SOME MULTIPLE INTEGRAL INEQUALITIES
VIA THE DIVERGENCE THEOREM

SILVESTRU SEVER DRAGOMIR

(Communicated by J. Pečarić)

Abstract. In this paper, by the use of the divergence theorem, we establish some inequalities for functions defined on closed and bounded subsets of the Euclidean space \mathbb{R}^n, $n \geq 2$.

1. Introduction

Let ∂D be a simple, closed counterclockwise curve bounding a region D and f defined on an open set containing D and having continuous partial derivatives on D. In the recent paper [4], by the use of Green’s identity, we have shown among others that

$$
\int \int_D f(x,y) \, dx \, dy - \frac{1}{2} \oint_{\partial D} \left[(\beta - y) f(x,y) \, dx + (x - \alpha) f(x,y) \, dy \right]
\leq \frac{1}{2} \int \int_D \left[|\alpha - x| \left| \frac{\partial f(x,y)}{\partial x} \right| + |\beta - y| \left| \frac{\partial f(x,y)}{\partial y} \right| \right] \, dx \, dy =: M(\alpha, \beta ; f) \tag{1.1}
$$

for all $\alpha, \beta \in \mathbb{C}$ and

$$
M(\alpha, \beta ; f) \leq \left\{ \begin{array}{l}
\left\| \frac{\partial f}{\partial x} \right\|_{D,\infty} \int\int_D |\alpha - x| \, dx \, dy + \left\| \frac{\partial f}{\partial y} \right\|_{D,\infty} \int\int_D |\beta - y| \, dx \, dy;

\left\| \frac{\partial f}{\partial x} \right\|_{D,p} \left(\int\int_D |\alpha - x|^q \, dx \, dy \right)^{1/q} + \left\| \frac{\partial f}{\partial y} \right\|_{D,p} \left(\int\int_D |\beta - y|^q \, dx \, dy \right)^{1/q}
\end{array} \right.
$$

where $p, q > 1$, $\frac{1}{p} + \frac{1}{q} = 1$;

$$
sup_{(x,y) \in D} |\alpha - x| \left\| \frac{\partial f}{\partial x} \right\|_{D,1} + sup_{(x,y) \in D} |\beta - y| \left\| \frac{\partial f}{\partial y} \right\|_{B,1}, \tag{1.2}
$$

Keywords and phrases: Multiple integral inequalities, divergence theorem, Green identity, Gauss-Ostrogradsky identity.
where \(\| \cdot \|_{D,p} \) are the usual Lebesgue norms, we recall that
\[
\| g \|_{D,p} := \begin{cases} \left(\iint_D |g(x,y)|^p \, dxdy \right)^{1/p}, & p \geq 1; \\ \sup_{(x,y) \in D} |g(x,y)|, & p = \infty. \end{cases}
\]

Applications for rectangles and disks were also provided in [4]. For some recent double integral inequalities see [1], [2] and [3].

We also considered similar inequalities for 3-dimensional bodies as follows, see [5]. Let \(B \) be a solid in the three dimensional space \(\mathbb{R}^3 \) bounded by an orientable closed surface \(\partial B \). If \(f : B \to \mathbb{C} \) is a continuously differentiable function defined on a open set containing \(B \), then by making use of the Gauss-Ostrogradsky identity, we have obtained the following inequality
\[
\begin{aligned}
\iiint_B f(x,y,z) \, dxdydz - \frac{1}{3} \left[\int \int_{\partial B} (x-\alpha) f(x,y,z) \, dy \wedge dz \\
+ \int \int_{\partial B} (y-\beta) f(x,y,z) \, dz \wedge dx + \int \int_{\partial B} (z-\gamma) f(x,y,z) \, dx \wedge dy \right]
\leq \frac{1}{3} \iiint_B \left[|\alpha-x| \left| \frac{\partial f(x,y,z)}{\partial x} \right| + |\beta-y| \left| \frac{\partial f(x,y,z)}{\partial y} \right| + |\gamma-z| \left| \frac{\partial f(x,y,z)}{\partial z} \right| \right] dxdydz
=: M(\alpha,\beta,\gamma,f)
\end{aligned}
\]
for all \(\alpha, \beta, \gamma \) complex numbers. Moreover, we have the bounds
\[
M(\alpha,\beta,\gamma,f) \leq \begin{cases} \left\| \frac{\partial f}{\partial x} \right\|_{B,\infty} \iiint_B |\alpha-x| \, dxdydz + \left\| \frac{\partial f}{\partial y} \right\|_{B,\infty} \iiint_B |\beta-y| \, dxdydz \\
+ \left\| \frac{\partial f}{\partial z} \right\|_{B,\infty} \iiint_B |\gamma-z| \, dxdydz; \\
\leq \frac{1}{3} \left(\iiint_B |\alpha-x|^q \, dxdydz \right)^{1/q} + \left(\iiint_B |\beta-y|^q \, dxdydz \right)^{1/q} \\
+ \left(\iiint_B |\gamma-z|^q \, dxdydz \right)^{1/q}, \quad p, q > 1; \quad \frac{1}{p} + \frac{1}{q} = 1; \\
\sup_{(x,y,z) \in B} |\alpha-x| \left\| \frac{\partial f}{\partial x} \right\|_{B,1} + \sup_{(x,y,z) \in B} |\beta-y| \left\| \frac{\partial f}{\partial y} \right\|_{B,1} \\
+ \sup_{(x,y,z) \in B} |\gamma-z| \left\| \frac{\partial f}{\partial z} \right\|_{B,1}. \end{cases}
\]

Applications for 3-dimensional balls were also given in [5]. For some triple integral inequalities see [6] and [9].

Motivated by the above results, in this paper we establish several similar inequalities for multiple integrals for functions defined on bonded subsets of \(\mathbb{R}^n \) \((n \geq 2)\) with smooth (or piecewise smooth) boundary \(\partial B \). To achieve this goal we make use of the well known divergence theorem for multiple integrals as summarized below.
2. Some preliminary facts

Let B be a bounded open subset of \mathbb{R}^n $(n \geq 2)$ with smooth (or piecewise smooth) boundary ∂B. Let $F = (F_1, ..., F_n)$ be a smooth vector field defined in \mathbb{R}^n, or at least in $B \cup \partial B$. Let \mathbf{n} be the unit outward-pointing normal of ∂B. Then the Divergence Theorem states, see for instance [8]:

$$\int_B \text{div} F \, dV = \int_{\partial B} F \cdot n \, dA,$$

(2.1)

where

$$\text{div} F = \nabla \cdot F = \sum_{k=1}^{n} \frac{\partial F_k}{\partial x_k},$$

dV is the element of volume in \mathbb{R}^n and dA is the element of surface area on ∂B.

If $\mathbf{n} = (\mathbf{n}_1, ..., \mathbf{n}_n), \ x = (x_1, ..., x_n) \in B$ and use the notation dx for dV we can write (2.1) more explicitly as

$$\sum_{k=1}^{n} \int_B \frac{\partial F_k(x)}{\partial x_k} \, dx = \sum_{k=1}^{n} \int_{\partial B} F_k(x) \mathbf{n}_k(x) \, dA.$$

(2.2)

By taking the real and imaginary part, we can extend the above equality for complex valued functions $F_k, \ k \in \{1, ..., n\}$ defined on B.

If $n = 2$, the normal is obtained by rotating the tangent vector through 90° (in the correct direction so that it points out). The quantity tds can be written (dx_1, dx_2) along the surface, so that

$$ndA := nds = (dx_2, -dx_1)$$

Here t is the tangent vector along the boundary curve and ds is the element of arc-length.

From (2.2) we get for $B \subset \mathbb{R}^2$ that

\[
\int_B \frac{\partial F_1(x_1, x_2)}{\partial x_1} \, dx_1 \, dx_2 + \int_B \frac{\partial F_2(x_1, x_2)}{\partial x_2} \, dx_1 \, dx_2 = \int_{\partial B} F_1(x_1, x_2) \, dx_2 - \int_{\partial B} F_2(x_1, x_2) \, dx_1,
\]

(2.3)

which is Green’s theorem in plane.

If $n = 3$ and if ∂B is described as a level-set of a function of 3 variables i.e. $\partial B = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid G(x_1, x_2, x_3) = 0\}$, then a vector pointing in the direction of \mathbf{n} is $\text{grad} G$. We shall use the case where $G(x_1, x_2, x_3) = x_3 - g(x_1, x_2), \ (x_1, x_2) \in D$, a domain in \mathbb{R}^2 for some differentiable function g on D and B corresponds to the inequality $x_3 < g(x_1, x_2)$, namely

$$B = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_3 < g(x_1, x_2)\}.$$

Then

$$\mathbf{n} = \frac{(-g_{x_1}, -g_{x_2}, 1)}{\sqrt{1 + g_{x_1}^2 + g_{x_2}^2}}, \ dA = (1 + g_{x_1}^2 + g_{x_2}^2)^{1/2} \, dx_1 \, dx_2$$
and

$$n dA = (-g_{x_1}, -g_{x_2}, 1) dx_1 dx_2.$$

From (2.2) we get

$$\int_B \left(\frac{\partial F_1(x_1, x_2, x_3)}{\partial x_1} + \frac{\partial F_2(x_1, x_2, x_3)}{\partial x_2} + \frac{\partial F_3(x_1, x_2, x_3)}{\partial x_3} \right) dx_1 dx_2 dx_3$$

$$= - \int_D F_1(x_1, x_2, g(x_1, x_2)) g_{x_1}(x_1, x_2) dx_1 dx_2 - \int_D F_1(x_1, x_2, g(x_1, x_2)) g_{x_2}(x_1, x_2) dx_1 dx_2$$

$$+ \int_D F_3(x_1, x_2, g(x_1, x_2)) dx_1 dx_2 \quad (2.4)$$

which is the Gauss-Ostrogradsky theorem in space.

3. Identities of interest

We have the following identity of interest:

Theorem 1. Let B be a bounded open subset of \mathbb{R}^n ($n \geq 2$) with smooth (or piecewise smooth) boundary ∂B. Let f be a continuously differentiable function defined in \mathbb{R}^n, or at least in $B \cup \partial B$ and with complex values. If $\alpha_k, \beta_k \in \mathbb{C}$ for $k \in \{1, \ldots, n\}$ with $\sum_{k=1}^n \alpha_k = 1$, then

$$\int_B f(x) dx = \sum_{k=1}^n \int_B (\beta_k - \alpha_k x_k) \frac{\partial f(x)}{\partial x_k} dx + \sum_{k=1}^n \int_{\partial B} (\alpha_k x_k - \beta_k) f(x) n_k(x) dA. \quad (3.1)$$

We also have

$$\int_B f(x) dx = \frac{1}{n} \sum_{k=1}^n \int_B (\gamma_k - x_k) \frac{\partial f(x)}{\partial x_k} dx + \frac{1}{n} \sum_{k=1}^n \int_{\partial B} (x_k - \gamma_k) f(x) n_k(x) dA \quad (3.2)$$

for all $\gamma_k \in \mathbb{C}$, where $k \in \{1, \ldots, n\}$.

Proof. Let $x = (x_1, \ldots, x_n) \in B$. We consider

$$F_k(x) = (\alpha_k x_k - \beta_k) f(x), \quad k \in \{1, \ldots, n\}$$

and take the partial derivatives $\frac{\partial F_k(x)}{\partial x_k}$ to get

$$\frac{\partial F_k(x)}{\partial x_k} = \alpha_k f(x) + (\alpha_k x_k - \beta_k) \frac{\partial f(x)}{\partial x_k}, \quad k \in \{1, \ldots, n\}.$$

If we sum this equality over k from 1 to n we get

$$\sum_{k=1}^n \frac{\partial F_k(x)}{\partial x_k} = \sum_{k=1}^n \alpha_k f(x) + \sum_{k=1}^n (\alpha_k x_k - \beta_k) \frac{\partial f(x)}{\partial x_k} = f(x) + \sum_{k=1}^n (\alpha_k x_k - \beta_k) \frac{\partial f(x)}{\partial x_k} \quad (3.3)$$
for all \(x = (x_1, \ldots, x_n) \in B \).

Now, if we take the integral in the equality (3.3) over \((x_1, \ldots, x_n) \in B\) we get

\[
\int_B \left(\sum_{k=1}^n \frac{\partial F_k(x)}{\partial x_k} \right) \, dx = \int_B f(x) \, dx + \sum_{k=1}^n \int_B \left[(\alpha_k x_k - \beta_k) \frac{\partial f(x)}{\partial x_k} \right] \, dx. \tag{3.4}
\]

By the Divergence Theorem (2.2) we also have

\[
\int_B \left(\sum_{k=1}^n \frac{\partial F_k(x)}{\partial x_k} \right) \, dx = \sum_{k=1}^n \int_{\partial B} \left(\alpha_k x_k - \beta_k \right) f(x) n_k(x) \, dA \tag{3.5}
\]

and by making use of (3.4) and (3.5) we get

\[
\int_B f(x) \, dx + \sum_{k=1}^n \int_B \left(\alpha_k x_k - \beta_k \right) \frac{\partial f(x)}{\partial x_k} \, dx = \sum_{k=1}^n \int_{\partial B} \left(\alpha_k x_k - \beta_k \right) f(x) n_k(x) \, dA
\]

which gives the desired representation (3.1).

The identity (3.2) follows by (3.1) for \(\alpha_k = \frac{1}{n} \) and \(\beta_k = \frac{1}{n} \gamma_k \), \(k \in \{1, \ldots, n\} \).

For the body \(B \) we consider the coordinates for the centre of gravity \(G(x_B,1, \ldots, x_B,n) \) defined by

\[
\overline{x}_{B,k} := \frac{1}{V(B)} \int_B x_k \, dx, \ k \in \{1, \ldots, n\},
\]

where

\[
V(B) := \int_B x \, dx
\]

is the volume of \(B \).

Corollary 1. With the assumptions of Theorem 1 we have

\[
\int_B f(x) \, dx = \sum_{k=1}^n \int_B \alpha_k \left(\overline{x}_{B,k} - x_k \right) \frac{\partial f(x)}{\partial x_k} \, dx + \sum_{k=1}^n \int_{\partial B} \alpha_k \left(x_k - \overline{x}_{B,k} \right) f(x) n_k(x) \, dA
\]

and, in particular,

\[
\int_B f(x) \, dx = \frac{1}{n} \sum_{k=1}^n \int_B \left(\overline{x}_{B,k} - x_k \right) \frac{\partial f(x)}{\partial x_k} \, dx + \frac{1}{n} \sum_{k=1}^n \int_{\partial B} \left(x_k - \overline{x}_{B,k} \right) f(x) n_k(x) \, dA. \tag{3.7}
\]

The proof follows by (3.1) on taking \(\beta_k = \alpha_k \overline{x}_{B,k}, \ k \in \{1, \ldots, n\} \).

For a function \(f \) as in Theorem 1 above, we define the points

\[
x_{B,\partial f,k} := \frac{\int_B x_k \frac{\partial f(x)}{\partial x_k} \, dx}{\int_B \frac{\partial f(x)}{\partial x_k} \, dx}, \ k \in \{1, \ldots, n\},
\]

provided that all denominators are not zero.
COROLLARY 2. With the assumptions of Theorem 1 we have

\[\int_B f(x) \, dx = \sum_{k=1}^n \int_{\partial B} \alpha_k \left(x_k - x_{B, \partial f, k}\right) f(x) n_k(x) \, dA \] (3.8)

and, in particular,

\[\int_B f(x) \, dx = \frac{1}{n} \sum_{k=1}^n \int_{\partial B} \left(x_k - x_{B, \partial f, k}\right) f(x) n_k(x) \, dA. \] (3.9)

The proof follows by (3.1) on taking \(\beta_k = \alpha_k x_{B, \partial f, k}, \quad k \in \{1, \ldots, n\} \) and observing that

\[\sum_{k=1}^n \int_B (\beta_k - \alpha_k x_k) \frac{\partial f(x)}{\partial x_k} \, dx = \sum_{k=1}^n \alpha_k \int_B \left(x_{B, \partial f, k} - x_k\right) \frac{\partial f(x)}{\partial x_k} \, dx = 0. \]

For a function \(f \) as in Theorem 1 above, we define the points

\[x_{\partial B, f, k} := \frac{\int_{\partial B} x_k f(x) n_k(x) \, dA}{\int_{\partial B} f(x) n_k(x) \, dA}, \quad k \in \{1, \ldots, n\} \]

provided that all denominators are not zero.

COROLLARY 3. With the assumptions of Theorem 1 we have

\[\int_B f(x) \, dx = \sum_{k=1}^n \int_B \alpha_k \left(x_{\partial B, f, k} - x_k\right) \frac{\partial f(x)}{\partial x_k} \, dx \] (3.10)

and, in particular,

\[\int_B f(x) \, dx = \frac{1}{n} \sum_{k=1}^n \int_B \left(x_{\partial B, f, k} - x_k\right) \frac{\partial f(x)}{\partial x_k} \, dx. \] (3.11)

The proof follows by (3.1) on taking \(\beta_k = \alpha_k x_{\partial B, f, k}, \quad k \in \{1, \ldots, n\} \) and observing that

\[\sum_{k=1}^n \int_{\partial B} \left(\alpha_k x_k - \beta_k\right) f(x) n_k(x) \, dA = 0. \]

4. Some integral inequalities

We have the following result generalizing the inequalities from the introduction:

THEOREM 2. Let \(B \) be a bounded open subset of \(\mathbb{R}^n \) \((n \geq 2)\) with smooth (or piecewise smooth) boundary \(\partial B \). Let \(f \) be a continuously differentiable function defined in \(\mathbb{R}^n \), or at least in \(B \cup \partial B \) and with complex values. If \(\alpha_k, \beta_k \in \mathbb{C} \) for
\[k \in \{1, \ldots, n\} \text{ with } \sum_{k=1}^{n} \alpha_k = 1, \text{ then} \]

\[
\left| \int_B f(x) \, dx - \sum_{k=1}^{n} \int_{\partial B} (\alpha_k x_k - \beta_k) f(x) n_k(x) \, dA \right| \\
\leq \sum_{k=1}^{n} \int_B |\beta_k - \alpha_k x_k| \left| \frac{\partial f(x)}{\partial x_k} \right| \, dx \leq \begin{cases} \\
\sum_{k=1}^{n} \int_B |\beta_k - \alpha_k x_k| \, dx \left\| \frac{\partial f(x)}{\partial x_k} \right\|_{B,\infty} \\
\sum_{k=1}^{n} (\int_B |\beta_k - \alpha_k x_k|^q \, dx)^{1/q} \left\| \frac{\partial f(x)}{\partial x_k} \right\|_{B,p} \\
\sum_{k=1}^{n} \sup_{x \in B} |\beta_k - \alpha_k x_k| \left\| \frac{\partial f(x)}{\partial x_k} \right\|_{B,1} \\
\end{cases} \tag{4.1}
\]

We also have

\[
\left| \int_B f(x) \, dx - \frac{1}{n} \sum_{k=1}^{n} \int_{\partial B} (x_k - \gamma_k) f(x) n_k(x) \, dA \right| \\
\leq \frac{1}{n} \sum_{k=1}^{n} \int_B |\gamma_k - x_k| \left| \frac{\partial f(x)}{\partial x_k} \right| \, dx \leq \frac{1}{n} \begin{cases} \\
\sum_{k=1}^{n} \int_B |\gamma_k - x_k| \, dx \left\| \frac{\partial f(x)}{\partial x_k} \right\|_{B,\infty} \\
\sum_{k=1}^{n} (\int_B |\gamma_k - x_k|^q \, dx)^{1/q} \left\| \frac{\partial f(x)}{\partial x_k} \right\|_{B,p} \\
\sum_{k=1}^{n} \sup_{x \in B} |\gamma_k - x_k| \left\| \frac{\partial f(x)}{\partial x_k} \right\|_{B,1} \\
\end{cases} \tag{4.2}
\]

for all \(\gamma_k \in \mathbb{C} \), where \(k \in \{1, \ldots, n\} \).

Proof. By the identity (3.1) we have

\[
\left| \int_B f(x) \, dx - \sum_{k=1}^{n} \int_{\partial B} (\alpha_k x_k - \beta_k) f(x) n_k(x) \, dA \right| \\
= \sum_{k=1}^{n} \int_B (\beta_k - \alpha_k x_k) \frac{\partial f(x)}{\partial x_k} \, dx \leq \sum_{k=1}^{n} \int_B (\beta_k - \alpha_k x_k) \frac{\partial f(x)}{\partial x_k} \, dx \\
\leq \sum_{k=1}^{n} \int_B (\beta_k - \alpha_k x_k) \frac{\partial f(x)}{\partial x_k} \, dx,
\]

which proves the first inequality in (4.1).
By Hölder’s integral inequality for multiple integrals we have

\[
\int_B \left| \beta_k - \alpha_k x_k \right| \frac{\partial f(x)}{\partial x_k} \, dx
\]

\[
\leq \left\{ \begin{array}{ll}
\sup_{x \in B} \left| \beta_k - \alpha_k x_k \right| \int_B \left| f(x) \right| \, dx & \\
\left(\int_B \left| \frac{\partial f(x)}{\partial x_k} \right|^p \right)^{1/p} \left(\int_B \left| \beta_k - \alpha_k x_k \right|^q \, dx \right)^{1/q} & \\
where \, p, \, q > 1, \, \frac{1}{p} + \frac{1}{q} = 1;
\end{array} \right.
\]

which proves the last part of (4.1).

Corollary 4. **With the assumptions of Theorem 2** we have

\[
\left| \int_B f(x) \, dx - \frac{1}{n} \sum_{k=1}^n \int_{\partial B} \left(x_k - x_{B,k} \right) f(x) \, n_k(x) \, dA \right|
\]

\[
\leq \frac{1}{n} \sum_{k=1}^n \int_B \left| \frac{\partial f(x)}{\partial x_k} \right| \, dx \leq \frac{1}{n} \left\{ \begin{array}{ll}
\sum_{k=1}^n \int_B \left| x_{B,k} - x_k \right| \left| \frac{\partial f(x)}{\partial x_k} \right| \, dx & \\
\left(\int_B \left| x_{B,k} - x_k \right|^q \, dx \right)^{1/q} & \\
where \, p, \, q > 1, \, \frac{1}{p} + \frac{1}{q} = 1;
\end{array} \right.
\]

and

\[
\left| \int_B f(x) \, dx \right| \leq \frac{1}{n} \sum_{k=1}^n \int_B \left| x_{\partial B,f,k} - x_k \right| \left| \frac{\partial f(x)}{\partial x_k} \right| \, dx
\]

\[
\leq \frac{1}{n} \left\{ \begin{array}{ll}
\sum_{k=1}^n \int_B \left| x_{\partial B,f,k} - x_k \right| \left| \frac{\partial f(x)}{\partial x_k} \right| \, dx & \\
\left(\int_B \left| x_{\partial B,f,k} - x_k \right|^q \, dx \right)^{1/q} & \\
where \, p, \, q > 1, \, \frac{1}{p} + \frac{1}{q} = 1;
\end{array} \right.
\]

We also have the dual result:
\textbf{Theorem 3.} With the assumption of Theorem 2 we have

\[
\left| \int_B f(x) \, dx - \sum_{k=1}^{n} \int_B (\beta_k - \alpha_k x_k) \frac{\partial f(x)}{\partial x_k} \, dx \right| \leq \frac{1}{n} \sum_{k=1}^{n} \int_{\partial B} |\gamma_k - x_k| |n_k(x)| \, dA
\]

where

\[
\|f\|_{\partial B, p} := \begin{cases} (\int_{\partial B} |f(x)|^p \, dA)^{1/p}, & p \geq 1; \\ \sup_{x \in \partial B} |f(x)|, & p = \infty. \end{cases}
\]

In particular,

\[
\left| \int_B f(x) \, dx - \frac{1}{n} \sum_{k=1}^{n} \int_B (\gamma_k - x_k) \frac{\partial f(x)}{\partial x_k} \, dx \right| \leq \frac{1}{n} \sum_{k=1}^{n} \int_{\partial B} |\gamma_k - x_k| |n_k(x)| \, dA
\]

where \(p, q > 1, \frac{1}{p} + \frac{1}{q} = 1; \)

\[
\|f\|_{\partial B, 1} \sup_{x \in \partial B} |\gamma_k - x_k| |n_k(x)|.
\]

(4.5)

\[
\left| \int_B f(x) \, dx - \sum_{k=1}^{n} \int_B (\beta_k - \alpha_k x_k) \frac{\partial f(x)}{\partial x_k} \, dx \right| = \sum_{k=1}^{n} \int_{\partial B} (\alpha_k x_k - \beta_k) f(x) n_k(x) \, dA \leq \sum_{k=1}^{n} \int_{\partial B} (\alpha_k x_k - \beta_k) f(x) n_k(x) \, dA
\]

which proves the first inequality in (4.5).

\textbf{Proof.} From the identity (3.1) we have

\[
\left| \int_B f(x) \, dx - \sum_{k=1}^{n} \int_B (\beta_k - \alpha_k x_k) \frac{\partial f(x)}{\partial x_k} \, dx \right|
\]

(4.6)
By Hölder’s inequality for functions defined on ∂B we have

$$\int_{\partial B} |\alpha_k x_k - \beta_k| |n_k(x)| |f(x)| dA \leq \begin{cases}
\|f\|_{\partial B, \infty} \int_{\partial B} |\alpha_k x_k - \beta_k| |n_k(x)| dA |
\|f\|_{\partial B, p} \left(\int_{\partial B} |\alpha_k x_k - \beta_k|^q |n_k(x)|^q dA\right)^{1/q}
\sup_{x \in \partial B} |\alpha_k x_k - \beta_k| |n_k(x)| \|f\|_{\partial B, 1},
\end{cases}$$

which proves the second part of the inequality (4.5).

We also have:

Corollary 5. With the assumptions of Theorem 2 we have

$$\left| \int_{B} f(x) dx - \frac{1}{n} \sum_{k=1}^{n} \int_{B} (x_{\partial B, k}^{-} - x_k) \frac{\partial f(x)}{\partial x_k} dx \right| \leq \frac{1}{n} \sum_{k=1}^{n} \int_{\partial B} |x_{\partial B, k}^{-} - x_k| |n_k(x)| |f(x)| dA \leq \frac{1}{n} \int_{\partial B} |f| \sum_{k=1}^{n} \int_{\partial B} |x_{\partial B, k}^{-} - x_k| |n_k(x)| dA,$$

and

$$\left| \int_{B} f(x) dx \right| \leq \frac{1}{n} \sum_{k=1}^{n} \int_{\partial B} |x_{\partial B, \partial f, k}^{-} - x_k| |n_k(x)| |f(x)| dA \leq \frac{1}{n} \int_{\partial B} |f| \sum_{k=1}^{n} \int_{\partial B} |x_{\partial B, \partial f, k}^{-} - x_k| |n_k(x)| dA,$$

where $p, q > 1, \frac{1}{p} + \frac{1}{q} = 1$.

If we take $n = 2$ in Theorem 3, then we get other results from [4], while for $n = 3$ we recapture some results from [5].

References

(Received June 26, 2019)

Silvestru Sever Dragomir
Mathematics, College of Engineering & Science
Victoria University
PO Box 14428, Melbourne City, MC 8001, Australia
DST-NRF Centre of Excellence in the Mathematical and Statistical Sciences
School of Computer Science & Applied Mathematics,
University of the Witwatersrand
Private Bag 3, Johannesburg 2050, South Africa
e-mail: sever.dragomir@vu.edu.au