x ∈ c( f ) that for any ε > 0, there exists a constant δ > 0 such that

for any x
′

satisfying ‖x
′
− x‖ < δ , | f (x

′
)− f (x)| < ε . Therefore, taking 0 < a < δ in

(3.4), one can easily obtain from conditions (H1)− (H3) that

lim
n→∞

|E f̂n(x)− f (x)| = 0.

Noting that ωni(x) = ωni(x)
+−ωni(x)

− , we may assume without loss of generality that

ωni(x) > 0 for each 1 6 i 6 n and n > 1. Consequently, to prove (2.10), it suffices to

prove

f̂n(x)−E f̂n(x) =
n

∑
i=1

ωni(x)εni → 0 completely,

which is a direct result of Corollary 2.1 with Xni = εni and ani = ωni(x) . The proof is

completed. �
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