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Abstract. In the current study, we investigate the behaviour of β -modification of the Mellin-

Gauss-Weierstrass (MGW) type operators with respect to pointwise and uniform convergence.

Moreover, we give a Voronovskaya approximation formula for the MGW type operators using

the new kernel. This formula contains Mellin derivatives and a different notion of moment which

was called the logarithmic moment. In the last part, we analyze the related information potential,

the variance V [logp( · , · )] and expected value EV [logp( · , · )] using the modified MGW kernel

p(·, · ) .

1. Introduction

The importance of Mellin integral operators is well-known not only in approxi-

mation theory (see, e.g., [13], [17]), but also in the various applications for example in

optical physics and engineering. Indeed, they can be successfully used in problems of

signal reconstruction where the samples are not uniformly spaced, as in the classical

Shannon Sampling Theorem, but exponentially spaced.

Starting from the paper [13], the approximation by Mellin convolution operators

is evolved using a more direct and inherent way, totally unconnected from the Fourier

theory, based on the concepts of Mellin derivatives, ‘logarithmic’uniform continuity

and ‘logarithmic’moment of a kernel function, which give a different and powerful

approach.

In the recent important papers, the pointwise approximation theory for nets of

Mellin convolution operators, acting on functions defined on the multiplicative group

R
+ have been improved by Bardaro and Mantellini (see e.g. [8], [7]). Mellin convo-

lution operators express a significant tool in the Mellin transform theory, applying the

similar goal of the classical convolution operators in Fourier analysis ([13], [14]). For

the pointwise convergence of Mellin type convolution operators, Voronovskaya theo-

rems can be found in [7] and [10]. A similar result using the Taylor formula in terms

of Mellin derivatives and considering a notion of the logarithmic moment of the kernel

was obtained in [6].
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Additionally, many studies have been carried out for similar operators on the

subject. For example, in [5], Aral et al. present a family of operators considering

Kantorovich-type generalizations of the exponential sampling series based on MGW

kernel. Very recently, in [4], a new modulus of continuity for locally integrable function

spaces is introduced and the acquired outputs are performed to the Gauss-Weierstrass

operators. Moreover, in [19], Ozsarac et al. state a modification of singular integral of

Mellin convolution type, and the obtained results are mentioned for the MGW operator.

The approximation properties of these convolution operators are connected with

the solutions of certain boundary value problems in wedge-shaped regions [16], [20].

Indeed, in one dimensional case, the solution is expressed in terms of the convolution

integrals of type:

(Tw f ) (s) =

∞
∫

0

Kw (t) f (ts)
dt

t
, (1.1)

where f represents a boundary data and {Kw}w>w0
is a suitable family of kernel func-

tions. Therefore, it seems to be interesting to study the rate of convergence to given f

of such integrals, in various sense. Since the beginning of the 21-st century, these topics

were broadly developed, in case of classical convolution operators of Fourier analysis

([2], [3]).

The paper presents approximation properties of a modified version of the Mellin-

Gauss-Weierstrass convolution operator, in the space of continuous functions. Indeed,

the operator under consideration, is generated by a kernel that in the classical setting

of Fourier analysis was introduced many years ago by Bui, Fedorov and Cervakov (see

[12]; also [11]). The Mellin version of the above operator, is here obtained using the

same method as for the Gauss-Weierstrass operator.

In the current paper, we research the behaviour of β -modification of the MGW

type operators with respect to pointwise and uniform convergence for functions de-

fined over the positive real axis, using a suitable modulus of continuity. Moreover, we

express a Voronovskaya approximation formula for the MGW type operators using a

new kernel. This formula includes Mellin derivatives and a different notion of moment

which was called the logarithmic moment. The last section is devoted to applications to

Information Theoretic Learning. Using the modified MGW kernel p(·, ·) , we examine

the related information potential, EV [logp( · , ·)] and V [logp( · , ·)] .

2. Notations and preliminary results

Let R
+ be the multiplicative topological group endowed with the logarithmic

(Haar) measure

µ (H) =

∫

H

dt

t
,

being dt the Lebesgue measure and H is any (Lebesgue) measurable set.

By L∞ , we denote the space comprising all the essentially bounded functions de-

fined on R
+ , and endowed with the usual norm ‖ f‖∞ := esssup

x>0

| f (x)| .
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In what follows, we say that f ∈Ck locally at the point p ∈ R
+ if there is a neigh-

bourhood Up of the point p such that f is (k−1)-times continuously differentiable in

Up and the derivative of order k exists at the point p .

The kernel generating our modified MGW operator is defined by

K (s,t) =
β

4

1

Γ
(

1
β

) exp

(

−

(∣

∣

∣

∣

1

2
log

t

s

∣

∣

∣

∣

)β
)

, β ,t,s ∈ R
+,

where Γ is the Euler Gamma function. The above kernel is homogeneous of degree 0,

that is

K (γs,γt) = K (s,t) .

Moreover, we have

∞
∫

0

K (s,t)
dt

t
= 1. (2.1)

According to the definitions of algebraic and absolute logarithmic moment given

in [9], for the logarithmic moment of order j of the function K , we obtain if j is odd

m j (K ) = 0. If j is even, it is obtained that

m j (K ) =

∞
∫

0

K (s,t) log j
( t

s

) dt

t

=
β

4

1

Γ
(

1
β

)

∞
∫

0

e

(

−(| 1
2 log t

s |)
β
)

log j
( t

s

) dt

t

=
β

4

1

Γ
(

1
β

)

∞
∫

0

e

(

−(| 1
2 logz|)

β
)

log j z
dz

z

=
β

4

1

Γ
(

1
β

)

∞
∫

−∞

e

(

−(| 1
2 u|)

β
)

u jdu

=
β

2Γ
(

1
β

)

∞
∫

0

e−( u
2 )

β

u jdu

= 2 j
Γ
(

j+1
β

)

Γ
(

1
β

) .
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Similarly, using certain symmetry properties, we obtain

M j (K ) =

∞
∫

0

K (s,t)
∣

∣

∣log j
( t

s

)∣

∣

∣

dt

t

= 2 j
Γ
(

j+1
β

)

Γ
(

1
β

) .

The kernel K generates the family
(

Kρ

)

ρ>0
on setting

Kρ (s,t) := ρK (sρ ,tρ) , ρ ,s,t ∈ R
+.

In that case, we can write

Kρ (s,t) =
β

4

ρ

Γ
(

1
β

) exp

(

−

(

∣

∣

∣

ρ

2
log

t

s

∣

∣

∣

β
))

.

Obviously, every function Kρ is homogeneous of degree 0.

Again, according to the definitions given in [9], the corresponding moments of

order j of the kernel Kρ are

m j

(

Kρ

)

: =

∞
∫

0

Kρ (s,t) log j
( t

s

) dt

t

=
2 j

ρ j

(

1 +(−1) j
)

Γ
(

j+1
β

)

2Γ
(

1
β

) (2.2)

and

M j

(

Kρ

)

: =

∞
∫

0

Kρ (s,t)
∣

∣

∣log j
( t

s

)∣

∣

∣

dt

t

=
2 j

ρ j

Γ
(

j+1
β

)

Γ
(

1
β

) .

For the above MGW kernel, we have the following property:

PROPOSITION 1. For every δ > 1 , putting Uδ (s) =
( s

δ
,sδ
)

, we have

lim
ρ→∞

∫

R+\Uδ (s)

Kρ (s,t)
dt

t
= 0
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uniformly with respect to s ∈ R
+ . Furthermore, if M j (K ) is finite, then

lim
ρ→∞

ρ j

∫

R+\Uδ (s)

Kρ (s,t)
∣

∣

∣log j
( t

s

)∣

∣

∣

dt

t
= 0

and

lim
ρ→∞

ρ j
∫

R+\Uδ (s)

Kρ (s,t)
dt

t
= 0

uniformly with respect to s ∈ R
+ .

Proof. First, let us consider the second part. We obtain

ρ j
∫

R+\Uδ (s)

Kρ (s,t)
∣

∣

∣log j
( t

s

)∣

∣

∣

dt

t
= ρ j

∫

R+\Uδ (1)

Kρ (1,z)
∣

∣log j z
∣

∣

dz

z

= ρ j β

4

ρ

Γ
(

1
β

)

∫

R+\Uδ (1)

e−|
ρ
2 logz|

β ∣
∣log j z

∣

∣

dz

z

= 2 j β

Γ
(

1
β

)

∫

R+\Uδ ρ (1)

e−|logv|β
∣

∣log j v
∣

∣

dv

v

and since M j (K ) is finite, the last integral tends to zero as ρ → ∞ .

Furthermore, for a given δ > 1, we get

ρ j
∫

R+\Uδ (s)

Kρ (s,t)
dt

t
= ρ j β

4

ρ

Γ
(

1
β

)

∫

R+\Uδ (1)

e−|
ρ
2 log z|

β dz

z

6
ρ j

∣

∣log j δ
∣

∣

β

4

ρ

Γ
(

1
β

)

∫

R+\Uδ (1)

e−|
ρ
2 logz|

β ∣
∣log j z

∣

∣

dz

z

=
2 j

∣

∣log j δ
∣

∣

β

Γ
(

1
β

)

∫

R+\Uδ ρ (1)

e−|logv|β
∣

∣log j v
∣

∣

dv

v

and the assertion follows as before. The first part of the theorem is obtained on putting

j = 0. �

3. Pointwise and uniform convergence

The modulus of continuity has been operated as the ordinary tool to measure the

smoothness of approximated function f and to estimate errors in approximation.

Let f : R
+ → R be a continuous function. We use the modulus of continuity of f

by

ω ( f ,ξ ) = sup{| f (s1)− f (s2)| : |logs1 − logs2| 6 ξ}
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for ξ > 0. It is easy to see that the modulus of continuity ω satisfies all the classical

properties of a modulus of continuity (see [15]). Especially, ω ( f ,ξ ) is finite for every

ξ > 0 and lim
ξ→0

ω ( f ,ξ ) = 0 if and only if f is uniformly continuous wit respect to the

metric dis(s,t) = |logs− logt| . We note that there are uniformly continuous functions

in R
+ in the usual sense but not in the log-sense and conversely. For instance, h(x) =

sinx is clearly uniformly continuous function but not in the log-sense, whereas k(x) =
sin(logx) is log-uniformly continuous function but not in the classical sense. It is clear

that these mentioned notions are equivalent on every compact interval in R
+ .

Now, let us consider the following MGW operator

(

Gρ f
)

(s) =

∞
∫

0

Kρ (s,t) f (t)
dt

t

=
β

4

ρ

Γ
(

1
β

)

∞
∫

0

exp

(

−

(

∣

∣

∣

ρ

2
log

t

s

∣

∣

∣

β
))

f (t)
dt

t
, ρ > 0.

The point to note here is that if β = 2 is selected, this operator is reduced to the classical

MGW operator.

The primary result in this part is on pointwise convergence:

THEOREM 1. Suppose that f is essentially bounded function. If s ∈ R
+ is a

continuity point of given f , then

lim
ρ→∞

(

Gρ f
)

(s) = f (s) .

Proof. Let s ∈ R
+ be a continuity point of f . For a fixed ε > 0, let δ > 1 be

such that | f (t)− f (s)| < ε whenever t ∈Uδ (s) :=
(

s
δ ,sδ

)

. We can write

∣

∣

(

Gρ f
)

(s)− f (s)
∣

∣ 6
β

4

ρ

Γ
(

1
β

)

∫ ∞

0
e−|

ρ
2 log t

s |
β

| f (t)− f (s)|
dt

t

=
β

4

ρ

Γ
(

1
β

)

∫

Uδ (s)
e−|

ρ
2 log t

s |
β

| f (t)− f (s)|
dt

t

+
β

4

ρ

Γ
(

1
β

)

∫

R+\Uδ (s)
e−|

ρ
2 log t

s |
β

| f (t)− f (s)|
dt

t

= I1 + I2.

Firstly, we take into account I1.

I1 =
β

4

ρ

Γ
(

1
β

)

∫

Uδ (s)
e−|

ρ
2 log t

s |
β

| f (t)− f (s)|
dt

t

6 ε.
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Now, we evaluate

I2 =
β

4

ρ

Γ
(

1
β

)

∫

R+\Uδ (s)
e−|

ρ
2 log t

s |
β

| f (t)− f (s)|
dt

t

6 2‖ f‖∞

β

4

ρ

Γ
(

1
β

)

∫

R+\Uδ (s)
e−|

ρ
2 log t

s |
β dt

t
.

From Proposition 1, we have

lim
w→∞

I2 = 0.

This proves the theorem. �

We continue with the following:

THEOREM 2. Suppose that f is log-uniformly continuous in R
+ . Then Gρ f con-

verges to given f uniformly and the inequality

∥

∥Gρ f − f
∥

∥

∞
6



1 + 2
Γ
(

2
β

)

Γ
(

1
β

)



ω

(

f ,
1

ρ

)

holds.

Proof. Using the property ω ( f ,µξ ) 6 (µ + 1)ω ( f ,ξ ) for every µ ,ξ > 0, we

have for every s ∈ R
+ and ξ > 0,

∣

∣

(

Gρ f
)

(s)− f (s)
∣

∣ 6

∞
∫

0

Kρ (s,t) | f (t)− f (s)|
dt

t

6

∞
∫

0

Kρ (s,t)ω
(

f ,
∣

∣

∣log
( t

s

)∣

∣

∣

) dt

t

6

∞
∫

0

Kρ (s,t)

(

1 +
|log(t/s)|

ξ

)

ω ( f ,ξ )
dt

t

= ω ( f ,ξ )

∞
∫

0

Kρ (s,t)
dt

t
+

ω ( f ,ξ )

ξ

∞
∫

0

Kρ (s,t) |log(t/s)|
dt

t

= ω ( f ,ξ )+
ω ( f ,ξ )

ξ
M1

(

Kρ

)

=



1 +
1

ξ

2

ρ

Γ
(

2
β

)

Γ
(

1
β

)



ω ( f ,ξ ) .

If we choose ξ = 1
ρ , then the assertion follows by arbitrariness of s ∈ R

+ . �
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4. A Voronovskaya-type formula for Gρ f

In this section, we will use the Mellin differential operator, as given in [13]. The

Mellin differential operator Θ or the Mellin derivative Θ f of a function f : R
+ → R

is defined by

Θ f (s) = s f
′
(s) , s ∈ R

+,

provided the usual derivative f
′
(s) exists. The Mellin differential operator of order

l ∈ N is defined inductively by putting Θ1 = Θ , Θl = Θ ◦Θl−1 , Θ0 = I , I being the

identity operator. As mentioned in [13], we get the following representation result:

Θl f (s) =
l

∑
i=0

S (l, i) f (i) (s) si,

where S (l, i) , l ∈ N , 0 6 i 6 l , denotes the Stirling numbers of the second kind.

Now, we give the following Taylor formula with the remainder in the form of

Peano ([8], [17]).

PROPOSITION 2. Let f ∈ Cn locally at a point s ∈ R
+ . Then there exists δ > 1

such that for t ∈

(

1

δ
,δ

)

f (t) = f (s)+ Θ f (s) log
( t

s

)

+
Θ2 f (s)

2!
log2

( t

s

)

+ . . . +
Θn f (s)

n!
logn

( t

s

)

+hs (t) logn
( t

s

)

,

where hs (t)→ 0 as t → s. Furthermore, if f ∈ L∞ , the above-mentioned formula holds

for every t ∈ R
+ , and the function hs is bounded on R

+ .

We are ready to show the primary theorem of this part.

THEOREM 3. Let f ∈ L∞ and s ∈ R
+ is fixed. Then, we have

lim
ρ→∞

ρ2
((

Gρ f
)

(s)− f (s)
)

=
2Γ
(

3
β

)

Γ
(

1
β

) Θ2 f (s)

for f ∈C2 locally at s ∈ R
+ .

Proof. Let s ∈ R
+ be fixed. By Proposition 2, we get

f (t)− f (s) = Θ f (s) log
( t

s

)

+
Θ2 f (s)

2!
log2

( t

s

)

+ hs (t) log2
( t

s

)

,
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where hs (t) is a bounded function with hs (t) → 0 for t → s . So, using (2.2) , it is

obtained that

(

Gρ f
)

(s)− f (s) =
2

∑
j=1

Θ j f (s)

j!
m j

(

Kρ

)

+

∞
∫

0

Kρ (s,t)hs (t) log2
( t

s

) dt

t

=
Θ2 f (s)

2!
m2

(

Kρ

)

+ J,

=
Θ2 f (s)

2!

4

ρ2

Γ
(

3
β

)

Γ
(

1
β

) + J,

where

J :=

∞
∫

0

Kρ (s,t)hs (t) log2
( t

s

) dt

t
.

For a given ε > 0, let δ > 1 be such that |hs (t)| < ε for t ∈
( s

δ
,sδ
)

. By Proposition

1, we have

|J| 6











∫

Uδ (s)

+

∫

R+\Uδ (s)











Kρ (s,t) |hs (t)|
∣

∣

∣log2
( t

s

)∣

∣

∣

dt

t

6 εM2

(

Kρ

)

+ o
(

ρ−2
)

. �

5. The related information potential

Principe [18] introduce The Information Theoretic Learning. Signal Processing,

Detection, Estimation, Times Series Analysis can be given among the application areas

of this subject. This part is concerned with the information theoretic learning method,

whose aim is to measure quantitatively scalar descriptors (for instance, entropy) of a

probability density function. The main notion is the information potential IP(s) of a

probability density function p(t,s) depending on a parameter s . Detailed explanation

on the subject can also be seen in [1].

It is considered that probability density functions as kernels of integral operators,

in which case a specific relation exists between IP(s) and V [p(t,s)] . As an application

to Information Theoretic Learning, we determine the new notions used in this subject:

EV [log p(t,s)] and V [log p(t,s)] . We deal with probability density functions of p(t,s) ,

depending on a parameter s . The positive linear operator related to p(t,s) with Haar

measure is defined by

L f (s) :=

∞
∫

0

f (t) p(t,s)
dt

t
.
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Consider the variance corresponding to the density p(t,s) :

V (s) :=

∞
∫

0

(log t)2
p(t,s)

dt

t
−





∞
∫

0

logt p(t,s)
dt

t





2

.

The related information potential will be

IP(s) :=

∞
∫

0

p2(t,s)
dt

t
, s > 0.

Using (2.1) , it is confirmed that the density

p(t,s) =
β

4

ρ

Γ
(

1
β

) exp

(

−

(

∣

∣

∣

ρ

2
log

t

s

∣

∣

∣

β
))

(5.1)

is a probability density. With respect to it, we have the operator

(

Gρ f
)

(s) =
β

4

ρ

Γ
(

1
β

)

∞
∫

0

exp

(

−

(

∣

∣

∣

ρ

2
log

t

s

∣

∣

∣

β
))

f (t)
dt

t
.

THEOREM 4. For each s ∈ R
+ , the function p(t,s) in (5.1) is a probability den-

sity such that the product V (s) IP2 (s) is constant with respect to s. More precisely,

V (s) IP2 (s) =
β 2

22+2/β

Γ
(

3
β

)

[

Γ
(

1
β

)]3

for all s ∈ R
+ .

Proof. Using (2.2) , we obtain

V (s) =
β

4

ρ

Γ
(

1
β

)

∞
∫

0

(logt)2
exp

(

−

(

∣

∣

∣

ρ

2
log

t

s

∣

∣

∣

β
))

dt

t

−





β

4

ρ

Γ
(

1
β

)

∞
∫

0

logt exp

(

−

(

∣

∣

∣

ρ

2
log

t

s

∣

∣

∣

β
))

dt

t





2

= log2 s+
4

ρ2

Γ
(

3
β

)

Γ
(

1
β

) − log2 s

=
4

ρ2

Γ
(

3
β

)

Γ
(

1
β

)
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and

IP(s) =
β 2

16

ρ2

[

Γ
(

1
β

)]2

∞
∫

0

e−2(| ρ
2 log t

s |)
β dt

t

=
β

22+1/β

ρ

Γ
(

1
β

) .

Thus, we get

V (s) IP2 (s) =
β 2

22+2/β

Γ
(

3
β

)

[

Γ
(

1
β

)]3
. �

Various examples in which formulas of this kind are satisfied can be seen in [1].

Let us remind two notions.

DEFINITION 1. The variance connected with log p(t,s) is

V [log p(t,s)] =

∞
∫

0

p(t,s) log2 p(t,s)
dt

t
−





∞
∫

0

p(t,s) log p(t,s)
dt

t





2

and the expected value connected with log p(t,s) with Haar measure is stated by

EV [log p(t,s)] =

∞
∫

0

p(t,s) log p(t,s)
dt

t
.

The importance of the two concepts for the Information Theoretic Learning is

underlined in Principe [18]. In particular, V [log p(t,s)] is an index of the intrinsic

shape of p(t,s) having more statistical power than kurtosis, and can be used as a partial

order for the tails of distributions. We remark that for our specific family of densities

the concept V [log p(t,s)] is constant with respect to s .

THEOREM 5. For the density p(t,s) in (5.1) , we obtain

EV [log p(t,s)] =



log
β

4

ρ

Γ
(

1
β

)



−
1

β

and

V [log p(t,s)] =
1

β
.
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Proof. From the previous definition, for the density p(t,s) , we get

EV [log p(t,s)] =

∞
∫

0

p(t,s) log p(t,s)
dt

t

=
β

4

ρ

Γ
(

1
β

)

∞
∫

0

exp

(

−

(

∣

∣

∣

ρ

2
log

t

s

∣

∣

∣

β
))

× log





β

4

ρ

Γ
(

1
β

) exp

(

−

(

∣

∣

∣

ρ

2
log

t

s

∣

∣

∣

β
))





dt

t

=



log
β

4

ρ

Γ
(

1
β

)



−
1

β
.

Since

∞
∫

0

p(t,s) log2 p(t,s)
dt

t

=
β

4

ρ

Γ
(

1
β

)

∞
∫

0

exp

(

−

(

∣

∣

∣

ρ

2
log

t

s

∣

∣

∣

β
))

×



log





β

4

ρ

Γ
(

1
β

) exp

(

−

(

∣

∣

∣

ρ

2
log

t

s

∣

∣

∣

β
))









2

dt

t

=
β

4

ρ

Γ
(

1
β

)

∞
∫

0

exp

(

−

(

∣

∣

∣

ρ

2
log

t

s

∣

∣

∣

β
))



log
β

4

ρ

Γ
(

1
β

) + loge
−
(

| ρ
2 log t

s |
β
)





2

dt

t

=



log
β

4

ρ

Γ
(

1
β

)





2

β

4

ρ

Γ
(

1
β

)

∞
∫

0

exp

(

−

(

∣

∣

∣

ρ

2
log

t

s

∣

∣

∣

β
))

dt

t

+2



log
β

4

ρ

Γ
(

1
β

)





β

4

ρ

Γ
(

1
β

)

∞
∫

0

exp

(

−

(

∣

∣

∣

ρ

2
log

t

s

∣

∣

∣

β
))

loge
−
(

| ρ
2 log t

s |
β
)

dt

t

+
β

4

ρ

Γ
(

1
β

)

∞
∫

0

exp

(

−

(

∣

∣

∣

ρ

2
log

t

s

∣

∣

∣

β
))

(∣

∣

∣

ρ

2
log

t

s

∣

∣

∣

)2β dt

t

=



log
β

4

ρ

Γ
(

1
β

)





2

−
2

β



log
β

4

ρ

Γ
(

1
β

)



+
1 + β

β 2
,
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we have

V [log p(t,s)] =

∞
∫

0

p(t,s) log2 p(t,s)
dt

t
−





∞
∫

0

p(t,s) log p(t,s)
dt

t





2

=



log
β

4

ρ

Γ
(

1
β

)





2

−
2

β



log
β

4

ρ

Γ
(

1
β

)





+
1 + β

β 2
−







log
β

4

ρ

Γ
(

1
β

)



−
1

β





2

=
1

β
. �

6. Conclusions

In the current study, we research the behaviour of β -modification of the MGW

type operators with respect to pointwise and uniform convergence. Also, it is expressed

a Voronovskaya approximation formula for the MGW type operators using the new ker-

nel. This formula includes Mellin derivatives and a different notion of moment which

was called the logarithmic moment. In the last section, using the modified MGW kernel

p(·, ·) , we analyze the related information potential, EV [logp( · , ·)] and V [logp( · , ·)] .
The results expressed here may lead to further research on the modification of MGW

type operators.
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