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Abstract. In this paper, the author proves that if X1 , X2 are Banach spaces, there exists a real

number α > 0 and a ball covering Bi of Xi such that Bi is α -off the origin and the ball-

covering point is a norm Gâteaux differentiability point if and only if there exists a real number

α > 0 and a ball covering B of (X1 ×X2,‖ · ‖∞),(X1 ×X2,‖ · ‖p) such that B is α -off the

origin and and the ball-covering point is a norm Gâteaux differentiability point.

1. Introduction and preliminaries

The study of space geometry began in 1932 with the publication of Banach book

“Theoriedes operations lineaires”, which was an important part of the discipline of

generalized functional analysis. The geometric theory of Banach spaces is an integral

part of the discipline of generalized functional analysis and has been used as a tool in

other fields such as physics and chemistry, playing an important role in the development

of other disciplines, intersection properties (MIP), non-tightness problems, use the ball

as a direct object of study in [10].

Originating from the study of the coarse embedding problem of Banach spaces,

in 2006, Cheng Lixin defined the ball-covering property of Banach spaces in [1]. The

ball-covering property of Banach spaces is one of the important components of the

geometric theory of Banach spaces. In 2007, Cheng Lixin, Cheng Qingjin and Liu

Xiaoyan obtained the ball-covering property of Banach spaces X by constructing l∞

equivalence parametrizations on spaces is neither linearly homogeneous nor invariant

in [2]. In 2006, Cheng Bin proved that every Banach space realization can be made

to correspond to a quotient space with the sphere covering property by reassigning a

norm. In 2009, Fonf assigned a new norm to X to obtain the equivalence of X with

the ball-covering property and X∗ being ω∗ -divisible in [4]. In 2009, Cheng Lixin

gave that any super-self-reflexive space can be inscribed by studying the ball-covering

property of its finite-dimensional subspaces in [3]. In 2016, Shang Shaoqiang studied

the ball-covering property of product spaces in [8]. In 2017, Liu Jianglai extended this

proof by removing the condition, and the conclusion still holds in [6]. In 2021, Shang

Shaoqiang studied the ball-covering property of Banach sequence spaces in [9]. In
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this paper, based on the study of the above problems, we continue to explore the ball-

covering property of the product space and investigate the Gâteaux differentiability of

the ball-covering points.

Let (X ,‖ · ‖) be a real Banach space. S(X) and B(X) denote the unit sphere and

the unit ball of X , respectively. We denote the dual space of X by X∗ . We denote the

open ball centered at x and of radius r > 0 by B(x,r) . Let N,R and R+ denote the set

of natural numbers, reals and of nonnegative reals, respectively. Let D be a nonempty

open convex subset of X and f be a real-valued continuous convex function on D . The

continuous convex function f is said to be Gâteaux differentiable at the point x in D if

there exists d f (x) ∈ X∗ such that the limit

〈d f (x),y〉 = lim
t→0

f (x + ty)− f (x)

t
(∗)

exists for every y ∈ X . First, Let’s recall the definitions used in the article.

DEFINITION 1.1. (see [7]) A Banach space X is Gâteaux differentiable if every

convex continuous generalisation of it is Gâteaux differentiable at the points of a dense

set of X .

DEFINITION 1.2. (see [1]) A Banach space X has the ball-covering property if

its unit sphere can be covered by a countable number of balls that do not contain the

origin, and we say that a ball covering Bi is α -off the origin when and only when

inf{‖x‖ : x ∈ ∪B} > α.

DEFINITION 1.3. (see [1]) A point x∗0 ∈ A∗ is said to be weak∗ exposed point of

A∗ if there exists x ∈ S(X) such that x∗0(x) > x∗(x) whenever x∗ ∈ A∗\{x∗0} .

DEFINITION 1.4. (see [8]) x is a smooth point if the point x ∈ S(X) has a unique

support generic function fx . SmoX denotes the set consisting of all smooth points. If

every x ∈ S(X) is a smooth point, then X is smooth.

It is well known that a convex function f (x) = ‖x‖ is Gâteaux differentiable on x0

if x0 ∈ S(X) is a smooth point.

DEFINITION 1.5. (see [8]) Assuming that X1 , X2 are Gâteaux differentiability

spaces, the following statements are equivalent:

(1) X1 , X2 have the ball-covering property;

(2) The product space (X1 ×X2, || · ||) has the ball- covering property, here

‖(x,y)‖∞ = max{‖x‖,‖y‖}, ‖(x,y)‖p =
(

‖x‖p
1 +‖y‖p

2

)
1
p , p ∈ [1,+∞).

DEFINITION 1.6. (see [9]) If Xi is a Gâteaux differentiability space for any i∈N ,

then the following statements are equivalent:
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(1) There exists a number α > 0 and a ball covering Bi of Xi , such that Bi is

α -off the origin;

(2) There exists a number α > 0 and a ball covering B of l∞(Xi) , such that B is

α -off the origin;

(3) There exists a number α > 0 and a ball covering B of l1(Xi) , such that B is

α -off the origin.

LEMMA 1.7. (see [7]) Suppose p is a Minkowski function defined on a space X .

Then p is Gâteaux differentiable at the point x and has Gâteaux derivable x∗ when and

only when x∗ is a weak ∗ of C∗ at the point x exposed point, C ∗ = {y ∈ X : p(y) 6 1} .

LEMMA 1.8. (see [9]) Assuming that smooth points on Banach spaces are dense

on S(X) , the following statements are equivalent.

(1) There exists a number α > 0 and a ball covering B = {B(xi,ri)}
∞

i=1 , of Xi ,

such that B is α -off the origin and B = {B(xi,ri)}
∞

i=1 , is a smooth point of X .

(2) There exists a number α > 0 and a ball covering B = {B(xi,ri)}
∞
i=1 of Xi ,

such that B is α -off the origin.

(3) There exists a sequence {xn}
∞
n=1 of weak* exposure points of B∗(X) such that

inf
x∈S(X)

sup
n∈N

〈x∗n,x〉 > 0.

LEMMA 1.9. (see [7]) Suppose Xi is a Gâteaux differentiability space for any

i ∈ {1,2,3 . . .k} , there exists a real number α > 0 and a ball covering Bi of Xi such

that Bi is α -off the origin, then there exists a ball covering B of (X1 +X2 . . .Xk, || · ||)
such that B is α/4 -off the origin, here

‖(x1, · · ·xk)‖1 = (‖x1‖+‖x2‖· · ·‖xk‖).

2. Ball-covering of product spaces and gateaux differentiability

of the ball-covering point

THEOREM 2.1. Suppose X1 , X2 are Banach spaces, there exists a real number

α > 0 and a ball covering Bi , i ∈ {1,2} of Xi such that Bi is α -off the origin and the

ball-covering point is a norm Gâteaux differentiability point when and only when there

exists a real number α > 0 and a ball covering B of (X1 ×X2,‖ · ‖∞) , (X1 ×X2,‖ ·
‖p) such that B is α -off the origin and the ball-covering point is a norm Gâteaux

differentiability point, here ‖(x,y)‖∞ = max{‖x‖,‖y‖},‖(x,y)‖p =
(

‖x‖p
1 +‖y‖p

2

)
1
p ,

p ∈ [1,+∞) .

In order to prove the theorem, we give some lemmas.

LEMMA 2.2. Assuming that X is a Banach space, the following statements are

equivalent

(1) X has a ball-covering {B(xn,rn)}
∞

n=1 such that the ball-covering point is a

norm Gâteaux differentiability point and {B(xn,rn)}
∞

n=1 is α -off the origin;
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(2) there exists a sequence {B(xn,rn)}
∞

n=1 such that xn is a norm Gâteaux differ-

entiability point, and

inf
x∈S(X)

(

sup
n∈N

〈dG ‖xn‖ ,x〉

)

> 0.

Proof. (2) ⇒ (1) For any α ∈

(

0, inf
x∈S(X)

(

sup
n∈N

〈dG ‖xn‖ ,x〉

))

, let

Bi,µ = B

(

(α + µ)xi,µ −
1

µ

)

, i = 1,2 . . . , µ = 1,2 . . .

We get every Bi,µ is α + 1/µ away from the origin. It can be asserted that

S(X) ⊂ ∪
{

Bi,µ : i = 1,2 . . . ,µ = 1,2 . . .
}

.

Indeed, since α ∈

(

0, inf
x∈S(X)

(

sup
n∈N

〈dG ‖xn‖ ,x〉

))

, for any y ∈ S(X) there exists

dG ‖x‖ ∈ {dG ‖xn‖}
∞

n=1 , ry > 0

such that

dG ‖x‖(y) > (α + ry)‖y‖ = α + ry > 0.

Without loss of generality, for 1 6 j < +∞ , take dG ‖x‖ = dG

∥

∥x j

∥

∥ and let

γ = dG

∥

∥x j

∥

∥ (y) , then

γ > α + ry.

Let Q j =
{

x ∈ X : dG

∥

∥x j

∥

∥ (x) = 0
}

, Then there exists q j ∈ Q j such that

y = γx j + q j.

First, it is necessary to show that y ∈ ∪∞
µ=1B j,µ , otherwise for any µ ∈ N , we have

µ −
1

µ
6

∥

∥(α + µ)x j − y
∥

∥ =
∥

∥(α + µ − γ)x j −q j

∥

∥ .

This shows that

−
1

µ
6

∥

∥(α + µ − γ)x j −q j

∥

∥− µ

=
∥

∥(α + µ − γ)x j −q j

∥

∥− µ
∥

∥x j

∥

∥

6
∥

∥(µ − γ)x j −q j

∥

∥− µ
∥

∥x j

∥

∥+ α
∥

∥x j

∥

∥

= (µ − γ)

[∥

∥

∥

∥

x j −
1

µ − γ
q j

∥

∥

∥

∥

−
∥

∥x j

∥

∥

]

− γ + α

=

∥

∥x j − tq j

∥

∥−
∥

∥x j

∥

∥

t
− (γ −α).
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Here t = 1/µ − γ , so we get

0 6
∥

∥x j

∥

∥

,
(q j) = dG

∥

∥x j

∥

∥(x)− (γ −α) = −(γ −α) 6 −ry 6 0.

Contradicts the fact, it follows that S(X) ⊂ ∪
{

Bi,µ : i = 1,2 . . . ,µ = 1,2 . . .
}

. Hence

this shows that for any α ∈

(

0, inf
x∈S(X)

(

sup
n∈N

〈dG ‖xn‖ ,x〉

))

, X has a ball covering

{B(xn,rn)}
∞

n=1 such that the ball-covering point is a norm Gâteaux differentiable point

and {B(xn,rn)}
∞

n=1 is α -off the origin.

(1) ⇒ (2) Let X have a ball-covering B = {B(xn,rn)}
∞

n=1 , B = {B(xn,rn)}
∞

n=1

is α -off the origin and {xn}
∞

n=1 is norm Gâteaux differentiability point then

‖xn −0‖− rn > α.

If

inf
x∈S(X)

(

sup
n∈N

〈dG ‖xn‖ ,x〉

)

6
α

2
.

Then there exists x0 ∈ S(X) such that

sup
n∈N

〈dG ‖xn‖ ,x0〉 6
α

2
.

Let yn ∈{xn}
∞

n=1 , B1 = {B(yn,rn)}
∞

n=1 is a ball-covering of X and B = {B(xn,rn)}
∞

n=1

is α -off the origin, by Hahn-Banach theorem there exists dG ‖xn‖ = x∗n ∈ S (X∗) such

that dG ‖xn‖(yn) = ‖yn‖ , and yn is a norm Gâteaux differentiability point and

‖yn −0‖− rn > α.

Since S(X) ⊂
∞
⋃

n=1

B(yn,rn) , there exists j ∈ N such that x0 ∈ B(y j,r j) . Since

dG

∥

∥x j

∥

∥ (y j) =
∥

∥y j

∥

∥

sup
n∈N

〈dG ‖xn‖ ,x0〉 6
α

2

we have

r j >
∥

∥y j − x0

∥

∥ > dG

∥

∥x j

∥

∥(y j − x0) =
∥

∥y j

∥

∥−dG

∥

∥x j

∥

∥(x0) >
∥

∥y j

∥

∥−
α

2
.

This shows that
∥

∥y j

∥

∥ 6 r j +
α

2
< r j + α.

This contradicts the fact. Hence B1 = {B(yn,rn)}
∞

n=1 is a ball-covering of X and

B1 = {B(yn,rn)}
∞

n=1 is α -off the origin, hence

inf
x∈S(X)

(

sup
n∈N

〈dG ‖xn‖ ,x〉

)

>
α

2
. �
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Next prove Theorem 2.1.

Proof. First prove the sufficiency of the theorem. For greater clarity, we divide the

proof into two parts.

Firstly, when

‖(x 1 ,x2)‖∞
= max{‖x1‖ ,‖x2‖}

for any (x 1 ,x2) ∈ X1 ×X2 .

Since there exists a real number α > 0 and a ball-covering Bi , i ∈ {1,2} of Xi

such that Bi = {B(xn,rn)}
∞

n=1 is α -off the origin and the ball-covering point is a norm

Gâteaux differentiability point, by Lemma 2.2, there exists a sequence {xi,n}
∞

n=1 , such

that xi,n is a norm Gâteaux differentiability point and

inf
xi∈S(Xi)

(

sup
n∈N

〈dG ‖xi,n‖ ,xi〉

)

> 0, i ∈ {1,2} .

Then for any y1 ∈ X1 , y2 ∈ X2 such that

lim
t→0

1

t
[‖x1,n + ty1‖+‖x1,n− ty1‖−2‖x1,n‖] = 0

lim
t→0

1

t
[‖x2,n + ty1‖+‖x2,n− ty1‖−2‖x2,n‖] = 0.

Hence there exists a sequence {(x1,n,x2,n)}
∞

n=1 ∈ X1 ×X2 , (y 1 ,y2) ∈ X1 ×X2, without

loss of generality, and assume that ‖x1,n‖> ‖x2,n‖ then there exists t0 (y 1 ,y2) > 0 such

that
‖x1,n + ty1‖ > ‖x2,n + ty2‖

‖x1,n − ty1‖ > ‖x2,n − ty2‖.

Whenever |t| < t0 (y 1 ,y2) , then

lim
t→0

1

t

[

∥

∥(x1,n,x2,n)+ t(y1,y2)
∥

∥

∞
+

∥

∥(x1,n,x2,n)− t(y1,y2)
∥

∥

∞
−2‖(x1,n,x2,n)‖∞

]

= lim
t→0

1

t

[

‖(x1,n + ty1,x2,n + ty2)‖∞
+‖(x1,n − ty1,x2,n − ty2)‖∞

−2‖(x1,n,x2,n)‖∞

]

= lim
t→0

[

max{‖x1,n + ty1‖ ,‖x2,n + ty2‖}+ max{‖x1,n − ty1‖ ,‖x2,n − ty2‖

−2max{‖x1,n‖,‖x2,n‖}
]

= lim
t→0

‖x1,n + ty1‖+‖x1,n− ty1‖−2‖x1,n‖ = 0.

Hence there exists a sequence {(x1,n,x2,n)}
∞

n=1
∈ X1 × X2 and (x1,n,x2,n) ) is a

norm Gâteaux differentiability point. Let

dG‖x1,n‖(x1,n) = 1, ‖x1,n‖ = 1

dG‖x2,n‖(x2,n) = 1, ‖x2,n‖ = 1.
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Then
(dG‖x1,n‖,0), (0,dG‖x2,n‖) ∈ B((X1 ×X2)

∗)

〈(dG‖x1,n‖,0),(x1,n,0)〉 = dG‖x1,n‖(x1,n) = 1

〈(0,dG‖x2,n‖),(0,x2,n)〉 = dG‖x2,n‖(x2,n) = 1.

Then for (x1,x2) ∈ S (X1 ×X2) , let

{dG ‖(x1,n,x2,n)‖}
∞

n=1

= {(dG‖x1,n‖,0)}∞

n=1 ∪{(−dG‖x1,n‖,0)}∞

n=1 ∪{(0,dG‖x2,n‖)}
∞

n=1

∪{(0,−dG‖x2,n‖)}
∞

n=1

because

inf
xi∈S(Xi)

(

sup
n∈N

〈dG ‖xi,n‖ ,xi〉

)

> 0, i ∈ {1,2} .

Therefore

inf
(x1,x2)∈S(X1×X2)

(

sup
nεN

〈dG ‖(x1,n,x2,n)‖ ,(x1,x2)〉

)

> 0.

Therefore, it follows from Lemma 2.2, that there exists a real number α > 0 and a ball-

covering B of (X1 ×X2,‖ · ‖∞) such that B is α -off the origin and the ball-covering

point is a norm Gâteaux differentiability point.

Secondly, when

‖(x1,x2)‖p =
(

‖x1‖
p
1 +‖x2‖

p
2

)
1
p , p ∈ [1,+∞)

for any (x 1 ,x2) ∈ X1 ×X2 . It is divided into the following two cases.

Case 1. p = 1

Since there exists a real number α > 0 and a ball-covering Bi , i ∈ {1,2} of Xi

such that Bi = {B(xn,rn)}
∞

n=1 is α -off the origin and the ball-covering point is a norm

Gâteaux differentiability point, by Lemma 2.2, there exists a sequence {xi,n}
∞

n=1
, such

that xi,n is a norm Gâteaux differentiability point and

inf
xi∈S(Xi)

(

sup
n∈N

〈dG ‖xi,n‖ ,xi〉

)

> 0, i ∈ {1,2} .

Then for any y1 ∈ X1,y2 ∈ X2 such that

lim
t→0

1

t
[‖x1,n + ty1‖+‖x1,n− ty1‖−2‖x1,n‖] = 0

lim
t→0

1

t
[‖x2,n + ty1‖+‖x2,n− ty1‖−2‖x2,n‖] = 0.

Thus there exists a sequence {(x1,n,x2,n)}
∞

n=1
∈ X1 × X2 and (x1,n,x2,n) is a norm

Gâteaux differentiable point. Let

dG‖x1,n‖(x1,n) = 1, ‖x1,n‖ = 1

dG‖x2,n‖(x2,n) = 1, ‖x2,n‖ = 1.
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Then

lim
t→0

1

t
[‖(x1,n,x2,n)+ t(y1,y2)‖1 +‖(x1,n,x2,n)− t(y1,y2)‖1 −2‖(x1,n,x2,n)‖1]

= lim
t→0

1

t

[

‖(x1,n + ty1,x2,n + ty2)‖1
+‖(x1,n − ty1,x2,n − ty2)‖1

‖(x1,n,x2,n)‖1

]

= lim
t→0

1

t
[‖x1,n + ty1‖+‖x2,n + ty2‖+‖x1,n− ty1‖+‖x2,n− ty2‖−2‖x1,n‖−2‖x2,n‖]

= lim
t→0

1

t
[‖x1,n + ty1‖+‖x1,n− ty1‖−2‖x1,n‖]

+ lim
t→0

1

t
[‖x2,n + ty1‖+‖x2,n− ty1‖−2‖x2,n‖]

= 0 + 0 = 0.

Then (dG ‖x1,n‖ ,dG ‖x2,n‖) ∈ B
(

(X 1 ×X2)
∗)

. And

(dG‖x1,n‖,dG‖x2,n‖)(x1,n,x2,n)

= dG‖x1,n‖(x1,n)+ dG‖x2,n‖(x2,n)

= ‖x1,n‖+‖x2,n‖

= ‖(x1,n,x2,n)‖p
.

Then for (x1,x2) ∈ S (X1 ×X2) , let

{dG ‖(x1,n,x2,n)‖}
∞

n=1

= {(dG‖x1,n‖,dG‖x2,n‖)}
∞

n=1
∪{(−dG‖x1,n‖,dG‖x2,n‖)}

∞

n=1

∪{(dG‖x1,n‖,dG‖x2,n‖)}
∞

n=1 ∪{(−dG‖x1,n‖,−dG‖x2,n‖)}
∞

n=1 .

Thus it is easy to obtain that when (x1,x2) ∈ S (X1 ×X2)

inf
(x1,x2)∈S(X1×X2)

(

sup
n∈N

〈dG ‖(x1,n,x2,n)‖ ,(x1,x2)〉

)

> 0.

Therefore, by Lemma 2.2 we get that there exists a real number α > 0 and a ball-

covering B of (X1 ×X2,‖ · ‖1) such that B is α -off the origin and the ball-covering

point is a norm Gâteaux differentiability point.

Case 2. p ∈ (1,+∞)
Since there exists a real number α > 0 and a ball-covering Bi , i ∈ {1,2} of Xi

such that Bi = {B(xn,rn)}
∞

n=1 is α -off the origin and the ball-covering point is a norm

Gâteaux differentiability point, by Lemma 2.2 there exists a sequence {xi,n}
∞

n=1
, such

that xi,n is a norm Gâteaux differentiability point and

inf
xi∈S(Xi)

(

sup
n∈N

〈dG ‖xi,n‖ ,xi〉

)

> 0, i ∈ {1,2} .

We assert that the convex function f (x,y) = ‖x‖ is Gâteaux differentiable at

{(x1,n,x2,n)}
∞

n=1 , and in fact it is Gâteaux differentiable on the set D1 × X2 , where
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D1 =
{

x ∈ {x1,n}
∞

i=1
,‖x‖1 is Gâteaux differentiable at x

}

. Similarly, there exists D2

where f (x,y) = ‖y‖ is Gâteaux differentiable at X1 ×D2 , with the chain rule for dif-

ferentiation, and we get

‖(x,y)‖p =
(

‖x‖p
1 +‖y‖p

2

)
1
p , p ∈ (1,+∞).

Every point on D1 ×D2 is Gâteaux differentiable. Therefore there exists a sequence

{(x1,n,x2,n)}
∞

n=1 ∈ X1 ×X2 is norm Gâteaux differentiable. Let

dG‖x1,n‖(x1,n) = 1, ‖x1,n‖ = 1

dG‖x2,n‖(x2,n) = 1, ‖x2,n‖ = 1

then
(

1

21/q
dG ‖x1,n‖ ,

1

21/q
dG ‖x2,n‖

)

∈ S
(

(X 1 ×X2)
∗)

and
(

1

21/q
dG‖x1,n‖,

1

21/q
dG‖x2,n‖

)

(x1,n,x2,n)

=
1

21/q
dG‖x1,n‖

(

x1,n

)

+
1

21/q
dG‖x2,n‖

(

x2,n

)

=
1

21/q

(

‖dG‖x1,n‖‖
q +‖dG‖x2,n‖‖

q
)1/q

(‖x1,n‖
p +‖x2,n‖

p)1/p

=
1

21/q
·

1

21/p
‖(x1,n,x2,n)‖p

= ‖(x1,n,x2,n)‖p
.

Here 1/p+ 1/q = 1. Take

{dG‖(x1,n,x2,n)‖}
∞

n=1

=

{(

1

21/q
dG‖x1,n‖,

1

21/q
dG‖x2,n‖

)}∞

n=1

∪

{(

−
1

21/q
dG‖x1,n‖,

1

21/q
dG‖x2,n‖

)}∞

n=1

∪

{(

1

21/q
dG‖x1,n‖,

1

21/q
dG‖x2,n‖

)}∞

n=1

∪

{(

−
1

21/q
dG‖x1,n‖,−

1

21/q
dG‖x2,n‖

)}∞

n=1

.

Thus it is easy to obtain that when (x1,x2) ∈ S (X1 ×X2)

inf
(x1,x2)∈S(X1×X2)

(

sup
n∈N

〈dG ‖(x1,n,x2,n)‖ ,(x1,x2)〉

)

> 0.

Therefore, by Lemma 2.2 we get that there exists a real number α > 0 and a ball

covering B of (X1 ×X2,‖ · ‖p) such that B is α -off the origin and the ball covering

point is a norm Gâteaux differentiability point.
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Next, prove the necessity of the theorem.

There exists a real number α > 0 and a ball covering B of X1 ×X2 such that B

is α -off the origin and the ball covering point is a norm Gâteaux differentiability point,

and by Lemma 2.2, there exists a sequence {(x1,n,x2,n)}
∞

n=1
X1 ×X2 and (x1,n,x2,n) is

a norm Gâteaux differentiability point and

inf
(x1,x2)∈S(X1×X2)

(

sup
n∈N

〈dG ‖(x1,n,x2,n)‖ ,(x1,x2)〉

)

> 0

Firstly, when

‖(x 1 ,x2)‖∞
= max{‖x1‖ ,‖x2‖}

for any (x 1 ,x2) ∈ X1 ×X2 .

Since, there exists a sequence {(x1,n,x2,n)}
∞

n=1
such that {(x1,n,x2,n)}

∞

n=1
is norm

Gâteaux differentiable, for any (x,y) ∈ X1 ×X2 , we have

lim
t→0

1

t
[‖(x1,n,x2,n)+ t (x,y)‖+‖(x1,n,x2,n)− t (x,y)‖−2‖(x1,n,x2,n)‖] = 0.

Without loss of generality we assume that ‖x1,n‖ > ‖x2,n‖ , then there exists a sequence

{x1,n}
∞

n=1 of X1 , when

1

t
[‖x1,n + tx‖+‖x1,n− tx‖−2‖x1,n‖]

=
1

t

[

max{‖x1,n + tx‖,‖x2,n + ty‖
}

+ max{‖x1,n − tx‖,‖x2,n− ty‖}

−2max{‖x1,n‖,‖x2,n‖}]

=
1

t

[

‖(x1,n,x2,n)+ t
(

x,y
)∥

∥

∞
+‖(x1,n,x2,n)− t

(

x,y
)∥

∥

∞
−2‖(x1,n, x2,n)‖∞

]

= 0.

At the same time there exists a sequence {x2,n}
∞

n=1
of X2 ,we have

1

t
[‖x2,n + ty‖+‖x2,n− ty‖−2‖x2,n‖]

=
1

t
[‖(0,x2,n)+ t(0,y)‖∞ +‖(0,x2,n)− t(0,y)‖∞−2‖(0,x2,n)‖∞]

=
1

t

[

∥

∥

(

x1,n − x1,n,x2,n

)

+ t
(

x− x,y
)
∥

∥

∞
+‖(x1,n − x1,n,x2,n)− t(x− x,y)‖

∞

−2‖(x1,n− x1,n,x2,n)‖∞

]

=
1

t

[

‖(x1,n,x2,n)− (x1,n,0)+ t (x,y)− t(x,0)‖
∞

+‖(x1,n,x2,n)− (x1,n,0)− t (x,y)+ t(x,0)‖
∞
−2‖(x1,n,x2,n)− (x1,n,0)‖∞

]

6
1

t

[

‖(x1,n,x2,n)+ t(x,y)‖
∞

+‖(x1,n,x2,n)− t(x,y)‖
∞

−2‖(x1,n,x2,n)‖∞ +‖(x1,n,0)+ t(x,0)‖∞

+‖(x1,n,0)+ t(x,0)‖
∞
−2‖(x1,n,0)‖

∞

]
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6
1

t

[

‖(x1,n,x2,n)+ t(x,y)‖
∞

+‖(x1,n,x2,n)− t(x,y)‖
∞

−2‖(x1,n,x2,n)‖∞ +‖x1,n + tx‖+‖x1,n− tx‖−2‖x1,n‖
]

6
1

t
[‖(x1,n,x2,n)+ t(x,y)‖

∞
+‖(x1,n,x2,n)− t(x,y)‖

∞
−2‖(x1,n,x2,n)‖∞]

+
1

t
[‖x1,n + tx‖+‖x1,n− tx‖−2‖x1,n‖]

= 0 + 0 = 0.

Thus there exists a sequence {x1,n}
∞

n=1 of X1 , a sequence {x2,n}
∞

n=1 of X2 with {x1,n}
∞

n=1

and {x2,n}
∞

n=1
is a norm Gâteaux differentiability point.

For any x1 ∈ S(X1) , we have

inf
x1∈S(X1)

sup
n∈N

dG‖x1,n‖(x1)

= inf
x1∈S(X1)

sup
n∈N

(

dG

∥

∥x1,n

∥

∥,0
)

(x1,0)

= inf
x1∈S(X1)

sup
n∈N

〈dG‖
(

x1,n,x2,n

)

‖,(x1,0)〉

> 0.

Similarly, for an arbitrary x2 ∈ S(X2) , we have

inf
x2∈S(X2)n∈N

sup
G

‖x2,n‖(x2)

= inf
x2∈S(X2)

sup
n∈N

(

0,dG

∥

∥x2,n

∥

∥

)

(0,x2)

= inf
x2∈S(X2)

sup
n∈N

〈dG‖
(

x1,n,x2,n

)

‖,(0,x2)〉

> 0.

Therefore, by Lemma 2.2 we get that there exists a real number α > 0 and a ball

covering B of X1,X2 such that B is α -off the origin and the ball covering point is a

norm Gâteaux differentiability point.

Secondly, when

(

‖x‖p
1 +‖y‖p

2

)
1
p , p ∈ (1,+∞).

Case 1. p = 1

Since there exists a ball-covering B = {B(x1,n,x2,n) ,rn}
∞

n=1
of (X1 ×X2,‖ · ‖p)

such that the ball-covering point is a norm Gâteaux differentiability point, for an arbi-
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trary (x,y) ∈ X1 ×X2

lim
t→0

1

t

[

‖(x1,n,x2,n)+ t(x,y)‖1 +‖(x1,n,x2,n)− t(x,y)‖1 −2‖(x1,n,x2,n)‖1

]

= 0

= lim
t→0

1

t
[‖(x1,n + tx,x2,n + ty)‖

1
+‖(x1,n − tx,x2,n − ty)‖

1
−2‖(x1,n,x2,n)‖1]

= lim
t→0

1

t
[‖x1,n + tx‖+‖x2,n + ty‖+‖x1,n− tx‖+‖x2,n− ty‖−2‖x1,n‖−2‖x2,n‖]

= lim
t→0

1

t
[‖x1,n + tx‖+‖x1,n− tx‖−2‖x1,n‖]

+ lim
t→0

1

t
[‖x2,n + ty‖+‖x2,n− ty‖−2‖x2,n‖]

hence

lim
t→0

1

t
[‖x1,n + tx‖+‖x1,n− tx‖−2‖x1,n‖]

= lim
t→0

1

t
[‖x2,n + ty‖+‖x2,n− ty‖−2‖x2,n‖] = 0.

Thus there exists a sequence {x1,n}
∞

n=1 of X1 , a sequence {x2,n}
∞

n=1 of X2 with {x1,n}
∞

n=1 ,

{x2,n}
∞

n=1
are norm Gâteaux differentiability points.

Thus for any x1 ∈ S(X1) , we have

inf
x1∈S(X1)

sup
n∈N

dG‖x1,n‖(x1)

= inf
x1∈S(X1)

sup
n∈N

(

dG

∥

∥x1,n

∥

∥,0
)

(x1,0)

= inf
x1∈S(X1)

sup
n∈N

〈dG‖
(

x1,n,x2,n

)

‖,(x1,0)〉

> 0.

Similarly, for an arbitrary x2 ∈ S(X2) , we have

inf
x2∈S(X2)n∈N

sup
G

‖x2,n‖(x2)

= inf
x2∈S(X2)

sup
n∈N

(

0,dG

∥

∥x2,n

∥

∥

)

(0,x2)

= inf
x2∈S(X2)

sup
n∈N

〈dG‖
(

x1,n,x2,n

)

‖,(0,x2)〉

> 0.

Hence, by Lemma 2.2, when p = 1 there exists a real number α > 0 and X1 , X2 of a

ball covering B such that B is α -off the origin and the ball covering point is a norm

Gâteaux differentiability point.

Case 2. p ∈ (1,+∞)
Since there exists a ball covering B = {B(x1,n,x2,n) ,rn}

∞

n=1 of (X1 ×X2,‖ · ‖p)
such that the ball covering point is a norm Gâteaux differentiable point, for

f (x,y) = ‖(x,y)‖p =
(

‖x‖p
1 +‖y‖p

2

) 1
p , p ∈ (1,+∞)
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Every point on D1 ×D2 is a norm Gâteaux differentiable point, here

D1 ×D2 =
{

(x,y) ∈ {(x1,n,x2,n)}
∞

i=1
: ‖(x,y)‖p is Gâteaux differentiable at (x,y)

}

then

f (x,y) = ‖(x,y)‖p =
(

‖x‖
p
1 +‖y‖

p
2

) 1
p , p ∈ (1,+∞)

is Gâteaux differentiable at (x1,n,0) , and for all (y1,y2) ∈ X1 ×X2 has

lim
t→0

1

t

[

‖(x1,n,0)+ t(y1,y2)‖p +‖(x1,n,0)− t(y1,y2)‖p −2‖(x1,n,0)‖p

]

= 0

then

lim
t→0

1

t
[‖x1,n + ty1‖+‖x1,n− ty1‖−2‖x1,n‖]

= lim
t→0

1

t

[

‖(x1,n + ty1,0)‖
p
+‖(x1,n − ty1,0)‖

p
−2‖(x1,n,0)‖

p

]

= lim
t→0

1

t

[

‖(x1,n,0)+ t(y1,0)‖
p
+‖(x1,n,0)− t(y1,0)‖

p
−2‖(x1,n,0)‖p

]

= 0

Thus there exists a sequence {x1,n}
∞

n=1 of X1 that is a norm Gâteaux differentiability

point, and similarly there exists a sequence {x2,n}
∞

n=1
of X2 that is a norm Gâteaux

differentiability point. Thus for any x1 ∈ S(X1) , we have

inf
x1∈S(X1)

sup
n∈N

dG‖x1,n‖(x1)

= inf
x1∈S(X1)

sup
n∈N

(

dG

∥

∥x1,n

∥

∥,0
)

(x1,0)

= inf
x1∈S(X1)

sup
n∈N

〈dG‖
(

x1,n,x2,n

)

‖,(x1,0)〉

> 0.

Similarly, for an arbitrary x2 ∈ S(X2) , we have

inf
x2∈S(X2)n∈N

sup
G

‖x2,n‖(x2)

= inf
x2∈S(X2)

sup
n∈N

(

0,dG

∥

∥x2,n

∥

∥

)

(0,x2)

= inf
x2∈S(X2)

sup
n∈N

〈dG‖
(

x1,n,x2,n

)

‖,(0,x2)〉

> 0.

Therefore, by Lemma 2.2 we get that when p ∈ (1,+∞) there exists a real number

α > 0 and a ball covering B of X1 , X2 such that B is α -off the origin and the ball

covering point is a norm Gâteaux differentiability point. Proof complete. �
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