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TRACE AND EXTENSION THEOREMS RELATING BESOV

SPACES TO WEIGHTED AVERAGED SOBOLEV SPACES

ARIEL BARTON

(Communicated by J. Soria)

Abstract. There are known trace and extension theorems relating functions in a weighted Sobo-

lev space in a domain Ω to functions in a Besov space on the boundary ∂Ω . We extend these

theorems to the case where the Sobolev exponent p is less than one by modifying our Sobolev

spaces to consider averages of functions in Whitney balls. Averaged Sobolev spaces are also of

interest in the applications in the case where p > 1 , and so we also provide trace and exten-

sion results in that case. Finally, we provide some comparable results for Neumann traces and

extensions.

1. Introduction

Suppose that u is a function defined in some domain Ω . We are interested in the

boundary values of u . Specifically, we wish to identify a space X such that if u lies

in X , then the boundary traces Tr∇m−1u of the derivatives of order m− 1 lie in the

Besov space Ḃ
p,p
θ (∂Ω) .

We would like our result to be sharp in the sense that, if ḟ is an array of functions

in Ḃ
p,p
θ (∂Ω) , and if ḟ = Tr∇m−1ϕ for some function ϕ , then ḟ = Tr∇m−1F for some

F ∈ X . (Recall that the partial derivatives of a function must satisfy some compati-

bility conditions; thus, the requirement that ḟ = Tr∇m−1ϕ for some ϕ is a nontrivial

restriction if m > 2.)

Such trace and extension theorems bear a deep connection to the theory of Dirich-

let boundary value problems. For example, consider the harmonic Dirichlet problem

∆u = 0 in Ω, u = ϕ on ∂Ω, ‖u‖X 6 C‖ϕ‖Ḃ
p,p
θ (∂Ω) (1.1)

or more generally the higher order boundary value problem

Lu = 0 in Ω, ∇m−1u = ∇m−1ϕ on ∂Ω, ‖u‖X 6 C‖Tr∇m−1ϕ‖Ḃ
p,p
θ (∂Ω) (1.2)

for some differential operator L of the form Lu = ∑|α |=|β |=m ∂ α(Aαβ ∂ β u) . If we have

an extension theorem as indicated above, then there is some F ∈ X with ∇m−1F =
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∇m−1ϕ on ∂Ω . If L : X 7→ Y is bounded, then we may reduce the problem (1.2) to the

problem

Lv = h in Ω, ∇m−1v = 0 on ∂Ω, ‖v‖X 6 C‖h‖Y (1.3)

with zero boundary data by letting h = −LF and then letting u = v + F . In some

cases we may reverse the argument, going from well posedness of the problem (1.2) to

well posedness of the problem (1.3). See the papers [23, 1, 28, 2, 29, 34, 32, 33, 12]

for examples of such arguments with various choices of L ; the trace and extension

theorems of the present paper will be used in [6, 7] for this purpose.

In this paper we will introduce the weighted averaged Lebesgue spaces L
p,θ ,q
av (Ω)

and Sobolev spaces Ẇ
p,θ ,q

m,av (Ω) , where the norm in the space Ẇ
p,θ ,q

m,av (Ω) is given by

‖u‖
Ẇ

p,θ ,q
m,av (Ω)

= ‖∇mu‖
L

p,θ ,q
av (Ω)

, and where the L
p,θ ,q
av (Ω)-norm is given by

‖H‖
L

p,θ ,q
av (Ω)

=

(
ˆ

Ω

(
 

B(x,dist(x,∂Ω)/2)
|H|q

)p/q

dist(x,∂Ω)p−1−pθ dx

)1/p

. (1.4)

(We will modify the definition in the case p = ∞ or q = ∞ in the usual way, by replacing

an integral by a supremum (L∞ norm); see formulas (2.3)–(2.5).)

The main result of this paper for Dirichlet boundary data is the following theorem.

THEOREM 1.5. Let Ω ⊂ Rd be a Lipschitz domain with connected boundary. Let

1 6 q 6 ∞ , let 0 < θ < 1 and let (d−1)/(d−1+ θ ) < p 6 ∞ .

If u ∈ Ẇ
p,θ ,q

m,av (Ω) , then Tr∂ γu ∈ Ḃ
p,p
θ (∂Ω) for any multiindex γ with |γ| = m−1 ,

and

‖Tr∂ γ u‖Ḃ
p,p
θ (∂Ω) 6 C‖u‖

Ẇ
p,θ ,q

m,av (Ω)

for some constant C depending only on p, θ , the Lipschitz character of Ω and the

ambient dimension d .

Conversely, let F be a function such that Tr∂ γF ∈ Ḃ
p,p
θ (∂Ω) for any |γ| = m−1 .

Then there is some u ∈ Ẇ
p,θ ,q

m,av (Ω) with

‖u‖
Ẇ

p,θ ,q
m,av (Ω)

6 C‖Tr∇m−1F‖Ḃ
p,p
θ (∂Ω) and Tr∇m−1u = Tr∇m−1F.

Also of great importance in the theory of boundary value problems is the second

order Neumann problem

divA∇u = 0 in Ω, ν ·A∇u = g on ∂Ω (1.6)

where ν is the unit outward normal vector to ∂Ω and where A is a coefficient matrix.

We are interested in the Neumann problem for higher order equations; the second main

result of this paper (Theorem 1.10 below) is an analogue of Theorem 1.5 for Neumann

boundary data.

The appropriate generalization of Neumann boundary values to the higher order

case is a complicated issue. We are interested in the following generalization of Neu-

mann boundary values; this is the formulation used in [9, 10], and is related to but subtly
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different from that of [15, 45, 2, 46, 33]. We refer the reader to [9, 11] for a discussion

of various formulations of Neumann boundary data.

If ~G is a smooth vector field on Ω , then ν · ~G may be regarded as its Neumann

boundary values. If ~G is divergence free in Ω (in particular, if ~G = A∇u for some

solution u to the equation divA∇u = 0), then ν · ~G satisfies

ˆ

∂Ω
Trϕ (ν · ~G)dσ =

ˆ

Ω
∇ϕ · ~G =

d

∑
j=1

ˆ

Ω
∂ jϕ G j for all ϕ ∈C∞

0 (Rd) . (1.7)

This formula may be used to define the Neumann boundary values of ~G even if ~G is

not smooth. Furthermore, this formula generalizes to the higher order case: if Ġ is an

array of locally integrable functions indexed by multiindices α of length m , then the

analogue of formula (1.7) is

∑
|γ|=m−1

ˆ

∂Ω
Tr∂ γ ϕ (ṀΩ

m Ġ)γ dσ = ∑
|α |=m

ˆ

Ω
∂ α ϕ Gα for all ϕ ∈C∞

0 (Rd) (1.8)

where the array of distributions ṀΩ
m Ġ represents the Neumann boundary values of Ġ .

We remark on two subtleties of formula (1.8) in the case m > 2.

First, the left-hand side of formula (1.8) depends only on the boundary values

Tr∇m−1ϕ of ϕ on ∂Ω and not on the values of ϕ in Ω ; in this way ṀΩ
m Ġ may indeed

be said to be Neumann boundary values of Ġ . For this equation to be meaningful, we

must have that the right-hand side depends only on the boundary values of ϕ as well;

thus, ṀΩ
m Ġ is defined only for arrays Ġ that satisfy

ˆ

Ω
∂ α ϕ Gα = 0 for all ϕ ∈C∞

0 (Ω) . (1.9)

An array Ġ that satisfies formula (1.9) is said to satisfy divm Ġ = 0 in Ω in the weak

sense; this condition is analogous to the requirement that div ~G = 0 in formula (1.7).

We remark that if Ġ is smooth then divm Ġ = 0 if and only if ∑|α |=m ∂ α Gα = 0.

Second, if Ġ is divergence-free in the sense of formula (1.9), then formula (1.8)

does define ṀΩ
m Ġ as an operator on the space {Tr∇m−1ϕ : ϕ ∈ C∞

0 (Rd)} . This space

is a proper subspace of the space of arrays of smooth, compactly supported functions.

Thus, ṀΩ
m Ġ is not an array of well-defined distributions; instead it is an equivalence

class of such arrays, defined only up to adding arrays of distributions ġ for which

〈Tr∇m−1ϕ , ġ〉∂Ω = 0 for all ϕ ∈C∞
0 (Rd) . Thus, Neumann boundary data naturally lies

in quotient spaces of distribution spaces, as will be seen in the following theorem. (This

theorem is the second main result of this paper.)

THEOREM 1.10. Let Ω ⊂ Rd be a Lipschitz domain with connected boundary.

Let 1 6 q 6 ∞ , let 0 < θ < 1 and let (d −1)/(d−1+ θ ) < p 6 ∞ .

Suppose that ġ is an array of functions lying in Ḃ
p,p
θ−1(∂Ω) . Then there is some

Ġ ∈ L
p,θ ,q
av (Ω) , with divm Ġ = 0 in Ω , such that ṀΩ

m Ġ = ġ in the sense that

∑
|γ|=m−1

ˆ

∂Ω
Tr∂ γ ϕ gγ dσ = ∑

|α |=m

ˆ

Ω
∂ α ϕ Gα
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for all smooth, compactly supported functions ϕ . Furthermore,

‖Ġ‖
L

p,θ ,q
av (Ω)

6 C‖ġ‖Ḃ
p,p
θ−1

(∂Ω)

for some constant C depending only on p, θ , the Lipschitz character of Ω and the

ambient dimension d .

Conversely, let Ġ ∈ L
p,θ ,q
av (Ω) with divm Ġ = 0 . Suppose that either p > 1 , or

that Ω = Rd
+ is a half-space, or that m = 1 and Ω = {(x′,t) : x′ ∈ Rd−1, t > ψ(x′)}

for some Lipschitz function ψ : Rd−1 7→ R . Then the equivalence class of distributions

ṀΩ
m Ġ contains a representative in Ḃ

p,p
θ−1(∂Ω) , and furthermore

inf{‖ġ‖Ḃ
p,p
θ−1

(∂Ω) : ġ ∈ ṀΩ
m Ġ} 6 C‖Ġ‖

L
p,θ ,q
av (Ω)

.

We now review the history of trace and extension theorems for boundary data in

Besov spaces. To simplify our notation, we will introduce some terminology. Loosely,

let

ẆA
p
m−1,θ (∂Ω) = {ϕ̇ ∈ Ḃ

p,p
θ (∂Ω) : ϕ̇ = Tr∇m−1Φ for some Φ}.

(We will provide precise definitions in Section 2.2.) ẆA
p
m−1,θ (∂Ω) is thus the space

of all arrays of functions in a Besov space that may reasonably be expected to arise

as boundary traces. Many of the results in the literature concern the inhomogeneous

spaces WA
p
m−1,θ (∂Ω) ; these are defined analogously to ẆA

p
m−1,θ (∂Ω) but in addition

have some estimates on the lower order derivatives.

If Ω ⊂ Rd is a sufficiently smooth domain, it is well known that the operator

Tr∇m−1 : B
p,p
m−1+θ+1/p

(Ω) 7→WA
p
m−1,θ (∂Ω)

is bounded and has a right inverse (an extension operator defined on WA
p

m−1,θ (∂Ω))

provided m > 1, θ > 0 and p > (d −1)/(d−1+θ ) . (If Ω is a Lipschitz domain then

we need the additional restriction θ < 1.) In the case of the half-space Ω = Rd
+ , see

[43, Section 2.7.2] for the full result, and the earlier works [37, Appendix A], [35] and

[42, Section 2.9.3], and [22] for the result under various restrictions. In the case where

Ω is smooth, see [43, Section 3.3.3]. In the case where Ω is a Lipschitz domain, see

[24] in the case p > 1, [28] in the case m = 1, and [33, Theorem 3.9] for the general

case.

Another well known family of extensions of Besov functions are the weighted

Sobolev spaces. Define the W
p,θ

m (Ω)-norm by

‖u‖
W

p,θ
m (Ω)

= ‖u‖Lp(Ω) +

(
ˆ

Ω
|∇mu(x)|p dist(x,∂Ω)p−1−pθ dx

)1/p

.

Notice that this is similar to the Ẇ
p,θ ,q

m,av (Ω)-norm of Theorem 1.5, but is somewhat sim-

pler in that we do not take local Lq averages. (The ‖u‖Lp(Ω) term is an inhomogeneous

term as mentioned above.) We consider averaged spaces both because they are some-

what better suited to the setting of differential equations with rough coefficients, and
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also because taking averages allows us to establish trace results in the case p < 1; this

issue is discussed further below.

If Ω is sufficiently smooth, then we have that the trace operator

Tr∇m−1 : W p,θ
m (Ω) 7→WA

p
m−1,θ (∂Ω)

is bounded and has a bounded right inverse provided 0 < θ < 1 and 1 < p < ∞ . In

the case where Ω = Rd
+ is a half-space, see [27, 44] (a shorter proof of Uspenskiı̆’s

results with some generalization may be found in [31]) or [42, Section 2.9.2]. In the

case where Ω is a domain with a reasonably smooth boundary (for example, a Ck,δ

domain for some k + δ > θ ), see [35, 40, 36, 25]. In a Lipschitz domain, see [13] (the

case m = 1) and [29, Section 7] (for m > 1). A few results are known in the cases p = 1

and p = ∞ ; in particular, [31] considers trace and extension results (in the half-space

and with m > 1) for boundary data in the Besov space Ḃ
p,r
θ (∂Rd

+) for 1 6 p 6 ∞ and

1 6 r < ∞ . (In particular, these results were established for boundary data in Ḃ
1,1
θ (∂Rd

+)

but not in Ḃ
∞,∞
θ (∂Rd

+) .)

The spaces W
p,θ

m (Ω) and B
p,p
m−1+θ+1/p

(Ω) in some circumstances are related; for

example, by [23, Theorem 4.1], if 1 6 p 6 ∞ and u is harmonic, then u ∈ W
p,θ

m (Ω) if

and only if u ∈ B
p,p
m−1+θ+1/p

(Ω) .

We now discuss the history of Neumann trace and extension theorems. Recall that

Neumann boundary values are in some sense dual to Dirichlet boundary values; thus, if

p > 1, then by duality between B
p,p
θ−1(∂Ω) and B

p′,p′

1−θ (∂Ω) , with some careful attention

to the definitions, Neumann trace and extension theorems (such as our Theorem 1.10)

follow from the corresponding Dirichlet extension and trace theorems. See Section 6.1

and Theorem 7.1 below. This is essentially the approach taken in [18, 47, 32] and in

the p > 1 theory of [33, 12].

If p 6 1, then B
p,p
θ−1(∂Ω) is not a dual space, and so another approach is needed.

In [28], the authors established a result similar to the m = 1 case of Theorem 1.10 with

Besov spaces instead of weighted Sobolev spaces. Specifically, if ∆u = f for some f

supported in a Lipschitz domain Ω , they formulated a notion of normal derivative ∂
f

ν u ,

coinciding with ν ·∇u if u and Ω are sufficiently smooth, such that if u ∈ B
p,p
θ+1/p

(Ω)

for some 0 < θ < 1 and some p > (d−1)/(d−1+ θ ) , then ∂ f
ν u ∈ B

p,p
θ−1(∂Ω) . They

also showed that this Neumann trace operator had a bounded right inverse.

The author’s paper [12] with Svitlana Mayboroda introduced the weighted aver-

aged Sobolev spaces Ẇ
p,θ ,q

1,av (Rd
+) in the half-space and in the case m = 1. Therein

Dirichlet and Neumann trace results were established for p > (d −1)/(d−1 + θ ) ,

rather than p > 1.

The present paper extends the results of [12] concerning weighted averaged Sobo-

lev spaces to the case m > 2, the case of arbitrary Lipschitz domains with connected

boundary, and also provides extension theorems. As compared with known results for

m > 2, the major innovation of this paper is to consider the case p < 1 in the weighted

Sobolev space (rather than the Besov space) setting, and also to provide some new

results in the case p = ∞ .
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The case p < 1 has been the subject of much recent study in the theory of elliptic

boundary value problems. Specifically, in [28], the authors considered the harmonic

Dirichlet problem (1.1) with boundary data in Ḃ
p,p
θ (∂Ω) , p < 1, 0 < θ < 1, and the

corresponding harmonic Neumann problem with boundary data in Ḃ
p,p
θ−1(∂Ω) . In [12],

the authors considered the Neumann problem (1.6) and the corresponding Dirichlet

problem (the problem (1.2) with m = 1) for more general second order operators, again

with boundary data in Besov spaces Ḃ
p,p
θ (∂Ω) or Ḃ

p,p
θ−1(∂Ω) with p < 1. (The case

p < 1 has also been of interest in the integer smoothness case, that is, in the case of

boundary data in a Hardy space H p(∂Ω) for p < 1; see [5, 20, 21].) In [6, 7] we intend

to generalize some of the results of [28, 12] to the higher order case (that is, to boundary

value problems such as (1.2), m > 2, and the corresponding Neumann problem) and to

extend to even more general second order equations; the trace and extension results of

this paper will be very useful in that context.

Weighted Sobolev spaces are more appropriate to rough boundary value problems

than Besov spaces. Recall from the theory of partial differential equations that u is

defined to be a weak solution to Lu = ∑|α |=|β |=m ∂ α (Aαβ ∂ β u) = 0 in Ω provided

∑|α |=|β |=m

´

Ω ∂ α ϕ Aαβ ∂ β u = 0 for all ϕ ∈C∞
0 (Ω) . This definition is meaningful even

for rough coefficients A if ∇mu is merely locally integrable. Some regularity results

exist; however, for general coefficients, the most that may be said is that ∇mu is locally

square-integrable, or at best (2+ε) th-power integrable for some possibly small ε > 0.

(In the second order case, this is the well known Caccioppoli inequality and Meyers’s

reverse Hölder inequality [30]. Both may be generalized to the higher order case; see

[14, 4, 8].)

Thus, we wish to study functions u with at most m degrees of smoothness; we do

not wish to consider u ∈ Ḃ
p,p
m−1+θ+1/p

(Ω) , for if θ + 1/p > 1 then u is required to be

too smooth. See [12, Chapter 10] for further discussion. Thus, weighted Sobolev spaces

are more appropriate to our applications than Besov spaces. (If p > 2, then weighted

averaged Sobolev spaces with q = 2 are even more appropriate, as the gradient of a

solution ∇mu is known a priori to be locally square-integrable but not locally p th-

power integrable.)

We introduce the averages in the spaces Ẇ
p,θ ,q

m,av (Ω) both because of the applica-

tions to partial differential equations mentioned above, and also in order to establish

trace theorems for p < 1. Observe that if u ∈ W
p,θ

m (Ω) , then ∇mu is only locally

in Lp ; if p < 1 then ∇mu need not be locally integrable and it is not clear that the

trace operator can be extended to W
p,θ

m (Ω) . In Lemma 3.11 below, we will see that

if u ∈ Ẇ
p,θ ,q

m,av (Ω) for some q > 1, then ∇mu is locally integrable up to the boundary

provided p > (d −1)/(d−1+θ ) , and so the trace operator is well-defined. We remark

that the existing theorems for p < 1 and u∈ B
p,p
m−1+θ+1/p

(Ω) also require p > (d −1)/

(d−1 + θ ) , and for precisely this reason: by standard embedding theorems (see, for

example, [39]), the condition p > (d−1)/(d−1+θ ) is precisely the range of p such

that gradients of B
p,p
θ+1/p

(Ω)-functions are locally integrable up to the boundary.

We have included results in the case p > 1. In the Neumann case these results fol-

low by duality as usual. In the Dirichlet case, our results are not quite the same as but do

owe a great deal to those of [29]. To allow for a better treatment of unbounded domains



TRACES AND EXTENSIONS 823

such as the half-space, we have chosen to work with boundary data in homogeneous

Besov spaces rather than inhomogeneous spaces, that is, to bound only Tr∇m−1u and

not the lower order derivatives Tr∇ku , 0 6 k 6 m− 2; this requires some additional

careful estimates. See in particular the bound (4.6); in the case of inhomogeneous data

the earlier bound (4.3) (the bound (7.48) in [29]) suffices. We also work with weighted,

averaged Sobolev spaces Ẇ
p,θ ,q

m,av (Ω) rather than weighted Sobolev spaces W
p,θ

m (Ω) ;

this presents no additional difficulties in the case of extension theorems but does re-

quire some care in the case of trace theorems.

The outline of this paper is as follows. In Section 2 we will define our terminology

and the function spaces under consideration, in particular boundary spaces of Whitney

arrays. In Section 3 we will establish some basic properties of the weighted averaged

spaces L
p,θ ,q
av . We will prove Theorem 1.5 in Sections 4 and 5, and finally will prove

Theorem 1.10 in Sections 6 and 7.

2. Definitions

Throughout this paper, we will work in domains contained in Rd .

We will generally use lowercase Greek letters to denote multiindices in (N0)
d ,

where N0 denotes the nonnegative integers. If γ is a multiindex, then we define |γ| ,
∂ γ and γ! in the usual ways, via |γ| = γ1 + γ2 + . . . + γd , ∂ γ = ∂

γ1
x1

∂
γ2
x2
· · ·∂

γd
xd

, and

γ! = γ1!γ2! . . .γd! . If γ = (γ1, . . . ,γd) and δ = (δ1, . . . ,δd) are two multiindices, then

we say that δ 6 γ if δi 6 γi for all 1 6 i 6 d , and we say that δ < γ if in addition the

strict inequality δi < γi holds for at least one such i .

We will routinely deal with arrays Ḟ =
(
Fγ

)
indexed by multiindices γ with |γ|=

m for some m . In particular, if ϕ is a function with weak derivatives of order up to m ,

then we view ∇mϕ as such an array, with

(∇mϕ)γ = ∂ γϕ .

If Ḟ and Ġ are two arrays of functions defined in an open set Ω or on its boundary,

then the inner product of Ḟ and Ġ is given by

〈
Ḟ,Ġ

〉
Ω

= ∑
|γ|=m

ˆ

Ω
Fγ Gγ or

〈
Ḟ,Ġ

〉
∂Ω

= ∑
|γ|=m

ˆ

∂Ω
Fγ Gγ dσ

where σ denotes surface measure. (In this paper we will consider only domains with

rectifiable boundary.)

Recall from formula (1.9) that, if Ġ is an array of functions defined in an open

set Ω ⊂ R
d and indexed by multiindices α with |α| = m , then

divm Ġ = 0

in Ω in the weak sense if and only if 〈∇mϕ ,Ġ〉Ω = 0 for all smooth test functions ϕ
supported in Ω .
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If E is a set, we let 1E denote the characteristic function of E . If µ is a measure

and E is a µ -measurable set, with µ(E) < ∞ , we let

 

E

f dµ =
1

µ(E)

ˆ

E

f dµ .

We let Lp(U) and L∞(U) denote the standard Lebesgue spaces with respect to

either Lebesgue measure (if U is a domain) or surface measure (if U is a subset of the

boundary of a domain). We let C∞
0 (U) denote the space of functions that are smooth

and compactly supported in U .

If U is a connected open set, then we let the homogeneous Sobolev space Ẇ
p

m(U)
be the space of equivalence classes of functions u that are locally integrable in Ω and

have weak derivatives in Ω of order up to m in the distributional sense, and whose

m th gradient ∇mu lies in Lp(U) . Two functions are equivalent if their difference is a

polynomial of order m−1. We impose the norm

‖u‖Ẇ
p

m(U) = ‖∇mu‖Lp(U).

Then u is equal to a polynomial of order m−1 (and thus equivalent to zero) if and only

if its Ẇ
p

m(U)-norm is zero.

We say that u ∈ L
p
loc(U) or u ∈ Ẇ

p
m,loc(U) if u ∈ Lp(V ) or u ∈ Ẇ

p
m(V ) for every

bounded set V with V ⊂ U . In particular, if U is a set and U is its closure, then

functions in L
p
loc(U) are required to be locally integrable even near the boundary ∂U ;

if U is open this is not true of L
p
loc(U) .

If Q ⊂ Rd−1 is a cube, then we let ℓ(Q) denote its the length of one of its edges.

Recall that a Banach space is a complete normed vector space. We define quasi-

Banach spaces as follows.

DEFINITION 2.1. We say that a vector space B is a quasi-Banach space if it pos-

sesses a quasi-norm ‖·‖ and is complete with respect to the topology induced by that

quasi-norm.

We say that ‖·‖ is a quasi-norm on the vector space B if

• ‖b‖ = 0 if and only if b = 0,

• if b ∈ B and c ∈ C , then ‖cb‖ = |c|‖b‖ ,

• there is some constant CB > 1 such that, if b1 ∈ B and b2 ∈ B , then ‖b1 + b2‖6

CB‖b1‖+CB‖b2‖ .

If CB = 1 then B is a Banach space and its quasi-norm is a norm.

In this paper, rather than the quasi-norm inequality ‖b1 + b2‖6CB‖b1‖+CB‖b2‖ ,

we will usually use the p -norm inequality

‖b1 + b2‖
p
6 ‖b1‖

p +‖b2‖
p

for some 0 < p 6 1. We remark that if 0 < p 6 1 then the p -norm inequality implies

the quasi-norm inequality with CB = 21/p−1 . (The converse result, that is, that any
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quasi-norm is equivalent to a p -norm for p satisfying 21/p−1 = CB , is also true; see

[3, 38].)

If B is a quasi-Banach space we will let B∗ denote its dual space. If 1 6 p 6 ∞
then we will let p′ be the extended real number that satisfies 1/p + 1/p′ = 1. Thus, if

1 6 p < ∞ , then (Lp(U))∗ = Lp′(U) .

In this paper we will work in Lipschitz domains, defined as follows.

DEFINITION 2.2. We say that the domain V ⊂ Rd is a Lipschitz graph domain if

there is some Lipschitz function ψ : Rd−1 7→ R and some coordinate system such that

V = {(x′,t) : x′ ∈ R
d−1, t > ψ(x′)}.

We refer to M = ‖∇ψ‖L∞(Rd−1) as the Lipschitz constant of V .

We say that the domain Ω is a Lipschitz domain if either Ω is a Lipschitz graph

domain, or if there is some positive scale r = rΩ , some constants M > 0 and c0 > 1,

and some finite set {x j}
n
j=1 of points with x j ∈ ∂Ω , such that the following conditions

hold. First,

∂Ω ⊂
n⋃

j=1

B(x j,r j) for some r j with
1

c0

r < r j < c0r.

Second, for each x j , there is some Lipschitz graph domain V j with x j ∈ ∂V j and with

Lipschitz constant at most M , such that

Z j ∩Ω = Z j ∩V j

where Z j is a cylinder of height (8 + 8M)r j , radius 2r j , and with axis parallel to the

t -axis (in the coordinates associated with V j ).

If Ω is a Lipschitz graph domain let n = c0 = 1; otherwise let M , n , c0 be

as above. We refer to the triple (M,n,c0) as the Lipschitz character of Ω . We will

occasionally refer to rΩ as the natural length scale of Ω ; if Ω is a Lipschitz graph

domain then rΩ = ∞ .

Notice that if Ω is a Lipschitz domain, then either Ω is a Lipschitz graph domain

or ∂Ω is bounded. If ∂Ω is bounded and connected, then the natural length scale rΩ

is comparable to diam∂Ω .

Throughout we will let C denote a constant whose value may change from line to

line, but that depends only on the ambient dimension, the number m in the operators

ṪrΩ
m−1 and ṀΩ

m , and the Lipschitz character of any relevant domains; any other depen-

dencies will be indicated explicitly. We say that A ≈ B if A 6CB and B 6CA for some

such C .
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2.1. Function spaces in domains and their traces

Let Ω be a connected Lipschitz domain and let 0 < p 6 ∞ , 1 6 q 6 ∞ and −∞ <

θ < ∞ . Recall from the introduction the formula (1.4) for the L
p,θ ,q
av (Ω)-norm. This

formula must be modified in the cases p = ∞ and q = ∞ . In these cases, the L
p,θ ,q
av (Ω)-

norm is given by

‖H‖
L

∞,θ ,q
av (Ω)

= sup
x∈Ω

(
 

B(x,dist(x,∂Ω)/2)
|H|q

)1/q

dist(x,∂Ω)1−θ , (2.3)

‖H‖
L

p,θ ,∞
av (Ω)

=

(
ˆ

Ω

(
esssup

B(x,dist(x,∂Ω)/2)

|H|p
)

dist(x,∂Ω)p−1−pθ dx

)1/p

, (2.4)

‖H‖
L

∞,θ ,∞
av (Ω)

= sup
x∈Ω

dist(x,∂Ω)1−θ esssup
B(x,dist(x,∂Ω)/2)

|H| ≈ esssup
x∈Ω

|H(x)|dist(x,∂Ω)1−θ . (2.5)

Recall that if m is a positive integer, then Ẇ
p,θ ,q

m,av (Ω) denotes the space of equiva-

lence classes (up to adding polynomials of degree m−1) of functions u that are locally

integrable in Ω and have weak derivatives in Ω of order up to m in the distributional

sense, and for which ∇mu ∈ L
p,θ ,q
av (Ω) .

Observe that if p > 1 then L
p,θ ,q
av (Ω) (and Ẇ

p,θ ,q
m,av (Ω)) is a Banach space. If

0 < p < 1, then by Minkowski’s inequality, L
p,θ ,q
av (Ω) is a quasi-Banach space with a

p -norm, that is,

‖F + G‖p

L
p,θ ,q
av (Ω)

6 ‖F‖p

L
p,θ ,q
av (Ω)

+‖G‖p

L
p,θ ,q
av (Ω)

for all F , G ∈ L
p,θ ,q
av (Ω) .

The main results of this paper concern the Dirichlet and Neumann trace operators

acting on Ẇ
p,θ ,q

m,av (Ω) and L
p,θ ,q
av (Ω) , respectively. Thus we must define these trace

operators. We will see (Section 3) that if 0 < θ < 1 and p > (d−1)/(d−1+θ ) , then

L
p,θ ,q
av (Ω) ⊂ L1

loc(Ω) . It thus suffices to define the Dirichlet and Neumann traces of

functions in Ẇ 1
m,loc(Ω) and L1

loc(Ω) , respectively.

DEFINITION 2.6. If u ∈ Ẇ 1
m,loc(Ω) then the Dirichlet boundary values of u are

the traces of the m−1th derivatives; for ease of notation we define ṪrΩ
m−1 u as the array

given by
(
ṪrΩ

m−1 u
)

γ
= Tr∂ γ u for all |γ| = m−1. (2.7)

If Ġ ∈ L1
loc(Ω) satisfies divm Ġ = 0 in Ω in the sense of formula (1.9), then the

Neumann boundary values ṀΩ
m Ġ of Ġ are given by formula (1.8); as discussed in the

introduction, ṀΩ
m Ġ is an equivalence class of distributions under the relation ġ ≡ ḣ if

〈ġ, ṪrΩ
m−1 ϕ〉∂Ω = 〈ḣ, ṪrΩ

m−1 ϕ〉∂Ω for all ϕ ∈C∞
0 (Rd) .
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2.2. Function spaces on the boundary

In this section, we will define Besov spaces and Whitney-Besov spaces; in Sec-

tions 4–7 we will show that these spaces are, in fact, the Dirichlet and Neumann trace

spaces of weighted averaged spaces.

The homogeneous Besov spaces Ḃ
p,r
θ (Rd−1) on a Euclidean space, for −∞ < θ <

∞ , 0 < p 6 ∞ , and 0 < r 6 ∞ , have traditionally been defined using the Fourier trans-

form (the classic Littlewood-Paley definition); this definition may be found in many

standard references, including [43, Section 5.1.3] or [39, Section 2.6]. There are many

equivalent characterizations, valid for different ranges of the parameters p , r and θ .

Because we wish to consider boundary values of functions in domains, we must gen-

eralize some of these characterizations from Rd−1 to ∂Ω for more general Lipschitz

domains Ω ; the Littlewood-Paley characterization does not generalize easily to such

regimes.

In this paper, we will be concerned only with the space Ḃ
p,p
θ−1(∂Ω) (for Neumann

boundary values) or Ḃ
p,p
θ (∂Ω) (for Dirichlet boundary values), with 0 < θ < 1 and

(d−1)/(d−1 + θ ) < p 6 ∞ . It will be convenient to use different definitions in the

cases p > 1 and p 6 1, and in the case of positive and negative smoothness spaces; the

four characterizations we use are as follows.

DEFINITION 2.8. Let 0 < θ < 1, and let Ω ⊂ Rd be a Lipschitz domain with

connected boundary.

If (d −1)/(d−1+ θ ) < p 6 ∞ , then we say that a is a Ḃ
p,p
θ (∂Ω)-atom if there

is some x0 ∈ ∂Ω and some r > 0 such that

• suppa ⊆ B(x0,r)∩∂Ω ,

• ‖a‖L∞(∂Ω) 6 rθ−(d−1)/p ,

• ‖∇τ a‖L∞(∂Ω) 6 rθ−1−(d−1)/p ,

where the L∞ norm is taken with respect to surface measure dσ and where ∇τ denotes

the tangential gradient of a along ∂Ω . We say that a is a Ḃ
p,p
θ−1(∂Ω)-atom if there is

some x0 ∈ ∂Ω and some r > 0 such that

• suppa ⊆ B(x0,r)∩∂Ω ,

• ‖a‖L∞(∂Ω) 6 rθ−1−(d−1)/p ,

•
´

∂Ω a(x)dσ(x) = 0.

If p 6 1 then we let Ḃ
p,p
θ−1(∂Ω) be the space of distributions

Ḃ
p,p
θ−1(∂Ω) =

{ ∞

∑
j=1

λ ja j : λ j ∈ C, a j a Ḃ
p,p
θ−1 -atom,

∞

∑
j=1

|λ j|
p < ∞

}

with the norm

‖ f‖Ḃ
p,p
θ−1

(∂Ω) = inf
{( ∞

∑
j=1

|λ j|
p
)1/p

: f =
∞

∑
j=1

λ ja j, a j a Ḃ
p,p
θ−1 -atom,λ j ∈ C

}
.
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If p 6 1 then we let Ḃ
p,p
θ (∂Ω) be the space of equivalence classes of locally

integral functions modulo constants

Ḃ
p,p
θ (∂Ω) =

{(
c0 +

∞

∑
j=1

λ ja j : c0 ∈ C

)
, λ j ∈ C, a j a Ḃ

p,p
θ -atom,

∞

∑
j=1

|λ j|
p < ∞

}

and impose the norm

‖ f‖Ḃ
p,p
θ (∂Ω) = inf

{( ∞

∑
j=1

|λ j|
p
)1/p

: f = c0 +
∞

∑
j=1

λ ja j, c0 ∈ C, a j a Ḃ
p,p
θ -atom,λ j ∈ C

}
.

If the a j s are atoms and the λ j s are complex numbers with ∑ j|λ j|
p < ∞ , then the

sums ∑ j λ ja j converge to distributions or functions; see Remark 2.10.

If 1 < p 6 ∞ and 0 < θ < 1, then we let Ḃ
p,p
θ (∂Ω) be the set of all equivalence

classes modulo constants of locally integrable functions f defined on ∂Ω for which

the Ḃ
p,p
θ (∂Ω) -norm given by

‖ f‖Ḃ
p,p
θ (∂Ω) =

(
ˆ

∂Ω

ˆ

∂Ω

| f (x)− f (y)|p

|x− y|d−1+pθ
dσ(x)dσ(y)

)1/p

(2.9)

is finite. If p = ∞ we modify the definition appropriately by taking the L∞ norm; then

Ḃ
p,p
θ (∂Ω) = Ċθ (∂Ω) , the space of Hölder continuous functions with exponent θ .

Finally, if 1 < p 6 ∞ and −1 < θ − 1 < 0, then we let Ḃ
p,p
θ−1(∂Ω) be the dual

space
(
Ḃ

p′,p′

1−θ (∂Ω)
)∗

, where 1/p + 1/p′ = 1.

REMARK 2.10. The sums of atoms ∑∞
j=1 λ ja j are meaningful as locally inte-

grable functions (if the a j s are Ḃ
p,p
θ -atoms) or as distributions (if the a j s are Ḃ

p,p
θ−1 -

atoms).

Specifically, observe that if (d−1)/(d−1 + θ ) < p 6 1 and 0 < θ < 1, then

any Ḃ
p,p
θ (∂Ω)-atom is in L p̃(∂Ω) with uniformly bounded norm (depending on the

Lipschitz constants of Ω), where p̃ = p(d−1)/(d−1− pθ ) ; observe p̃ > 1. If p 6 1

and ∑∞
j=1|λ j|

p < ∞ , then ∑∞
j=1|λ j| < ∞ . Thus, if a j is a Ḃ

p,p
θ -atom for each j , then

the infinite sum ∑∞
j=1 λ ja j converges in the L p̃ -norm; thus, that sum denotes a unique

locally L1 function.

If a is a Ḃ
p,p
θ−1(∂Ω)-atom for some (d−1)/(d−1+ θ ) < p 6 1 and θ −1 < 0,

then for any smooth function ϕ , we have that by the Poincaré inequality

∣∣∣∣
ˆ

∂Ω
ϕ adσ

∣∣∣∣ 6 C‖∇ϕ‖
L p̃′ (B(x0,r)∩∂Ω)

,

where again p̃ = p(d−1)/(d−1− pθ ) and where 1/ p̃+1/ p̃′ = 1. Thus, such atoms

may be viewed as distributions. If ∑∞
j=1|λ j| < ∞ , and if a j is an atom for each j , then

the infinite sum ∑∞
j=1 λ ja j converges to a distribution (that is, the sum ∑∞

j=1 λ j〈ϕ ,a j〉∂Ω

converges absolutely for any smooth, compactly supported function ϕ ).
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REMARK 2.11. If 0 < θ < 1 and (d−1)/(d−1+ θ ) < p 6 ∞ , then Ḃ
p,p
θ (∂Ω)

and Ḃ
p,p
θ−1(∂Ω) are quasi-Banach spaces; if p > 1 they are Banach spaces.

REMARK 2.12. The duality characterization of the negative smoothness spaces

for p > 1 is well known; see, for example, [43, Sections 2.11 and 5.2.5]. Recall that in

some sense Neumann boundary data is dual to Dirichlet boundary data, and so a duality

characterization is appropriate. However, the space Ḃ
p,p
θ−1(R

d−1) , for p 6 1, is not

the dual of a naturally arising space; thus we need an alternative characterization. The

atomic characterization comes from the atomic decomposition of Frazier and Jawerth

in [19]. If p 6 1, then atomic characterizations are very convenient, and so we use

them to define Ḃ
p,p
θ (∂Ω) as well as Ḃ

p,p
θ−1(∂Ω) . Atoms are less convenient in the case

p > 1, and so in this case we use another characterization. The norm (2.9) comes from

the definition of Slobodekij spaces, one of many function spaces that may be realized

as a special case of Besov or Triebel-Lizorkin spaces; see [43, Section 5.2.3].

REMARK 2.13. If p = 1 and 0 < θ < 1, then we shall see that the atomic norm

and the norm (2.9) are equivalent. Specifically, in Remark 2.16 we shall see that

Ḃ
p,p
θ (∂Ω) = ẆA

p
0,θ (∂Ω) , where the Whitney space ẆA

p
m−1,θ (∂Ω) will be defined in

Definition 2.14. The m = 1, p = 1 case of Theorem 4.1 will imply that if ϕ ∈

ẆA1
0,θ (∂Ω) then ϕ = TrΩ Φ for some Φ ∈ Ẇ

1,θ ,q
1,av (Ω) that satisfies both of the in-

equalities

‖Φ‖
Ẇ

1,θ ,q
1,av (Ω)

6 C

ˆ

∂Ω

ˆ

∂Ω

|ϕ(x)−ϕ(y)|

|x− y|d−1+θ
dσ(x)dσ(y),

‖Φ‖
Ẇ

1,θ ,q
1,av (Ω)

6 C inf
{
∑

j

|λ j| : ϕ = c0 +∑
j

λ j a j, c0 constant, a j atoms
}
.

The m = 1, p = 1 case of Theorem 5.1 will establish the converses, that is, that if

Φ ∈ Ẇ
1,θ ,q
1,av (Ω) then

ˆ

∂Ω

ˆ

∂Ω

|TrΩ Φ(x)−TrΩ Φ(y)|

|x− y|d−1+θ
dσ(x)dσ(y) 6 C‖Φ‖

Ẇ
1,θ ,q
1,av (Ω)

,

inf
{
∑

j

|λ j| : TrΩ Φ = c0 +∑
j

λ j a j, c0 constant, a j atoms
}

6 C‖Φ‖
Ẇ

1,θ ,q
1,av (Ω)

.

Combining these results yields the equivalence of norms

ˆ

∂Ω

ˆ

∂Ω

|ϕ(x)−ϕ(y)|

|x− y|d−1+θ
dσ(x)dσ(y) ≈ ‖Φ‖

Ẇ
1,θ ,q
1,av (Ω)

≈ inf
{
∑

j

|λ j| : ϕ = c0 +∑
j

λ j a j, c0 constant, a j atoms
}

for any ϕ such that either side is finite.

Although we shall not use this fact, we mention that it is possible to establish this

equivalence in other ways: controlling the norm (2.9) by the atomic norm is straight-

forward if p 6 1, and the reverse implication in the case where Ω is a half-space and

so ∂Ω = R
d−1 denotes Euclidean space is a main result of [19].
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Now, recall that we seek spaces of Dirichlet traces {ṪrΩ
m−1 u : u ∈ Ẇ

p,θ ,q
m,av (Ω)} ; in

particular, we seek spaces of boundary data that may be extended to such functions.

But if m > 2, then ṪrΩ
m−1 u is not a function; it is an array of functions that must satisfy

certain compatibility conditions. Thus, if r is the number of multiindices γ of length

m−1, we do not expect to be able to extend an arbitrary element of (Ḃ
p,p
θ (∂Ω))r to a

Ẇ
p,θ ,q

m,av (Ω)-function; extension will only be possible in a distinguished subspace, called

a Whitney-Besov space.

DEFINITION 2.14. Suppose that Ω ⊂ Rd is a Lipschitz domain, and consider

arrays of functions ḟ =
(

fγ

)
|γ|=m−1

, where fγ : ∂Ω 7→ C .

If 0 < θ < 1 and (d −1)/(d−1 + θ ) < p < ∞ , then we let the homogeneous

Whitney-Besov space ẆA
p
m−1,θ (∂Ω) be the closure of the set of arrays

{
ψ̇ = ṪrΩ

m−1 Ψ : ∇mΨ ∈ L∞(Rd), Ψ compactly supported in R
d
}

(2.15)

in Ḃ
p,p
θ (∂Ω) , under the (quasi)-norm

‖ψ̇‖ẆA
p
m−1,θ (∂Ω) = ∑

|γ|=m−1

‖ψγ‖Ḃ
p,p
θ (∂Ω).

Notice that ẆA
p

m−1,θ (∂Ω) is a subspace of (Ḃ
p,p
θ (∂Ω))r , where r is the number of

multiindices γ of length m−1.

If 0 < θ < 1 and p = ∞ , then we let ẆA
p
m−1,θ (∂Ω) = ẆA∞

m−1,θ (∂Ω) be the set

of arrays {
ψ̇ = ṪrΩ

m−1 Ψ : ∇m−1Ψ ∈ Ċθ (Ω)
}

equipped with the norm

‖ψ̇‖ẆA∞
m−1,θ (∂Ω) = ‖ψ̇‖Ḃ

∞,∞
θ (∂Ω) = sup

|γ|=m−1

sup
x6=y

x,y∈∂Ω

|ψγ(x)−ψγ(y)|

|x− y|θ
.

When no ambiguity arises we will omit the m−1 subscript.

REMARK 2.16. We remark that if m = 1 then ẆA
p
m−1,θ (∂Ω) = ẆA

p
0,θ (∂Ω) =

Ḃ
p,p
θ (∂Ω) .

The relation ẆA
p
0,θ (∂Ω) ⊆ Ḃ

p,p
θ (∂Ω) is clear from the definition. Thus we need

only show the reverse inclusion.

If p = ∞ , the reverse inclusion is merely the statement that any Hölder continuous

function defined on ∂Ω has a Hölder continuous extension to Rd . If p 6 1 and 0 < θ <
1, then all finite sums of atoms lie in the space given in formula (2.15) and so this space

is dense in Ḃ
p,p
θ (∂Ω) as well as ẆA

p
0,θ (∂Ω) . Finally, if 1 < p < ∞ then the argument

that compactly supported functions with bounded derivatives (and in fact compactly

supported smooth functions) are dense in Ḃ
p,p
θ (∂Ω) is similar to the argument that they

are dense in Lp(∂Ω) .
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We are also interested in the spaces of Neumann traces of (divergence-free) arrays

Ġ ∈ L
p,θ ,q
av (Ω) . Recall that in this case, the main complication is that ṀΩ

m Ġ is only

defined up to adding arrays ġ that satisfy 〈ṪrΩ
m−1 ϕ , ġ〉∂Ω = 0. This may be dealt with

by simply defining ṄA
p
θ−1(∂Ω) as a quotient space.

DEFINITION 2.17. Let Ω ⊂ Rd be a Lipschitz domain with connected boundary,

let 0 < θ < 1, and let (d −1)/(d−1 + θ ) < p 6 ∞ . Let r be the number of multi-

indices of length m−1.

Then ṄA
p
θ−1(∂Ω) = ṄA

p
m−1,θ−1(∂Ω) is the quotient space of (Ḃp,p

θ−1(∂Ω))r under

the equivalence relation

ġ ≡ ḣ if and only if 〈ṪrΩ
m−1 ϕ , ġ〉∂Ω = 〈ṪrΩ

m−1 ϕ , ḣ〉∂Ω for all ϕ ∈C∞
0 (Rd) .

Observe that by the duality or atomic characterization of Ḃ
p,p
θ−1(∂Ω) , if ϕ is

smooth and compactly supported then |〈ṪrΩ
m−1 ϕ , ġ〉∂Ω| < ∞ for all ġ ∈ Ḃ

p,p
θ−1(∂Ω) ;

thus, this equivalence relation is meaningful in (Ḃp,p
θ−1(∂Ω))r .

REMARK 2.18. We have an alternative characterization of ṄA
p

θ−1(∂Ω) in the

case p > 1. In this case, 1 6 p′ < ∞ , and by the definitions of Ḃ
p,p
θ−1(∂Ω) and of

ẆA
p′

1−θ (∂Ω) , we have that ṄA
p
θ−1(∂Ω) is the dual space to ẆA

p′

1−θ (∂Ω) .

3. Properties of function spaces

In this section we will establish a few properties of the spaces L
p,θ ,q
av (Ω) defined

by formula (1.4) (and formulas (2.3)–(2.5)); we will need these properties to establish

the trace and extension results of Sections 4–7.

Let Ω be a Lipschitz domain, and let W be a grid of Whitney cubes; then Ω =
∪Q∈W Q , the cubes in W have pairwise-disjoint interiors, and if Q ∈ W then its side

length ℓ(Q) satisfies ℓ(Q) ≈ dist(Q,∂Ω) .

If Ḣ ∈ L
p,θ ,q
av (Ω) for 0 < p < ∞ , −∞ < θ < ∞ and 1 6 q < ∞ , then

‖Ḣ‖
L

p,θ ,q
av (Ω)

≈

(
∑

Q∈W

(
 

Q

|Ḣ|q
)p/q

ℓ(Q)d−1+p−pθ

)1/p

, (3.1)

‖Ḣ‖
L

∞,θ ,q
av (Ω)

≈ sup
Q∈W

(
 

Q

|Ḣ|q
)1/q

ℓ(Q)1−θ (3.2)

where the comparability constants depend on Ω , p , q , θ , and the comparability con-

stants for Whitney cubes in the relation ℓ(Q) ≈ dist(Q,∂Ω) . If q = ∞ , then we have

similar equivalences with the average over Q replaced by an essential supremum.

Notice that this implies that we may replace the balls B(x,dist(x,∂Ω)/2) in the

norm (1.4) (or the norms (2.3)–(2.5)) by balls B(x,adist(x,∂Ω)) for any 0 < a < 1,

and produce an equivalent norm.
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This gives us a number of results. First, if p = q then L
p,θ ,p
av (Ω) is the weighted

but not averaged Sobolev space given by

‖Ḣ‖
L

p,θ ,p
av (Ω)

≈

(
ˆ

Ω
|Ḣ(x)|p dist(x,∂Ω)p−1−pθ dx

)1/p

. (3.3)

In particular, if θ = 1−1/p then L
p,1−1/p,p
av (Ω) = Lp(Ω) .

Second, if 1 6 q < ∞ and 1 6 p < ∞ , then we have the duality relation

(Lp,θ ,q
av (Ω))∗ = Lp′,1−θ ,q′

av (Ω) (3.4)

where 1/p + 1/p′ = 1/q + 1/q′ = 1.

The final result we will prove in this section (Lemma 3.11) generalizes a result of

[12], in which the spaces L
p,θ ,q
av (Rd

+) , where R
d
+ is the upper half-space, were investi-

gated.

To state this result, we establish some notation. Suppose that V = {(x′,t) : t >
ψ(x′)} is a Lipschitz graph domain. For each cube Q ⊂ Rd−1 with side length ℓ(Q) ,

define

T (Q) = {(x′,t) : x′ ∈ Q,ψ(x′) < t < ψ(x′)+ 8ℓ(Q)}, (3.5)

W (Q) = {(x′,t) : x′ ∈ Q,ψ(x′)+ 4ℓ(Q) < t < ψ(x′)+ 8ℓ(Q)}. (3.6)

The regions W (Q) and T (Q) are shown in Figure 3.1.

W (Q)

∂Ω

Q

T (Q)

∂Ω

Q

Figure 3.1: The regions W (Q) ⊂ T (Q) and T (Q) . (The vertical axis has been compressed.)

If j is an integer, let D j be the set of all open cubes in Rd−1 , with side length 2 j ,

and with vertices whose coordinates are integer multiples of 2 j . Then the cubes in D j

are pairwise-disjoint and ∪Q∈D j
Q = Rd−1 . Let D = ∪∞

j=−∞D j .

The set {W (Q) : Q ∈ D} has many of the useful properties of a decomposition of

V into Whitney cubes (as in the norm (3.1)). It is clear that the diameter of W (Q) is

comparable to the distance from W (Q) to ∂V , as both are comparable to ℓ(Q) . In the

next two lemmas, we will see that {W (Q) : Q ∈ D} has other properties of a Whitney

decomposition.
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LEMMA 3.7. If V is a Lipschitz graph domain, then V = ∪Q∈DW (Q) .

Proof. If Q ∈ D j for some integer j , then

W (Q) = {(x′,t) : x′ ∈ Q, ψ(x′)+ 2 j+2 < t < ψ(x′)+ 2 j+3}. (3.8)

Therefore,

⋃

Q∈D j

W (Q) = {(x′,t) : x′ ∈ R
d−1, ψ(x′)+ 2 j+2 6 t 6 ψ(x′)+ 2 j+3}.

Recalling that V = {(x′,t) : x′ ∈ Rd−1, ψ(x′) < t} , it is clear that

V =
∞⋃

j=−∞

⋃

Q∈D j

W (Q) =
⋃

Q∈D

W (Q)

as desired. �

LEMMA 3.9. If R and S are distinct cubes in D , then W (R) and W (S) are

disjoint.

Proof. We have that R ∈D j and S ∈Dk for some integers j and k . If j = k , then

R and S are disjoint; thus, by formula (3.8), W (R) and W (S) are disjoint. If j 6= k ,

observe that as in the proof of Lemma 3.7,

⋃

Q∈D j

W (Q) ⊂ {(x′,t) : x′ ∈ R
d−1, ψ(x′)+ 2 j+2 < t < ψ(x′)+ 2 j+3}.

Thus, ∪Q∈D j
W (Q) and ∪Q∈Dk

W (Q) are disjoint, and so W (R) and W (S) are dis-

joint. �

Thus, the set {W (Q) : Q ∈ D} has many of the useful properties of a decomposi-

tion into Whitney cubes. In particular, we have a result similar to the estimate (3.1) in

terms of such regions: if Ḣ ∈ L
p,θ ,q
av (V ) , then

‖Ḣ‖p

L
p,θ ,q
av (V )

≈ ∑
Q∈D

(
 

W(Q)
|Ḣ|q

)p/q

ℓ(Q)d−1+p−pθ . (3.10)

The following result states essentially that we may replace the sets W (Q) by the

sets T (Q) in the norm (3.10). In particular, this implies that the integral over a tent

T (Q) is finite, and so L
p,θ ,q
av (V )-functions are locally integrable up to the boundary; this

second result extends from Lipschitz graph domains V to general Lipschitz domains Ω .

LEMMA 3.11. Let V be a Lipschitz graph domain and let D , T (Q) , and W (Q)
be as above.
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Let −∞ < θ < ∞ . Then, if 0 < p 6 q < ∞ and 1/q > (d−1+ p− pθ )/d p, or if

0 < q 6 p < ∞ and 1/q > 1−θ , then

(
∑

Q∈D

(
ˆ

T (Q)
|Ḣ|q

)p/q

ℓ(Q)d−1+p−pθ−(p/q)d

)1/p

≈ ‖Ḣ‖
L

p,θ ,q
av (V )

. (3.12)

If p = ∞ and 1/q > 1− θ , or if q = ∞ and θ > 1 + (d −1)/p, or if p = q = ∞
and θ > 1 , then this equivalence is still valid if we replace the sum or integral by an

appropriate supremum.

More generally, suppose that Ω ⊂ Rd is a Lipschitz domain. Let θ , p and q be

as before. If Ḣ ∈ L
p,θ ,q
av (Ω) , if x0 ∈ ∂Ω , and if R > 0 , then

‖Ḣ‖Lq(B(x0,R)∩Ω) 6 C‖Ḣ‖
L

p,θ ,q
av (Ω)

Rd/q−1+θ−(d−1)/p. (3.13)

In particular, if θ > 0 , (d−1)/(d−1+ θ ) < p 6 ∞ , and q > 1 , then

‖Ḣ‖L1(B(x0,R)∩Ω) 6 C‖Ḣ‖
L

p,θ ,q
av (Ω)

Rd−1+θ−(d−1)/p. (3.14)

Proof. If V = Rd
+ is a half-space, then the bound (3.12) is [12, Theorem 6.1]. The

bound (3.13) (with Ω = V ) follows immediately, and the bound (3.14) follows from

the bound ‖Ḣ‖
L

p,θ ,1
av (Ω)

6 ‖Ḣ‖
L

p,θ ,q
av (Ω)

which by Hölder’s inequality is valid whenever

q > 1. Let ψ be a Lipschitz function; by making the change of variables (x′,t) 7→
(x′,t−ψ(x′)) , we see that the lemma is still true in the domain V = {(x′,t) : t > ψ(x′)} ,

that is, in any Lipschitz graph domain.

There remains the bound (3.13) in the case where Ω is a domain with compact

boundary. We may control the Lq norm of Ḣ near ∂Ω using the bound for Lipschitz

graph domains. If R is sufficiently small (compared with the natural length scale r = rΩ

of Definition 2.2), this completes the proof.

If R > rΩ/C , then we may control the Lq norm of Ḣ far from ∂Ω by using the

norm (3.1) and the observation that there are at most C(1 + rΩ/2 j)d Whitney cubes of

side length 2 j . �

We have shown that if θ > 0 and p > (d−1)/(d−1 + θ ) , then Ẇ
p,θ ,q

m,av (Ω)-

functions are necessarily Ẇ 1
m,loc(Ω)-functions, and so ṪrΩ

m−1 u and ṀΩ
m Ġ are mean-

ingful if u ∈ Ẇ
p,θ ,q

m,av (Ω) and Ġ ∈ L
p,θ ,q
av (Ω) .

If θ 6 0 or p 6 (d −1)/(d−1+θ ) , then this is not true and so trace theorems are

not meaningful. Conversely, if θ > 1, then ṪrΩ
m−1~u is constant for all ~u ∈ Ẇ

p,θ ,p
m,av (Ω) ,

and so we do not expect an interesting theory of traces of functions ~u ∈ Ẇ
p,θ ,q

m,av (Ω) .

Thus, for the remainder of this paper, we will only consider θ with 0 < θ < 1 and

p with (d −1)/(d−1+ θ ) < p 6 ∞ .
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3.1. Density of smooth functions in weighted averaged spaces

The main result of this section is Theorem 3.20; this theorem states that smooth

functions are dense in the spaces Ẇ
p,θ ,q

m,av . We will first prove the following Poincaré-

style inequality; it will allow us to control the lower order derivatives of a function in

Ẇ
p,θ ,q

m,av by its Ẇ
p,θ ,q

m,av -norm.

LEMMA 3.15. Let V = {(x′,t) : x′ ∈ Rd−1, t > ψ(x′)} be a Lipschitz graph do-

main. Let Q ⊂ Rd−1 be a cube, and let T (Q) , W (Q) be as in formulas (3.5) and (3.6).

Suppose that 1T(Q)∇
mu∈L

p,θ ,q
av (V ) , where 1T (Q) is the characteristic function of T (Q) .

Let uQ be the polynomial of order m−1 that satisfies

 

W(Q)
∇k(u−uQ) = 0 for all integers k with 0 6 k 6 m−1.

If 0 < θ < 1 , 1 6 q 6 ∞ , 0 < p 6 ∞ , and 0 6 k 6 m−1 , then

‖1T(Q)∇
k(u−uQ)‖

L
p,θ ,q
av (V )

6 Cℓ(Q)m−k‖1T(Q)∇
mu‖

L
p,θ ,q
av (V )

. (3.16)

If in addition p > (d −1)/(d−1 + θ ) and ṪrV
k u = 0 along ∂V ∩ ∂T (Q) for all 0 6

k 6 m−1 , then we have that

‖1T(Q)∇
ku‖

L
p,θ ,q
av (V )

6 Cℓ(Q)m−k‖1T(Q)∇
mu‖

L
p,θ ,q
av (V )

. (3.17)

Proof. We begin with the bound (3.16). Without loss of generality we assume

uQ ≡ 0. Choose some multiindex γ with |γ| = k 6 m−1, and for any cube R ⊂ R
d−1 ,

let uγ,R =
ffl

W(R) ∂ γ u ; notice that uγ,Q = 0. The k = m case is immediate; we will use

induction to generalize to k < m .

Let G0 = {Q} , and for each j > 0, let G j be the set of open dyadic subcubes of

Q of side length 2− jℓ(Q) ; then |G j| = 2 j(d−1) and ∪R∈G j
R = Q . Let G = ∪∞

j=0G j . In

particular, if D is as in Lemma 3.11 and Q ∈ D , then G = {R ∈ D : R ⊆ Q} .

By formula (3.10), for any array of functions Ḣ with 1T(Q)Ḣ ∈ L
p,θ ,q
av (V ) we have

that

‖1T(Q)Ḣ‖
p

L
p,θ ,q
av (V )

≈ ∑
R∈G

(
 

W (R)
|Ḣ|q

)p/q

ℓ(R)d−1+p−pθ . (3.18)

We want to bound 1T (Q)∂
γ u . Let r = (d −1)/p + 1−θ . Because q > 1, we have that

the triangle inequality in Lq(W (R)) is valid, and so

∑
R∈G

(
 

W (R)
|∂ γ u|q

)p/q

ℓ(R)pr 6 ∑
R∈G

((
 

W (R)
|∂ γ u−uγ,R|

q

)1/q

+ |uγ,R|

)p

ℓ(R)pr.

By the Poincaré inequality, if ℓ(R) 6 ℓ(Q) then

 

W (R)
|∂ γ u−uγ,R|

q 6 Cℓ(R)q

 

W (R)
|∇∂ γ u|q 6 Cℓ(Q)q

 

W (R)
|∇k+1u|q
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and so

∑
R∈G

(
 

W(R)
|∂ γ u|q

)p/q

ℓ(R)pr 6 ∑
R∈G

(
ℓ(Q)

(
 

W(R)
|∇k+1u|q

)1/q

+ |uγ,R|

)p

ℓ(R)pr.

If p > 1, then we may apply the triangle inequality in a sequence space to see that

(
∑

R∈G

(
 

W(R)
|∂ γu|q

)p/q

ℓ(R)pr

)1/p

6 ℓ(Q)

(
∑

R∈G

(
 

W (R)
|∇k+1u|q

)p/q

ℓ(R)pr

)1/p

+

(
∑

R∈G

|uγ,R|
pℓ(R)pr

)1/p

.

If 0 < p < 1, then the triangle inequality is not valid; however, we have that (a+b)p 6

ap + bp for any positive numbers a and b , and so

∑
R∈G

(
 

W(R)
|∂ γ u|q

)p/q

ℓ(R)pr

6 ℓ(Q)p ∑
R∈G

(
 

W (R)
|∇k+1u|q

)p/q

ℓ(R)pr + ∑
R∈G

|uγ,R|
pℓ(R)pr.

In the cases p = ∞ and q = ∞ , the above argument must be modified slightly, by using

suprema rather than sums and integrals.

Applying the equivalence of norms (3.18), we have that if p > 1 then

‖1T(Q)∂
γ u‖

L
p,θ ,q
av (V )

6 Cℓ(Q)‖1T(Q)∇
k+1u‖

L
p,θ ,q
av (V )

+C

(
∑

R∈G

|uγ,R|
pℓ(R)pr

)1/p

(3.19)

and if p 6 1 then

‖1T(Q)∂
γ u‖p

L
p,θ ,q
av (V )

6 Cℓ(Q)p‖1T(Q)∇
k+1u‖p

L
p,θ ,q
av (V )

+C ∑
R∈G

|uγ,R|
pℓ(R)pr.

We are working by induction and so may assume ℓ(Q)‖1T(Q)∇
k+1u‖

L
p,θ ,q
av (V )

6

Cℓ(Q)m−k‖1T(Q)∇
mu‖

L
p,θ ,q
av (V )

. Consider the second term. If R ∈ G j and 0 6 i 6 j , let

Pi(R) be the unique cube in Gi with R ⊆ Pi(R) . Then

uγ,R = uγ,R −uγ,Q =
j

∑
i=1

uγ,Pi(R)−uγ,Pi−1(R).

If p 6 1 then

|uγ,R|
p
6

j

∑
i=1

|uγ,Pi(R)−uγ,Pi−1(R)|
p
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while if 1 6 p < ∞ , then by Hölder’s inequality in sequence spaces,

|uγ,R|
p
6 jp−1

j

∑
i=1

|uγ,Pi(R)−uγ,Pi−1(R)|
p.

Therefore, if p < ∞ then

∑
R∈G

|uγ,R|
pℓ(R)pr 6 C

∞

∑
j=1

j

∑
i=1

∑
R∈G j

|uγ,Pi(R)−uγ,Pi−1(R)|
p jmax(p−1,0)ℓ(R)pr.

If R ∈ G j , then ℓ(R) = 2− jℓ(Q) , and so

∑
R∈G

|uγ,R|
pℓ(R)pr 6 Cℓ(Q)pr

∞

∑
j=1

j

∑
i=1

∑
R∈G j

|uγ,Pi(R)−uγ,Pi−1(R)|
p jmax(p−1,0)2− jpr.

Notice that if R ∈ G j , then Pi(R) ∈ Gi . We now wish to sum over S = Pi(R) ∈ Gi rather

than over R ∈ G j . Each such S satisfies S = Pi(R) for 2(d−1)( j−i) cubes R ∈ G j ; thus,

∑
R∈G

|uγ,R|
pℓ(R)pr 6 Cℓ(Q)pr

∞

∑
j=1

j

∑
i=1

∑
S∈Gi

|uγ,S −uγ,P(S)|
p2(d−1)( j−i) jmax(p−1,0)2− jpr

where P(S) is the dyadic parent of S . Recalling that r = (d −1)/p + 1−θ , we see

that

∑
R∈G

|uγ,R|
pℓ(R)pr

6 Cℓ(Q)pr
∞

∑
j=1

j

∑
i=1

∑
S∈Gi

|uγ,S −uγ,P(S)|
p2−i(d−1) jmax(p−1,0)2− j(p−pθ).

Interchanging the order of summation, we see that

∑
R∈G

|uγ,R|
pℓ(R)pr 6 Cℓ(Q)pr

∞

∑
i=1

2−i(d−1) ∑
S∈Gi

|uγ,S −uγ,P(S)|
p

∞

∑
j=i

jmax(0,p−1)2− j(p−pθ).

Let ε = (p− pθ )/2, so 0 < ε < p/2. There is some constant C = C(p,θ ) such that

jmax(0,p−1) < C2 jε for all integers j , and so

∑
R∈G

|uγ,R|
pℓ(R)pr 6 Cℓ(Q)pr

∞

∑
i=1

∑
S∈Gi

|uγ,S −uγ,P(S)|
p2−i(d−1+ε)

= C
∞

∑
i=1

2iε ∑
S∈Gi

|uγ,S −uγ,P(S)|
pℓ(S)pr.

Again by the Poincaré inequality,

|uγ,S −uγ,P(S)| 6 Cℓ(S)

 

W(S)∪W (P(S))
|∇k+1u|
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and so

∑
R∈G

|uγ,R|
pℓ(R)pr 6 C

∞

∑
i=1

2iε ∑
S∈Gi

ℓ(S)p+pr

(
 

W (S)
|∇k+1u|

)p

.

But 2iεℓ(S)p < 2ipℓ(S)p = ℓ(Q)p , and so

‖1T(Q)∇
k(u−uQ)‖

L
p,θ ,q
av (V )

6 Cℓ(Q)‖1T(Q)∇
k+1(u−uQ)‖

L
p,θ ,q
av (V )

.

By induction, the proof of the bound (3.16) is complete in the case p < ∞ .

If p = ∞ , then by the bound (3.19),

‖1T(Q)∂
γ u‖

L
∞,θ ,q
av (V )

6 Cℓ(Q)‖1T(Q)∇
k+1u‖

L
∞,θ ,q
av (V )

+C sup
R∈G

|uγ,R|ℓ(R)1−θ .

Again by the Poincaré inequality,

sup
R∈G

|uγ,R|ℓ(R)1−θ 6 sup
j>0

sup
R∈G j

ℓ(R)1−θ
j

∑
i=1

|uγ,Pi(R)−uγ,Pi−1(R)|

6 C sup
j>0

sup
R∈G j

ℓ(R)1−θ
j

∑
i=1

ℓ(Pi(R))

 

W (Pi(R))∪W(Pi−1(R))
|∇k+1u|.

But if q > 1 then

 

W(S)∪W (P(S))
|∇k+1u| 6 Cℓ(S)θ−1‖1T(Q)∇

k+1u‖
L

∞,θ ,q
av (V )

and so by induction the proof is complete.

Now suppose that ṪrVk u = 0 for all 0 6 k 6 m−1. Observe that

∣∣∣∣
 

W (Q)
∇ku

∣∣∣∣ 6

∣∣∣∣
 

W (Q)
∇ku−

ffl

T (Q) ∇ku

∣∣∣∣+
∣∣∣∣
 

T (Q)
∇ku

∣∣∣∣.

If Tr∇ku = 0 on ∂V ∩ ∂T (Q) , then we may use some form of the standard Poincaré

inequality to control each of the terms on the right-hand side; thus,

∣∣∣∣
 

W (Q)
∇ku

∣∣∣∣ 6 Cℓ(Q)

 

T (Q)
|∇k+1u|.

Applying the Poincaré inequality iteratively in T (Q) , if Tr∇ ju = 0 for all k 6 j 6

m−1, then ∣∣∣∣
 

W (Q)
∇ku

∣∣∣∣ 6 Cℓ(Q)m−k

 

T (Q)
|∇mu|.

Now, recall that uQ is the polynomial that satisfies
ffl

W (Q) ∇kuQ =
ffl

W (Q) ∇ku for

all 0 6 k 6 m − 1. We may write uQ as a polynomial in (x − xQ) for some fixed
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xQ ∈W (Q) . A straightforward induction argument allows us to control the coefficients

of uQ by the averages of ∇ku , and thereby to show that

sup
T (Q)

|∇kuQ| 6 C
m−1−k

∑
j=0

ℓ(Q) j

 

W (Q)
|∇ j+ku|.

Thus,

sup
T (Q)

|∇kuQ| 6 Cℓ(Q)m−k

 

T (Q)
|∇mu|

and by Lemma 3.11,

sup
T (Q)

|∇kuQ| 6 Cℓ(Q)m−k−1+θ−(d−1)/p‖1T(Q)∇
mu‖

L
p,θ ,q
av (V )

.

Because p− pθ > 0, we may easily show that

‖1T(R)∇
kuQ‖L

p,θ ,q
av (V )

6 Cℓ(Q)(d−1)/p+1−θ‖∇kuQ‖L∞(T(R))

and so

‖1T(Q)∇
kuQ‖L

p,θ ,q
av (V )

6 Cℓ(Q)m−k‖1T(Q)∇
mu‖

L
p,θ ,q
av (V )

.

Combining this estimate with the bound (3.16), we see that u = (u− uQ)+ uQ must

satisfy the bound (3.17), as desired. �

We now use this result to establish density of smooth, compactly supported func-

tions in weighted, averaged Sobolev spaces in Lipschitz domains.

THEOREM 3.20. Suppose that 0 < θ < 1 , that 1 6 q < ∞ , and that Ω is a Lips-

chitz domain.

If 0 < p < ∞ , then
{

Φ
∣∣
Ω

: Φ ∈C∞
0 (Rd)

}
is dense in Ẇ

p,θ ,q
m,av (Ω) .

If p = ∞ and u ∈ Ẇ
∞,θ ,q
m,av (Ω) , then there is some sequence of smooth, compactly

supported functions ϕn , such that 〈Ġ,∇mϕn〉Ω → 〈Ġ,∇mu〉Ω for all Ġ ∈ L
1,1−θ ,q′
av (Ω) .

Furthermore, suppose that u ∈ Ẇ
p,θ ,q

m,av (Ω) with ṪrΩ
k u = 0 for any 0 6 k 6 m−1 ,

and that p > (d−1)/(d−1+ θ ) . If Ω is bounded or a Lipschitz graph domain, then

there is a sequence of functions ϕn , smooth and compactly supported in Ω , such that

ϕn → u as Ẇ
p,θ ,q

m,av (Ω)-functions (if p < ∞) or weakly (if p = ∞). If Rd \Ω is bounded,

then there is a sequence of compactly supported functions ϕn such that ϕn → u and

such that each ϕn satisfies ∇mϕn = 0 in a neighborhood of Rd \Ω .

Proof. Let u ∈ Ẇ
p,θ ,q

m,av (Ω) for some 0 < p 6 ∞ , 1 6 q < ∞ and 0 < θ < 1. We

will produce smooth, compactly supported functions that approximate u . The proof

will require several steps.

Step 1. First, we show that u may be approximated by functions defined in Ω that

are nonzero only inside some bounded set.

If Ω is bounded then u itself is such a function, and so there is nothing to prove.
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Suppose that ∂Ω is compact and Ω is unbounded. Let ϕR = 1 in B(0,R) and

ϕR = 0 outside B(0,2R) , with |∇kϕR| 6 CR−k for all 0 6 k 6 m . We consider only R

large enough that Rd \Ω ⊂ B(0,R/2) . Let A be the annulus B(0,2R)\B(0,R), and let

uR be the polynomial of degree m−1 so that
´

A
∇k(u−uR) = 0 for all 0 6 k 6 m−1.

Then (u− uR)ϕR is zero outside B(0,2R) . By the Poincaré inequality in A and the

norm (1.4) or (2.3)–(2.5), (u−uR)ϕR lies in Ẇ
p,θ ,q

m,av (Ω) . Furthermore, (u−uR)ϕR → u

in Ẇ
p,θ ,q

m,av (Ω) as R → ∞ if p < ∞ ; if p = ∞ then 〈Ġ,∇m((u−uR)ϕR)〉Ω → 〈Ġ,∇mu〉Ω

whenever Ġ ∈ L
1,1−θ ,q′
av (Ω) . However, the lower order derivatives of (u−uR)ϕR need

not approach the derivatives of u ; in particular, if ṪrΩ
k u = 0, then ṪrΩ

k ((u−uR)ϕR) =
ṪrΩ

k uR , not zero.

∂Ω

T (R1) T (R2)

W̃ (R1) W̃ (R2)

W (Q)

R1 R2

Q

Figure 3.2: The region A(Q) as a union of the regions W (Q) , T (R) and W̃ (R) .

Finally, we consider the case where Ω is a Lipschitz graph domain. Let Q ⊂Rd−1

be a cube. Recall the regions T (Q) and W (Q) defined by formulas (3.5) and (3.6) and

the polynomial uQ and the grid G defined in Lemma 3.15. Let ϕQ be supported in

T (Q) and identically equal to 1 in T ((1/2)Q) , where (1/2)Q is the cube (in Rd−1 )

concentric to Q with half the side length. Let A(Q) = T (Q)\T ((1/2)Q) . Notice that

A(Q) = W (Q)∪
⋃

R

T (R)∪W̃(R)

where the union is over the 4d−1 −2d−1 dyadic subcubes R ⊂ Q\ (1/2)Q with ℓ(R) =
ℓ(Q)/4, and where W̃ (R) is a region congruent to T (R) and translated upwards. See

Figure 3.2.

We now bound the lower order derivatives of u− uQ in A(Q) ; this will allow us

to control ∇m(ϕQ(u− uQ))−∇mu . We consider the regions W (Q) , T (R) and W̃ (R)
separately. We begin with W (Q) . Let 0 6 k < m . By formula (3.18), and because
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W (Q) ⊂ T (Q) ,

‖1W(Q)∇
k(u−uQ)‖p

L
p,θ ,q
av (Ω)

≈ ∑
R∈G

(
 

W (R)
1W(Q)|∇

k(u−uQ)|q
)p/q

ℓ(R)d−1+p−pθ .

But if R ∈ G and R 6= Q , then W (Q) and W (R) are disjoint, and so the only nonzero

term on the right-hand side is the term R = Q . Thus,

‖1W(Q)∇
k(u−uQ)‖

L
p,θ ,q
av (Ω)

≈ ‖∇k(u−uQ)‖Lq(W (Q))ℓ(Q)−d/q+d−1+p−pθ .

By the Poincaré inequality in W (Q) ,

‖∇k(u−uQ)‖Lq(W (Q)) 6 Cℓ(Q)‖∇k+1(u−uQ)‖Lq(W (Q))

for any integer k such that ∇k+1u ∈ Lq(W (Q)) , and so by induction, if 0 6 k < m then

‖∇k(u−uQ)‖Lq(W(Q)) 6 Cℓ(Q)m−k‖∇mu‖Lq(W (Q)).

Thus,

‖1W(Q)∇
k(u−uQ)‖

L
p,θ ,q
av (Ω)

6 Cℓ(Q)m−k‖∇mu‖Lq(W (Q))ℓ(Q)−d/q+d−1+p−pθ

and a final application of formula (3.18) yields that

‖1W(Q)∇
k(u−uQ)‖

L
p,θ ,q
av (Ω)

6 Cℓ(Q)m−k‖1W(Q)∇
mu‖

L
p,θ ,q
av (Ω)

6 Cℓ(Q)m−k‖1A(Q)∇
mu‖

L
p,θ ,q
av (Ω)

.

We now turn to the regions W̃ (R) . Let R be one of the dyadic subcubes mentioned

above, and let U = W (Q)∪W̃ (R) . Let 0 6 k 6 m− 1 and let w = u− uQ . Then by

elementary arguments and the Poincaré inequality in U ,

∣∣∣∣
 

U

∇kw

∣∣∣∣ =

∣∣∣∣
 

W (Q)
∇kw−

 

U

∇kw

∣∣∣∣ =

∣∣∣∣
 

W (Q)

(
∇kw−

ffl

U
∇kw

)∣∣∣∣

6

 

W (Q)
|∇kw−

ffl

U
∇kw| 6

|U |

|W (Q)|

 

U

|∇kw−
ffl

U
∇kw|

6 C

 

U

|∇kw−
ffl

U
∇kw| 6 Cℓ(Q)

 

U

|∇k+1w|.

Now, ‖∇kw‖
Lq(W̃(R)) 6 ‖∇kw‖Lq(U) , and by the Poincaré inequality and Hölder’s in-

equality,

‖∇kw‖Lq(U) 6 ‖∇kw−
ffl

U
∇kw‖Lq(U) + |U |1/q|

ffl

U
∇kw|

6 Cℓ(Q)‖∇k+1w‖Lq(U) + |U |1/qCℓ(Q)

 

U

|∇k+1w| 6 Cℓ(Q)‖∇k+1w‖Lq(U).



842 A. BARTON

By induction, and recalling the definitions of w and U , if 0 6 k 6 m−1 then

‖∇k(u−uQ)‖
Lq(W̃ (R)∪W(Q)) 6 Cℓ(Q)m−k‖∇m(u−uQ)‖

Lq(W̃ (R)∪W(Q)).

Let P(R) be the dyadic parent of R . Then P(R) ∈ G and W̃ (R) ⊂ W (P(R)) . By

formula (3.18), if r = −d/q + d−1+ p− pθ , then

‖1
W̃(R)∇

k(u−uQ)‖
L

p,θ ,q
av (Ω)

≈ ℓ(P(R))pr‖1
W̃(R)∇

k(u−uQ)‖Lq(W (P(R)))

= 2prℓ(R)pr‖∇k(u−uQ)‖
Lq(W̃(R)).

Applying the previous inequality and the fact that ℓ(Q) = 2ℓ(P(R)) = 4ℓ(R) , we have

that

‖1
W̃(R)∇

k(u−uQ)‖
L

p,θ ,q
av (Ω)

6 Cℓ(Q)m−k+r‖∇m(u−uQ)‖
Lq(W̃ (R)∪W(Q))

6 Cℓ(P(R))m−k+r‖1A(Q)∇
m(u−uQ)‖Lq(W (P(R)))

+Cℓ(Q)m−k+r‖1A(Q)∇
m(u−uQ)‖Lq(W(Q))

and a final application of formula (3.18) yields that

‖1
W̃(R)∇

k(u−uQ)‖
L

p,θ ,q
av (Ω)

6 Cℓ(Q)m−k‖1A(Q)∇
mu‖

L
p,θ ,q
av (Ω)

.

Finally, by Lemma 3.15,

‖1T(R)∇
k(u−uR)‖

L
p,θ ,q
av (Ω)

6 Cℓ(Q)m−k‖1T(R)∇
mu‖

L
p,θ ,q
av (Ω)

.

We thus must bound uQ −uR . Let Ũ = W (Q)∪W̃ (R)∪W (R) . Arguing as before, we

have that

‖∇kw‖
Lq(Ũ) = ‖∇k(u−uQ)‖

Lq(Ũ) 6 Cℓ(Q)m−k‖∇mu‖
Lq(Ũ)

and similarly

‖∇k(u−uR)‖
Lq(Ũ) 6 Cℓ(Q)m−k‖∇mu‖

Lq(Ũ).

By definition of Ũ , and letting P(R) be the dyadic parent of R as before, we have that

‖∇mu‖
Lq(Ũ) 6 ‖∇mu‖Lq(W (Q)) +‖1A(Q)∇

mu‖Lq(W (P(R))) +‖∇mu‖Lq(W (R)).

As usual, by formula (3.18) and because ℓ(Q) = 2ℓ(P(R)) = 4ℓ(R) , we have that

‖∇mu‖Lq(W (Q)) +‖1A(Q)∇
mu‖Lq(W (P(R))) +‖∇mu‖Lq(W (R))

6 Cℓ(Q)d/q−(d−1)−p+pθ‖1A(Q)∇
mu‖

L
p,θ ,q
av (Ω)

.

Thus, if 0 6 k 6 m−1, then

‖∇k(uR −uQ)‖
Lq(Ũ) 6 Cℓ(Q)m−k+d/q−(d−1)/p−1+θ‖1A(Q)∇

mu‖
L

p,θ ,q
av (Ω)

.
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But observe that uQ and uR are polynomials of degree at most m−1. Thus, as in the

proof of formula (3.17), we may bound the coefficients of uQ − uR , and so we have a

pointwise inequality

‖∇k(uR −uQ)‖L∞(T (Q)) 6 Cℓ(Q)m−kℓ(Q)−(d−1)/p−1+θ‖1A(Q)∇
mu‖

L
p,θ ,q
av (Ω)

.

Again as in the proof of formula (3.17), this yields the bound

‖1T(R)∇
k(uR −uQ)‖

L
p,θ ,q
av (Ω)

6 Cℓ(Q)m−k‖1A(Q)∇
mu‖

L
p,θ ,q
av (Ω)

.

Combining these estimates, we see that if 0 6 k < m , then

‖1A(Q)(∇
ku−∇kuQ)‖

L
p,θ ,q
av (Ω)

6 Cℓ(Q)m−k‖1A(Q)∇
mu‖

L
p,θ ,q
av (Ω)

.

It is now straightforward to establish that ϕQ(u−uQ)→ u in Ẇ
p,θ ,q

m,av (Ω) as Q expands

to all of Rd−1 .

Notice that if ṪrΩ
k u = 0 for all 0 6 k 6 m−1, then we have that ϕQu → u as Q

expands to all of Rd−1 , and so in this case we need not renormalize u .

Step 2. We now show that smooth functions are dense.

Let v ∈ Ẇ
p,θ ,q

m,av (Ω) be an approximant to u as produced in Step 1, i.e., let v be

zero outside of a bounded set. Let vε = v ∗ηε , where ηε = ε−dη(x/ε) and where η
is smooth, nonnegative, supported in B(0,1) , and satisfies

´

η = 1. Observe that vε is

smooth in Ωε , where

Ωε =
{

x ∈ Ω : dist(x,∂Ω) > 2ε
}
.

Because {ηε}ε>0 is a smooth approximate identity, we have that for any fixed δ ,

1Ωδ
∇mvε → 1Ωδ

∇mv as ε → 0+ in L
p,θ ,q
av (Ω) , either weakly or strongly. Further-

more, if ε ≪ δ , then 1Ωε\Ωδ
∇mvε is controlled by 1Ω\Ω2δ

∇mv , and this second quan-

tity approaches zero in L
p,θ ,q
av (Ω) as δ → 0+ , weakly or strongly; thus, we have that

1Ωε ∇mvε → ∇mv as ε → 0+ in L
p,θ ,q
av (Ω) .

Now, we must extend vε from Ωε to all of Ω . For ease of visualization, sup-

pose that Ω is a Lipschitz graph domain, and let G be a grid of cubes Q ⊂ R
d−1

of side length Cε . For each such Q , observe that in W (Q) , we have that |∇mvε | 6

C
ffl

W ′(Q)|∇
mv| , where W ′(Q) is a slightly enlarged version of W (Q) . We may extend

vε to a smooth function in such a way that |∇mvε | 6 C
ffl

W ′(Q)|∇
mv| in all of T (Q) .

Then

ˆ

T (Q)

(
 

B(x,Ω)
|∇mvε |

q

)p/q

dist(x,∂Ω)p−1−pθ dx 6 C

(
 

W̃ (Q)
|∇mv|

)p

εd+p−1−pθ

where B(x,Ω) = B(x,dist(x,∂Ω)/2) . We may sum to see that

‖1Ω\Ωε
∇mvε‖L

p,θ ,q
av (Ω)

6 ‖1Ψε ∇mv‖
L

p,θ ,q
av (Ω)

where Ψε is a small region near the boundary, which shrinks away as ε → 0+ . A

similar argument is valid in Lipschitz domains with compact boundary. Thus we may
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extend vε to a smooth function in such a way that vε → v in L
p,θ ,q
av (Ω) , either weakly

or strongly, as ε → 0.

Step 3. We now prove the second part of the theorem, that is, the special results in

the case where Tr∂ γ u = 0 on ∂Ω for all γ 6 m−1.

If Ω is bounded let v = u . If Ω is a Lipschitz graph domain let v = uϕQ for

some large cube Q . In both cases v is compactly supported. If Rd \Ω is bounded, let

v = (u− uR)ϕR + uR , where R ≫ 0 and where uR is the polynomial of degree m− 1

introduced in Step 1. Notice that in this case v is not compactly supported but that v

equals a polynomial outside of some large ball.

Let vε = v ∗ηε as before. Notice that ∇m(uR ∗ηε ) = (∇muR) ∗ηε = 0, and so

if Rd \Ω is bounded then vε is equal to a polynomial of degree m − 1 outside of

some ball. Let ϕε be smooth, supported in ΩKε and identically equal to 1 in Ω2Kε ,

with |∇kϕε | 6 Cε−k for all 1 6 k 6 m , where K is a large constant depending on the

Lipschitz character of Ω .

We wish to show that vε ϕε → v .

Recall that 1Ωε ∇mvε → ∇mv , and so we need only bound 1Ωε ∇mvε −∇m(vε ϕε ) .

Arguing as above, we may see that 1Ωε ∇mvε −∇mvε ϕε → 0 in L
p,θ ,q
m,av (Ω) or weakly as

ε → 0, and so we need only bound terms of the form ∇kvε ∇m−kϕε for m− k > 1.

If Ω is a Lipschitz graph domain then by formula (3.10)

‖∇kvε ∇m−kϕε‖
p

L
p,θ ,q
av (Ω)

≈ ∑
Q∈D

(
 

W (Q)
|∇kvε ∇m−kϕε |

q

)p/q

ℓ(Q)d−1+p−pθ

where D is a grid of dyadic cubes in Rd−1 . But ∇m−kϕε is supported only in ΩKε \
Ω2Kε , so

‖∇kvε ∇m−kϕε‖
p

L
p,θ ,q
av (Ω)

≈ ∑
Q∈D

(K/C)ε6ℓ(Q)6CKε

(
 

W(Q)
|∇kvε ∇m−kϕε |

q

)p/q

ℓ(Q)d−1+p−pθ .

Using our bounds on ϕε , we see that

‖∇kvε ∇m−kϕε‖
p

L
p,θ ,q
av (Ω)

6 C ∑
Q∈D

(K/C)ε6ℓ(Q)6CKε

(
 

W (Q)
|∇kvε |

q

)p/q

ℓ(Q)d−1+p−pθ−pm+pk.

If K is large enough, then as before we may control ∇kvε in W (Q) by ∇kv in W ′(Q) ,

and because ṪrΩ
k v = 0 for all 0 6 k 6 m− 1, we may control ∇kv in W ′(Q) using

Lemma 3.15; thus

‖∇kvε ∇m−kϕε‖
p

L
p,θ ,q
av (Ω)

6 C ∑
Q∈D

(K/C)ε6ℓ(Q)6CKε

‖1T(CQ)∇
mv‖p

L
p,θ ,q
av (Ω)

.

If p < ∞ then the right-hand side approaches zero as ε → 0, and if p = ∞ it is

bounded for all ε (after replacing sums with appropriate suprema). Thus, vε ϕε → v in
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Ẇ
p,θ ,q

m,av (Ω) , weakly or strongly, as desired. If ∂Ω is compact, notice that 1Ωε ∇mvε −
∇m(vε ϕε) = 0 except for a small region near the boundary; working in Lipschitz cylin-

ders and Lipschitz graph domains, as in Definition 2.2, we may show that vε ϕε → v ,

as desired. (If Rd \Ω is bounded then vε ϕε is not compactly supported; however,

vε ϕε = vε ϕε −uR ∗ηε as Ẇ
p,θ ,q

m,av -functions, and vε ϕε −uR ∗ηε is compactly supported

and equal to a polynomial in a neighborhood of ∂Ω , as desired.) �

4. Extensions: Dirichlet boundary data

In this section we will prove the following extension theorem; this will show that

ẆA
p
θ (∂Ω) ⊆ {ṪrΩ

m−1 u : u ∈ Ẇ
p,θ ,q

m,av (Ω)} . In Section 5 we will prove the opposite inclu-

sion, showing that these two spaces are equal.

THEOREM 4.1. Suppose that 0 < θ < 1 and that (d −1)/(d−1+ θ ) < p 6 ∞ .

Let Ω be a Lipschitz domain with connected boundary.

Suppose that ϕ̇ ∈ ẆA
p
θ (∂Ω) . Then there is some Φ ∈ Ẇ

p,θ ,∞
m,av (Ω) such that ϕ̇ =

ṪrΩ
m−1 Φ and such that

‖Φ‖
Ẇ

p,θ ,∞
m,av (Ω)

6 C‖ϕ̇‖ẆA
p
θ (∂Ω).

In the case p = 1 this is true whether we use atoms or the norm (2.9) to character-

ize Ḃ
1,1
θ (∂Ω); that is, if ϕ̇ lies in the set in formula (2.15) then there is an extension Φ

such that both of the bounds

‖Φ‖
Ẇ

1,θ ,∞
m,av (Ω)

6 C

ˆ

∂Ω

ˆ

∂Ω

|ϕ̇(x)− ϕ̇(y)|

|x− y|d−1+θ
dσ(x)dσ(y),

‖Φ‖
Ẇ

1,θ ,∞
m,av (Ω)

6 C inf
{
∑

j

|λ j| : ϕ̇ = ċ0 +∑
j

λ j ȧ j, ċ0 constant, ȧ j atoms
}

are valid.

As mentioned in Remark 2.13, the m = 1 cases of this theorem and of Theorem 5.1

imply that the atomic characterization and the norm (2.9) are equivalent in the case

p = 1.

The remainder of Section 4 will be devoted to a proof of this theorem. We will

follow closely the proof of [29, Proposition 7.3]. The main differences in our case are,

first, that [29, Proposition 7.3] does not discuss the case p 6 1, and second, that we

have chosen to work with homogeneous spaces.

Recall Definition 2.14 for ẆA
p
θ (∂Ω) . If p = ∞ , then every ϕ̇ ∈ ẆA∞

θ (∂Ω) satis-

fies ϕ̇ = ṪrΩ
m−1 Ψ for some Ψ with ∇m−1Ψ ∈ Ċθ (Ω) , while if p < ∞ then {ṪrΩ

m−1 Ψ :

∇mΨ ∈ L∞(Rd), Ψ compactly supported} is dense in ẆA
p
θ (∂Ω) . In either case, we

may consider only arrays ϕ̇ that satisfy ϕ̇ = ṪrΩ
m−1 Ψ for some Ψ such that ∇m−1Ψ is

Hölder continuous up to the boundary.

Let Ψγ(y) = ∂ γ Ψ(y) for any multiindex γ with |γ| 6 m−1. Define

Pγ(x,y) = ∑
ζ>γ, |ζ |6m−1

1

(ζ − γ)!
Ψζ (y)(x− y)ζ−γ
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and let P(x,y) = P0(x,y) . Notice that p(x) = Pγ(x,y) is a Taylor expansion of ∂ γΨ(x)
around the point x = y ; in particular, p(x) is a polynomial in x , and if |γ|= m−1 then

Pγ(x,y) = Ψγ(y) . Furthermore, ∂ δ
x Pγ(x,y) = Pγ+δ (x,y) .

Define

Ẽ ϕ̇(x) =

ˆ

∂Ω
K(x,y)P(x,y)dσ(y)

for all x ∈ Ω , where K(x,y) : Ω× ∂Ω 7→ R is a kernel that satisfies the requirements

ˆ

∂Ω
K(x,y)dσ(y) = 1 for all x ∈ Ω,

|∂ γ
x K(x,y)| 6

Cγ

dist(x,∂Ω)d−1+|γ|
for all x ∈ Ω, all y ∈ ∂Ω, and all γ > 0,

K(x,y) = 0 whenever |x− y| > 2dist(x,∂Ω).

An example of such a kernel K may be found in [29, formula (7.45)].

If Ω is a Lipschitz graph domain, let E ϕ̇ = Ẽ ϕ̇ . If ∂Ω is bounded, let η be a

smooth cutoff function such that η(x) = 1 when dist(x,∂Ω) < rΩ/2C1 and η(x) = 0

when dist(x,∂Ω) > rΩ/C1 , where rΩ is as in Definition 2.2 and where C1 is a large

constant to be chosen momentarily. Let P̃ϕ̇ be the polynomial of degree m− 1 that

satisfies
ˆ

rΩ/2C1<dist(x,∂Ω)<rΩ/C1

(
∂ γ

Ẽ ϕ̇(x)− ∂ γ P̃ϕ̇(x)
)

dx = 0

for all |γ| 6 m−1. Let E ϕ̇ = η(Ẽ ϕ̇ − P̃ϕ̇)+ P̃ϕ̇ .

We will show that the function Φ = E ϕ̇ satisfies the conditions of Theorem 4.1.

We must, first, bound ∇mE ϕ̇(x) , and, second, show that ṪrΩ
m−1 E ϕ̇ = ϕ̇ .

Let x ∈ Ω and let α be a multiindex. Then

∂ α
Ẽ ϕ̇(x) = ∑

δ6α

α!

δ !(α − δ )!

ˆ

∂Ω
∂ α−δ

x K(x,y)∂ δ
x P(x,y)dσ(y).

Observe that if |δ | > m− 1 then ∂ δ
x P(x,y) = 0, and so we may disregard terms of

higher order. Furthermore, recall that
´

K(x,y)dσ(y) = 1 is independent of x , and so
´

∂ α−δ
x K(x,y)dσ(y) = 0 whenever δ < α . Applying these facts, we see that for every

z ∈ ∂Ω ,

∂ α
Ẽ ϕ̇(x) = ∑

|δ |6m−1,δ<α

α!

δ !(α − δ )!

ˆ

∂Ω
∂ α−δ

x K(x,y)(∂ δ
x P(x,y)− ∂ δ

x P(x,z))dσ(y)

+

ˆ

∂Ω
K(x,y)∂ α

x P(x,y)dσ(y).

From [41, p. 177] we have the formula

∂ δ
x P(x,y)− ∂ δ

x P(x,z) = ∑
ζ>δ , |ζ |6m−1

1

(ζ − δ )!
(Ψζ (y)−Pζ (y,z))(x− y)ζ−δ .
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This formula may also be verified by observing, first, that it is valid if |δ |= m−1, and,

second, that it is valid if x = y for all δ and that differentiating both sides with respect

to x yields the same formula with |δ | increased.

Therefore,

∂ α
Ẽ ϕ̇(x) = ∑

δ
∑
ζ

α!

δ !(α − δ )!

ˆ

∂Ω
∂ α−δ

x K(x,y)
(x− y)ζ−δ

(ζ − δ )!
(Ψζ (y)−Pζ(y,z))dσ(y)

+

ˆ

∂Ω
K(x,y)∂ α

x P(x,y)dσ(y) (4.2)

where the sums are over all δ with δ < α and |δ | 6 m−1, and over all ζ with ζ > δ
and |ζ | 6 m−1.

We now show that E ϕ̇ ∈ Ẇ
p,θ ,∞

m,av (Ω) . If dist(x,∂Ω) > rΩ/C1 , then ∇mE ϕ̇ = 0,

and so we need only consider x ∈ Ω with dist(x,∂Ω) < rΩ/C1 .

Let ∆(x) = ∂Ω∩B(x,2dist(x,∂Ω)) . Recall that by assumption, if K(x,y) 6= 0

then y ∈ ∆(x) . Furthermore, if dist(x,∂Ω) < rΩ/C1 , then σ(∆(x)) ≈ dist(x,∂Ω)d−1 .

If |α|> m , then the second term in formula (4.2) vanishes. Therefore, if z ∈ ∆(x) ,

then we have the bound

|∇m
Ẽ ϕ̇(x)| 6 C

m−1

∑
j=0

∑
|ζ |6m−1

ˆ

∆(x)
|∇m− j

x K(x,y)||x− y||ζ |− j|Ψζ (y)−Pζ(y,z)|dσ(y)

6 C ∑
|ζ |6m−1

dist(x,∂Ω)1−d−m+|ζ |

ˆ

∆(x)
|Ψζ (y)−Pζ(y,z)|dσ(y).

We may average over all z ∈ ∆(x) to see that

|∇m
Ẽ ϕ̇(x)| 6 C ∑

|ζ |6m−1

ˆ

∆(x)

ˆ

∆(x)

|ϕζ (y)−Pζ (y,z)|

dist(x,∂Ω)2(d−1)+m−|ζ |
dσ(y)dσ(z).

If 1 6 q < ∞ , then by Hölder’s inequality

|∇m
Ẽ ϕ̇(x)|q 6 ∑

|ζ |6m−1

C(q)

dist(x,∂Ω)d−1+mq−q|ζ |

×

ˆ

∆(x)

ˆ

∆(x)

|ϕζ (y)−Pζ (y,z)|q

dist(x,∂Ω)d−1
dσ(y)dσ(z). (4.3)

We now must bound the quantity |ϕζ (y)−Pζ(y,z)| .
If |ζ | = m−1 then Pζ (y,z) = Ψζ (z) . If |ζ | < m−1, recall that p(y) = Pζ (y,z) is

the Taylor polynomial for Ψζ expanded around the base point y = z . We may thus use

standard error estimates for Taylor polynomials to bound Ψζ (y)−Pζ (y,z) .

Recall that dist(x,∂Ω) 6 rΩ/C1 . If C1 is large enough, then ∆(x)⊂ ∂V j for some

Lipschitz graph domain, as in Definition 2.2. Let V j = {(x′,t) : t > ψ(x′)} for some

Lipschitz function ψ , and let z = (z′,ψ(z′)) .
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Now, let ∆̃(z′,r) be the ball in Rd−1 centered at z′ of radius r . Let η be a

Lipschitz function defined on ∆̃(z′,r) with η(z′) = 0, so that we may bound η(y′) =
η(y′)−η(z′) by an appropriate integral of ∇η . It is an elementary exercise in multi-

variable calculus to establish that

ˆ

∆̃(z′,r)

|η(y′)|

|y′− z′|d−1
dy′ 6 r

ˆ

∆̃(z′,r)

|∇η(y′)|

|y′− z′|d−1
dy′.

Let q > 1 and let θ be a Lipschitz function defined on ∆̃(z′,r) with θ (z′) = 0. Ap-

plying the previous inequality to the function η(y′) = |θ (y′)|q and using Hölder’s in-

equality, we see that

ˆ

∆̃(z′,r)

|θ (y′)|q

|y′− z′|d−1
dy′ 6 qq rq

ˆ

∆̃(z′,r)

|∇θ (y′)|q

|y′− z′|d−1
dy′.

Let ∆(z,r) = {(s′,ψ(s′)) : s′ ∈ ∆̃(z′,r)} . Let r be small enough that ∂Ω∩∂V j ⊃∆(z,r) .

We now choose θ (y′) = Ψζ (y′,ψ(y′))−Pζ ((y′,ψ(y′)),z) . If |ζ | 6 m−2, then θ is a

Lipschitz function, albeit is not smooth. We then have that

ˆ

∆(z,r)

|Ψζ (y)−Pζ (y,z)|q

|y− z|d−1
dσ(y) 6 C(q)rq ∑

|ξ |=|ζ |+1

ˆ

∆(z,r)

|Ψξ (y)−Pξ (y,z)|q

|y− z|d−1
dσ(y)

Recall that dist(x,∂Ω) 6 rΩ/C1 . If C1 is large enough, we may choose r ≈ dist(x,∂Ω)
such that ∆(z,r) ⊃ ∆(x) for all z ∈ ∆(x) .

By induction, we have that

|∇m
Ẽ ϕ̇(x)|q 6 ∑

|ζ |=m−1

C(q)

dist(x,∂Ω)d−1+q

ˆ

∆(x)

ˆ

∆(z,r)

|Ψζ (y)−Pζ(y,z)|q

|y− z|d−1
dσ(y)dσ(z).

But if |ζ | = m−1 then Pζ (y,z) = Ψζ (z) , and so

|∇m
Ẽ ϕ̇(x)|q 6

C(q)

dist(x,∂Ω)d−1+q

ˆ

∆(x)

ˆ

∆(z,r)

|ϕ̇(y)− ϕ̇(z)|q

|y− z|d−1
dσ(y)dσ(z) (4.4)

for all x ∈ Ω with dist(x,∂Ω) < rΩ/C1 .

We now wish to bound ∇mE ϕ̇(x) for all x ∈ Ω . If Ω is a Lipschitz graph domain

or if dist(x,∂Ω) 6 rΩ/2C1 , then ∇mE ϕ̇(x) = ∇mẼ ϕ̇(x) , while if dist(x,∂Ω) > rΩ/C1

then ∇mE ϕ̇(x) = 0. We are left with the case x ∈ Ω̃ , where

Ω̃ = {x : rΩ/2C1 < dist(x,∂Ω) < rΩ/C1}.

In this case, the bound (4.4) implies that

|∇m
Ẽ ϕ̇(x)|q 6

C(q)

r
d−1+q
Ω

ˆ

∂Ω

ˆ

∂Ω

|ϕ̇(y)− ϕ̇(z)|q

|y− z|d−1
dσ(y)dσ(z). (4.5)
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The right-hand side is independent of x . Recalling the definition of E , we have that

|∇m
E ϕ̇(x)| 6 C

m

∑
j=0

|∇m− jη(x)||∇ j(Ẽ ϕ̇(x)− P̃ϕ̇(x))|

where η is a smooth cutoff function and where P̃ϕ̇ is a polynomial.

Let Ω̃ = {x : rΩ/2C1 < dist(x,∂Ω) < rΩ/C1} . If C1 is large enough, then Ω̃ is

connected. If |γ| 6 m−1, then by definition of P̃ϕ̇ ,

|∂ γ (Ẽ ϕ̇(x)− P̃ϕ̇(x))| =

∣∣∣∣∂
γ (Ẽ ϕ̇(x)− P̃ϕ̇(x))−

 

Ω̃
∂ γ (Ẽ ϕ̇ − P̃ϕ̇)

∣∣∣∣

6 CrΩ‖∇∂ γ(Ẽ ϕ̇ − P̃ϕ̇)‖
L∞(Ω̃)

.

An induction argument yields the bound

|∇ j(Ẽ ϕ̇(x)− P̃ϕ̇(x))| 6 Cr
m− j
Ω ‖∇m

Ẽ ϕ̇‖
L∞(Ω̃)

for any 0 6 j 6 m−1. Applying the bound (4.5) and imposing the bound |∇m− jη | 6

Cr
j−m
Ω , we have that

|∇m
E ϕ̇(x)|q 6

C(q)

r
d−1+q
Ω

ˆ

∂Ω

ˆ

∂Ω

|ϕ̇(y)− ϕ̇(z)|q

|y− z|d−1
dσ(y)dσ(z)

for all x ∈ Ω̃ .

Thus, we have that

|∇m
E ϕ̇(x)|q 6

C(q)

dist(x,∂Ω)d−1+q

ˆ

∆′(x)

ˆ

∆′(x)

|ϕ̇(y)− ϕ̇(z)|q

|y− z|d−1
dσ(y)dσ(z) (4.6)

for all x ∈Ω . Here ∆′(x) = {y∈ ∂Ω : |x− y|<C2 dist(x,∂Ω)} for some C2 sufficiently

large; in particular, we require C2 to be large enough that, if dist(x,∂Ω) > rΩ/2C1 , then

∂Ω = ∆′(x) .

By letting ∆′′(x) = {y ∈ ∂Ω : |x− y| < C3 dist(x,∂Ω)} for some C3 > C2 large

enough, we may establish the bound

sup
B(x,dist(x,∂Ω)/2)

|∇m
E ϕ̇ |q 6

C(q)

dist(x,∂Ω)d−1+q

ˆ

∆′′(x)

ˆ

∆′′(x)

|ϕ̇(y)− ϕ̇(z)|q

|y− z|d−1
dσ(y)dσ(z).

If p = ∞ , take q = 1. Then ϕ̇ lies in the space Ċθ (∂Ω) = Ḃ
∞,∞
θ (∂Ω) of Hölder

continuous functions. Thus

|∇m
E ϕ̇(x)| 6

C‖ϕ̇‖Ḃ
∞,∞
θ (∂Ω)

dist(x,∂Ω)(d−1)+1

ˆ

∆′′(x)

ˆ

∆′′(x)

|y− z|θ

|y− z|d−1
dσ(y)dσ(z)

6
C‖ϕ̇‖Ḃ

∞,∞
θ (∂Ω)

dist(x,∂Ω)1−θ
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for all x ∈ Ω , and so by the norm (2.5), ‖∇mE ϕ̇‖
L

∞,θ ,∞
av (Ω)

6 C‖ϕ̇‖Ḃ
∞,∞
θ (∂Ω) .

If 1 6 p < ∞ , then we let q = p and see that

ˆ

Ω

(
esssup

B(x,dist(x,∂Ω)/2)

|∇m
E ϕ̇ |p

)
dist(x,∂Ω)p−1−pθ dx

6 C(p)

ˆ

Ω

ˆ

∆′′(x)

ˆ

∆′′(x)

|ϕ̇(y)− ϕ̇(z)|p

|y− z|d−1
dσ(y)dσ(z) dist(x,∂Ω)−pθ−d dx.

Interchanging the order of integration we see that

ˆ

Ω

(
esssup

B(x,dist(x,∂Ω)/2)

|∇m
E ϕ̇ |p

)
dist(x,∂Ω)p−1−pθ dx

6 C(p)

ˆ

∂Ω

ˆ

∂Ω

|ϕ̇(y)− ϕ̇(z)|p

|y− z|d−1

ˆ

A(y,z)
dist(x,∂Ω)−pθ−d dxdσ(y)dσ(z)

where A(y,z) = {x ∈ Ω : y ∈ ∆′′(x), z ∈ ∆′′(x)} . Notice that if x ∈ A(y,z) then

dist(x,∂Ω) ≈ |x− y| ≈ |x− z|;

thus, it may be readily seen that the inner integral is at most C|y− z|−pθ , and so

ˆ

Ω

(
esssup

B(x,dist(x,∂Ω)/2)

|∇m
E ϕ̇ |p

)
dist(x,∂Ω)p−1−pθ dx

6 C(p)

ˆ

∂Ω

ˆ

∂Ω

|ϕ̇(y)− ϕ̇(z)|p

|y− z|d−1+pθ
dσ(y)dσ(z)

as desired.

Finally, suppose that (d −1)/(d−1 + θ ) < p 6 1. Again take q = 1. Recall

that ϕ̇ = ∑ j λ jȧ j , where each ȧ j is an atom supported in B(x j,r j)∩ ∂Ω , and where

‖ϕ̇‖p

Ḃ
p,p
θ (∂Ω)

≈ ∑ j|λ j|
p . Then

ˆ

Ω

(
esssup

B(x,dist(x,∂Ω)/2)

|∇m
E ϕ̇ |p

)
dist(x,∂Ω)p−1−pθ dx

6 C

ˆ

Ω

(
ˆ

∆′′(x)

ˆ

∆′′(x)

|ϕ̇(y)− ϕ̇(z)|

|y− z|d−1
dσ(y)dσ(z)

)p

dist(x,∂Ω)p−1−pθ−pd dx.

But if p 6 1, then

(
ˆ

∆′′(x)

ˆ

∆′′(x)

|ϕ̇(y)− ϕ̇(z)|

|y− z|d−1
dσ(y)dσ(z)

)p

=

(
ˆ

∆′′(x)

ˆ

∆′′(x)

|∑ j λ j(ȧ j(y)− ȧ j(z))|

|y− z|d−1
dσ(y)dσ(z)

)p

6 ∑
j

|λ j|
p

(
ˆ

∆′′(x)

ˆ

∆′′(x)

|ȧ j(y)− ȧ j(z)|

|y− z|d−1
dσ(y)dσ(z)

)p

.
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Now, if ȧ j is not identically zero in ∆′′(x) , then r j +C3 dist(x,∂Ω) > |x− x j| , so either

|x− x j|< 2r j or |x− x j| ≈ dist(x,∂Ω) . If |x− x j|< 2r j and dist(x,∂Ω) < rΩ/C1 , then

by Definition 2.8,

(
ˆ

∆′′(x)

ˆ

∆′′(x)

|ȧ j(y)− ȧ j(z)|

|y− z|d−1
dσ(y)dσ(z)

)p

6 r
pθ−p−(d−1)
j

(
ˆ

∆′′(x)

ˆ

∆′′(x)

1

|y− z|d−2
dσ(y)dσ(z)

)p

6 Cr
pθ−p−(d−1)
j dist(x,∂Ω)pd .

In the other case, if 2r j < |x− x j| ≈ dist(x,∂Ω) , then because a j is supported in

B(x j,2r j)∩∂Ω we have that

(
ˆ

∆′′(x)

ˆ

∆′′(x)

|ȧ j(y)− ȧ j(z)|

|y− z|d−1
dσ(y)dσ(z)

)p

6

(
ˆ

B(x j ,2r j)∩∂Ω

ˆ

B(x j ,2r j)∩∂Ω

|ȧ j(y)− ȧ j(z)|

|y− z|d−1
dσ(y)dσ(z)

)p

+ 2

(
ˆ

B(x j ,2r j)∩∂Ω

ˆ

∆′′(x)\B(x j ,2r j)

|ȧ j(z)|

|y− z|d−1
dσ(y)dσ(z)

)p

.

We bound the first integral as before. To bound the second integral, we observe that

∆′′(x)\B(x j,2r j) ⊂
K⋃

k=0

B(x j,2
k+1r j)\B(x j,2

kr j)

where K = C ln(dist(x,∂Ω)/r j) . Furthermore,
ˆ

B(x j ,2r j)∩∂Ω

ˆ

∂Ω∩B(x j ,2k+1r j)\B(x j ,2kr j)

1

|y− z|d−1
dσ(y)dσ(z) 6 Crd−1

j

and so by Definiton 2.8,

(
ˆ

∆′′(x)

ˆ

∆′′(x)

|ȧ j(y)− ȧ j(z)|

|y− z|d−1
dσ(y)dσ(z)

)p

6 Cr
(d−1)(p−1)+θ p

j

(
ln(dist(x,∂Ω)/r j)

)p
.

Thus,

ˆ

Ω

(
esssup

B(x,dist(x,∂Ω)/2)

|∇m
E ϕ̇ |p

)
dist(x,∂Ω)p−1−pθ dx

6 C∑
j

|λ j|
p

ˆ

|x−x j |<2r j

r
pθ−p−(d−1)
j dist(x,∂Ω)p−1−pθ dx

+C∑
j

|λ j|
p

ˆ

2r j<|x−x j |

(
ln(|x− x j|/r j)

)p

r
(d−1)(1−p)−θ p

j

|x− x j|
p−1−pθ−pd dx.
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The first integral converges because p > 0 and θ < 1, while the second integral con-

verges because p > (d −1)/(d−1+ θ ) . Thus

ˆ

Ω

(
esssup

B(x,dist(x,∂Ω)/2)

|∇m
E ϕ̇ |p

)
dist(x,∂Ω)p−1−pθ dx 6 C∑

j

|λ j|
p

as desired.

We now need to show that Ṫrm−1 E ϕ̇ = ϕ̇ . Recall from formula (4.2) that if |γ| =
m−1, then for all z ∈ ∂Ω and all x ∈ Ω sufficiently close to ∂Ω , we have that

∂ γ
E ϕ̇(x) = ∂ γ

Ẽ ϕ̇(x)

= ∑
δ

∑
ζ

γ!

δ !(γ − δ )!

ˆ

∂Ω
∂ γ−δ

x K(x,y)
(x− y)ζ−δ

(ζ − δ )!
(Ψζ (y)−Pζ (y,z))dσ(y)

+

ˆ

∂Ω
K(x,y)Ψγ (y)dσ(y)

where the sums are over all δ with δ < γ and |δ | 6 m−1, and over all ζ with δ 6 ζ
and |ζ | 6 m−1. Observe that because Pγ(y,z) = Ψγ (z) , we have that

ˆ

∂Ω
K(x,y)Ψγ (y)dσ(y) =

ˆ

∂Ω
K(x,y)(Ψγ (y)−Pγ(y,z))dσ(y)

+

ˆ

∂Ω
K(x,y)Ψγ (z)dσ(y)

and so we may write

∂ γ
E ϕ̇(x) = ∑

δ
∑
ζ

γ!

δ !(γ − δ )!

ˆ

∂Ω
∂ γ−δ

x K(x,y)
(x− y)ζ−δ

(ζ − δ )!
(Ψζ (y)−Pζ (y,z))dσ(y)

+

ˆ

∂Ω
K(x,y)Ψγ (z)dσ(y)

where the sums are now over all δ with δ 6 γ . Recall that by assumption on K the

second integral is equal to Ψγ(z) ; we need only show that as x → z in some sense the

first term vanishes.

Fix some z ∈ ∂Ω . Recall that

Pζ (y,z) = ∑
|ξ |6m−1−|ζ |

(y− z)ξ

ξ !
∂ ξ Ψζ (z).

Let f (r) = Ψζ (z+ r(y− z)) . Then

Ψζ (y)−Pζ(y,z) = f (1)−
m−1−|ζ |

∑
j=0

1

j!
f ( j)(0).
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By induction, we may establish that

f (1)−
n

∑
j=0

1

j!
f ( j)(0) =

ˆ 1

0

ˆ r1

0

. . .

ˆ rn−1

0

(
f (n)(rn)− f (n)(0)

)
drn . . .dr2 dr1.

Notice that this is not quite the standard form of the Taylor remainder of single-variable

calculus. Then for any σ > 0,

| f (n)(r)− f (n)(0)| 6 C(σ)rσ‖ f (n)‖Ċσ ((0,1)) 6 C(σ)rσ |y− z|n+σ‖∇nΨζ‖Ċσ (Rd).

Let n = m−1−|ζ | . If p = ∞ then by assumption ‖∇m−1Ψ‖Ċθ (Rd) < ∞ , while if p < ∞
then by assumption ∇mΨ is bounded. In either case, we have that

|Ψζ (y)−Pζ(y,z)| 6 C|y− z|m−1−|ζ |+σ‖∇m−1Ψ‖Ċσ (Rd)

for σ = θ or σ = 1, and the right-hand side is finite.

Recall that if j > 0, then |∇
j
xK(x,y)| 6 C j dist(x,∂Ω)1−d− j . Furthermore, recall

that K(x,y) = 0 unless |x− y| < 2dist(x,∂Ω) . Finally, observe that dist(x,∂Ω) 6

|x− z| . Thus,

ˆ

∂Ω

∣∣∂ γ−δ
x K(x,y)(x− y)ζ−δ (Ψζ (y)−Pζ(y,z))

∣∣dσ(y) 6 C‖∇m−1Ψ‖Ċσ (Rd)|x− z|σ

and so ∂ γE ϕ̇(x) → Ψγ (z) as |x− z| → 0. This completes the proof.

5. Traces: Dirichlet boundary data

In this section we complete the proof of Theorem 1.5 by proving the following

theorem.

THEOREM 5.1. Suppose that 0 < θ < 1 , that (d−1)/(d−1+ θ ) < p 6 ∞ , and

that 1 6 q 6 ∞ . Let Ω be a Lipschitz domain with connected boundary.

Then the trace operator Ṫrm−1 is bounded Ẇ
p,θ ,q

m,av (Ω) 7→ ẆA
p
θ (∂Ω) .

If p = 1 , this is true whether we use atoms or the norm (2.9) to characterize

Ḃ
p,p
θ (∂Ω); that is,

ˆ

∂Ω

ˆ

∂Ω

|ṪrΩ
m−1 Φ(x)− ṪrΩ

m−1 Φ(y)|

|x− y|d−1+θ
dσ(x)dσ(y) 6 C‖Φ‖

Ẇ
1,θ ,q
m,av (Ω)

,

inf
{
∑

j

|λ j| : ṪrΩ
m−1 Φ = ċ0 +∑

j

λ j ȧ j, ċ0 constant, ȧ j atoms

}
6 C‖Φ‖

Ẇ
1,θ ,q
m,av (Ω)

for all Φ ∈ Ẇ
1,θ ,q
m,av (Ω) .

As mentioned in Remark 2.13, the m = 1 cases of this theorem and of Theorem 5.1

imply that the atomic characterization and the norm (2.9) are equivalent in the case

p = 1.

The remainder of Section 5 will be devoted to a proof of this theorem.
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5.1. The case p = ∞ of Holder continuous functions

In this section we will prove Theorem 5.1 in the case p = ∞ .

We must show that if ϕ ∈ Ẇ
∞,θ ,q
m,av (Ω) , then ṪrΩ

m−1 ϕ ∈ ẆA∞
θ (∂Ω) with ẆA∞

θ -norm

controlled by the Ẇ
∞,θ ,q
m,av (Ω)-norm of ϕ . Recall from the definition 2.14 that

ẆA∞
θ (∂Ω) = {ṪrΩ

m−1 Φ : ∇m−1Φ ∈ Ċθ (Ω)}

and

‖ṪrΩ
m−1 ϕ‖ẆA∞

θ (∂Ω) = ‖ṪrΩ
m−1 ϕ‖Ċθ (∂Ω).

Thus, to prove Theorem 5.1 in the case p = ∞ , we must show both that ṪrΩ
m−1 ϕ

is Hölder continuous, and that there is a function Φ = T ϕ in Ċm−1,θ (Ω) such that

ṪrΩ
m−1 ϕ = ṪrΩ

m−1 Φ .

Furthermore, recall that we are using the Sobolev space definition of the trace map.

That is, by Lemma 3.11, if ϕ ∈ Ẇ
∞,θ ,q
m,av (Ω) , then ϕ ∈ Ẇ 1

m(V ) for any V ⊂ Ω bounded,

and so we may define ṪrΩ
m−1 on Ẇ

∞,θ ,q
m,av (Ω) using its definition on Ẇ 1

m,loc(Ω) .

Let δ (x) be the adapted distance function introduced in the proof of [16, Theo-

rem 7]. Specifically, if V is a Lipschitz graph domain V = {(x′,t) : x′ ∈ Rd−1, t >
ψ(x)} , let ρ(x′,t) = ct + θt ∗ψ(x) , where θ is smooth, compactly supported, and

integrates to 1, and where θt(y) = t−(d−1)θ (y/t) . It is possible to choose c large

enough that ∂tρ(x′,t) > 1 for all x′ ∈ Rd−1 and all t > 0. We let δ (x′,t) satisfy

ρ(x′,δ (x′,t)) = (x′,t) . Then δ satisfies

δ (x) ≈ dist(x,∂Ω) and |∇kδ (x)| 6 C dist(x,∂Ω)1−k (5.2)

for all 0 6 k 6 m+1. Using a partition of unity argument, we may construct a function

δ (x) that satisfies the conditions (5.2) in the case where ∂Ω is compact.

Suppose that φ ∈ Ẇ 1
m,loc(Ω) . As in Section 4, let p(x) = P(x,y) be the Taylor

polynomial of φ about the point y of order m−1,

P(x,y) = ∑
|ζ |6m−1

1

ζ !
∂ ζ φ(y)(x− y)ζ .

Let η be smooth, radial and compactly supported, with
´

Rd η = 1. We will im-

pose further conditions on η momentarily. Let K(x,y) = δ (x)−dη
(
δ (x)−1(y− x)

)
, so

that
´

Ω K(x,y)dy = 1 for each x ∈ Ω . (We will use this kernel K on Ω×Ω ; this differs

from the kernel of Section 4 inasmuch as that kernel was used on Ω× ∂Ω .)

Define

T φ(x) =

ˆ

Ω
K(x,y)P(x,y)dy.

Then T φ is locally Cm+1 in Ω . We will show that, if V ⊂ Ω is a bounded set, then T

is a bounded operator Ẇ 1
m(U) 7→ Ẇ 1

m(V ) for some bounded set U with V ⊆U ⊆ Ω . We

will also show that if φ is smooth, then ∇m−1T φ is continuous up to the boundary and

satisfies ∇m−1φ = ∇m−1T φ on ∂Ω ; by the definition of the trace map, this implies
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that ṪrΩ
m−1 φ = ṪrΩ

m−1 T φ for any φ ∈ Ẇ 1
m,loc(Ω) . Finally, we will show that if ϕ ∈

Ẇ
∞,θ ,q
m,av (Ω) then ∇m−1T ϕ is Hölder continuous in Ω , as desired.

Suppose that γ is a multiindex with |γ| = m−1 or |γ| = m . Then

∂ γ
T φ(x) = ∑

ξ6γ

γ!

ξ !(γ − ξ )!

ˆ

Ω
∂ ξ

x K(x,y)∂ γ−ξ
x P(x,y)dy.

By definition of P(x,y) , we have that

∂ γ
T φ(x) = ∑

ξ6γ
|ζ |6m−1,ζ>γ−ξ

Cγ,ξ ,ζ

ˆ

Ω
∂ ξ

x K(x,y)∂ ζ φ(y)(x− y)ζ+ξ−γ dy

for some constants Cγ,ξ ,ζ .

Let a > 0 be a number such that K(x,y) (regarded as a function of y) is supported

in B(x,adist(x,∂Ω)) ; by choosing η appropriately we may make a as small as we

like. Let P̃x(y) be the polynomial of degree m−1 such that

ˆ

B(x,adist(x,∂Ω))

(
∂ ζ φ(y)− ∂ ζ

y P̃x(y)
)

dy = 0

for any multiindex ζ with 0 6 |ζ | 6 m−1.

Then

∂ γ
T φ(x) = ∑

|ζ |6m−1
γ−ζ6ξ6γ

Cγ,ζ ,ξ

ˆ

Ω
∂ ξ

x K(x,y)∂ ζ
y (φ(y)− P̃x(y))(x− y)ζ+ξ−γ dy

+ ∑
|ζ |6m−1

γ−ζ6ξ6γ

Cγ,ζ ,ξ

ˆ

Ω
∂ ξ

x K(x,y)∂ ζ
y P̃x(y)(x− y)ζ+ξ−γ dy

= I(x)+ II(x).

By definition of K ,

|I(x)| 6 ∑
|ζ |6m−1

γ−ζ6ξ6γ

Cγ,ζ dist(x,∂Ω)|ζ |−|γ|−d

ˆ

B(x,adist(x,∂Ω))
|∂ ζ

y (φ(y)− P̃x(y))|dy.

We may control the integral by the Poincaré inequality, and so

|I(x)| 6 C dist(x,∂Ω)m−|γ|

 

B(x,adist(x,∂Ω))
|∇mφ |.

In particular, notice that if |γ|= m−1 and φ is smooth then I(x)→ 0 as x → ∂Ω , and

so ∂ γT φ = II on ∂Ω .
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We now consider the second term II(x) . We impose the additional requirement

that
´

η(y)yζ dy = 0 for all ζ with 1 6 |ζ | 6 m ; this implies that
´

K(x,y) p(y)dy =
p(x) for any polynomial of degree at most m . Thus,

II(x) = ∑
|ζ |6m−1

γ−ζ6ξ6γ

Cγ,ζ ,ξ ∂ ξ
z

(
∂ ζ

z P̃x(z)(x− z)ζ+ξ−γ
)∣∣

z=x

= ∑
|ζ |6m−1

γ−ζ6ξ6γ

Cγ,ζ ,ξ ∑
α6ξ

ξ !

α!(ξ −α)!

(
∂ ζ+α

z P̃x(z)∂ ξ−α
z (x− z)ζ+ξ−γ

)∣∣
z=x

.

Notice that ∂
ξ−α
z (x− z)ζ+ξ−γ

∣∣
z=x

= 0 unless α = γ −ζ , in which case it is a constant

depending only on ζ , ξ and γ . Thus, there is some constant Cγ such that

II(x) = Cγ

(
∂ γ

z P̃x(z)
)∣∣

z=x
.

If |γ| = m then ∂
γ
z P̃x(z) = 0 and so II(x) = 0. If |γ| = m−1, then

∂ γ
z P̃x(z) =

 

B(x,adist(x,∂Ω))
∂ γ φ and so II(x) = Cγ

 

B(x,adist(x,∂Ω))
∂ γ φ .

We now claim that Cγ = 1 whenever |γ| = m− 1. This may be most easily seen by

observing that, if φ(x) is a polynomial of degree m− 1, then P(x,y) = φ(x) and so

T φ(x) = φ(x) , and also that P̃x(y) = φ(y) and so I(x) = 0. In particular, if φ(x) = xγ

then

γ! = ∂ γxγ = ∂ γ
T φ(x) = II(x) = Cγ

 

B(x,adist(x,∂Ω))
∂ γ yγ dy = Cγ γ!

and so Cγ = 1.

By our above bound on I(x) , if φ ∈ Ẇ 1
m,loc(Ω) , then

|∇m
T φ(x)| 6 C

 

B(x)
|∇mφ |,

∣∣∣∣∇
m−1

T φ(x)−

 

B(x)
∇m−1φ

∣∣∣∣ 6 C dist(x,∂Ω)

 

B(x)
|∇mφ |

where B(x) = B(x,adist(x,∂Ω)) . Thus, if φ is smooth, then ∇m−1T φ(x) is conti-

nouous up to the boundary and satisfies ∇m−1T φ = ∇m−1φ on ∂Ω . Furthermore,

using a Whitney decomposition, we see that that T is bounded on Ẇ 1
m,loc(Ω) , and so

by density ṪrΩ
m−1 T φ = ṪrΩ

m−1 φ for all φ ∈ Ẇ 1
m,loc(Ω) .

We now return to the case of functions ϕ ∈ Ẇ
∞,θ ,q
m,av (Ω) . By the definition (1.4) and

by Hölder’s inequality, if q > 1 then

 

B(x,dist(x,∂Ω)/2)
|∇mϕ | 6 ‖ϕ‖

Ẇ
∞,θ ,q
m,av (Ω)

dist(x,∂Ω)θ−1.
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Thus

|∇m
T ϕ(x)| 6 C‖ϕ‖

Ẇ
∞,θ ,q
m,av (Ω)

dist(x,∂Ω)θ−1.

Using this bound, we may easily show that, if Ω is a Lipschitz domain, then ∇m−1T ϕ
is Hölder continuous in Ω with exponent θ and Ċθ -norm C‖ϕ‖

Ẇ
∞,θ ,q
m,av (Ω)

. Thus,

ṪrΩ
m−1 ϕ = ṪrΩ

m−1 T ϕ lies in the space ẆA∞
θ (∂Ω) , as desired.

5.2. The case p < ∞ , m = 1 of finite p and low order

We now consider traces of functions in Ẇ
p,θ ,q

m,av (Ω) for p < ∞ . If Ω = Rd
+ is a

half-space, then the following trace theorem was established in [12].

THEOREM 5.3. ([12, Theorems 6.3 and 6.9]) Suppose 1 6 q 6 ∞ , 0 < θ < 1 and

(d−1)/(d−1+ θ ) < p < ∞ . Then the trace operator Tr extends to an operator that

is bounded

Tr : Ẇ
p,θ ,q

1,av (Rd
+) 7→ Ḃ

p,p
θ (Rd−1).

Observe that we may extend Theorem 5.3 to any Lipschitz graph domain Ω =
{(x′,t) : t > ψ(x′)} by means of the change of variables (x′,t) 7→ (x′,t −ψ(x′)) . To

complete the proof in the case m = 1, we need only extend Theorem 5.3 to Lipschitz

domains with compact boundary.

Let Ω be such a domain, and let u ∈ Ẇ
p,θ ,q

1,av (Ω) . Let {ϕ j} be a set of smooth

functions such that ∑n
j=1 ϕ j = 1 in a neighborhood of ∂Ω , where each ϕ j is supported

in the ball B(x j,(3/2)r j) , where x j and r j are as in Definition 2.2.

By Lemma 3.11, we have that ∇u ∈ L1(B(0,R)∩Ω) for any R > 0. Let uΩ =
ffl

∂Ω Trudσ . Let u j(x) = (u(x)− uΩ)ϕ j(x) . Then u(x) = uΩ + ∑ j u j(x) . Notice that

constants have Ḃ
p,p
θ (∂Ω)-norm zero, and so we may neglect the uΩ term.

We first show that u j ∈ Ẇ
p,θ ,q

1,av (Ω) . Let V = V j be the Lipschitz graph domain

of Definition 2.2, and let the tents T (Q) be as in formula (3.5). Notice that ϕ j is

supported in a tent T (Q j) for some cube Q j with ℓ(Q j) ≈ r j . By Lemma 3.15, we

have that ϕ j(u− uQ j
) ∈ Ẇ

p,θ ,q
1,av (V j) , where uQ j

=
ffl

W (Q) u . By Lemma 3.11, and by

boundedness of the trace map from L1(T (Q j))∩ Ẇ 1
1 (T (Q j))) to L1(∂T (Q j))) , we

have that |uQ j
−uΩ| 6 Cr

θ−(d−1)/p

Ω ‖∇u‖
L

p,θ ,q
av (Ω)

. This implies that ‖u j‖Ẇ
p,θ ,q

1,av (V j)
6

C‖u‖
Ẇ

p,θ ,q
1,av (Ω)

.

By Theorem 5.3, Tru j ∈ Ḃ
p,p
θ (∂V j) . The following lemma will show that Tru j ∈

Ḃ
p,p
θ (∂Ω) for each j ; this will complete the proof of Theorem 5.1 in the case m = 1,

p < ∞ .

LEMMA 5.4. Let Ω be a Lipschitz domain, V a Lipschitz graph domain, and

suppose that B(x0,2r)∩Ω = B(x0,2r)∩V , for some x0 ∈ ∂Ω and some r > 0 . Let

0 < θ < 1 and let (d−1)/(d−1+ θ ) < p 6 ∞ .

If f is supported in B(x0,(3/2)r)∩ ∂Ω and f ∈ Ḃ
p,p
θ (∂V ) , then f ∈ Ḃ

p,p
θ (∂Ω)

with ‖ f‖Ḃ
p,p
θ (∂Ω) 6 C‖ f‖Ḃ

p,p
θ (∂V ) . (If p = 1 we may use either atomic norms or the

norm (2.9).)
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Proof. Suppose first that 1 6 p 6 ∞ . We must bound the norm (2.9). We will

divide ∂Ω into the two regions ∂Ω∩B(x0,2r) and ∂Ω \B(x0,2r) ; because the norm

(2.9) involves two integrals over ∂Ω , this leaves us with four integrals to bound.

Because ∂Ω∩B(x0,2r) = ∂V ∩B(x0,2r) , we have that

ˆ

∂Ω∩B(x0,2r)

ˆ

∂Ω∩B(x0,2r)

| f (x)− f (y)|p

|x− y|d−1+pθ
dσ(x)dσ(y) 6 C‖ f‖p

Ḃ
p,p
θ (∂V )

.

Because f is supported in B(x0,(3/2)r) ⊂ B(x0,2r) , we have that

ˆ

∂Ω\B(x0,2r)

ˆ

∂Ω\B(x0,2r)

| f (x)− f (y)|p

|x− y|d−1+pθ
dσ(x)dσ(y) = 0.

By symmetry, and because f is supported in B(x0,(3/2)r) , we need only bound

ˆ

∂Ω\B(x0,2r)

ˆ

∂Ω∩B(x0,(3/2)r)

| f (x)|p

|x− y|d−1+pθ
dσ(x)dσ(y).

We have a bound in V , that is,

ˆ

∂V\B(x0,2r)

ˆ

∂Ω∩B(x0,(3/2)r)

| f (x)|p

|x− y|d−1+pθ
dσ(x)dσ(y) 6 C‖ f‖p

Ḃ
p,p
θ (∂V )

.

But if y /∈ B(x0,2r) and x ∈ B(x0,(3/2)r) , then |x− y| ≈ |x0 − y| . Thus

ˆ

∂V\B(x0,2r)

dσ(y)

|x0 − y|d−1+pθ

ˆ

∂Ω∩B(x0,2r)
| f (x)|p dσ(x) 6 C‖ f‖p

Ḃ
p,p
θ (∂V )

.

Estimating the first integral, we see that

ˆ

∂Ω∩B(x0,2r)
| f (x)|p dσ(x) 6 Crpθ‖ f‖p

Ḃ
p,p
θ (∂V )

.

Again using the relation |x− y| ≈ |x0 − y| , we see that

ˆ

∂Ω\B(x0,2r)

ˆ

∂Ω∩B(x0,(3/2)r)

| f (x)|p

|x− y|d−1+pθ
dσ(x)dσ(y) 6 C‖ f‖p

Ḃ
p,p
θ (∂V )

.

Thus, f ∈ Ḃ
p,p
θ (∂Ω) , as desired.

If (d−1)/(d−1+θ ) < p 6 1, recall that we characterize Ḃ
p,p
θ (∂Ω) using atoms.

Thus, we may write f = ∑k λk ak , where ak is a Ḃ
p,p
θ (∂V )-atom and where ∑k|λk|

p ≈
‖ f‖Ḃ

p,p
θ (∂V ) . We now must write f as a sum of Ḃ

p,p
θ (∂Ω)-atoms.

For any function h , let hx0,2r =
ffl

B(x0,2r)∩∂V
hdσ . Let ϕ be a smooth cutoff func-

tion, supported in B(x0,2r) and identically equal to 1 in B(x0,(3/2)r) . Then

f = f ϕ = ( f − f x0,2r)ϕ + f x0,2rϕ = f x0,2rϕ +∑
k

λk(ak −a
x0,2r
k )ϕ .
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We claim that f x0,2rϕ = λ a for some atom a and some λ with |λ | 6 C‖ f‖Ḃ
p,p
θ (∂Ω) ,

and that (ak − a
x0,2r

k )ϕ is a bounded multiple of an atom or sum of two atoms. This

suffices to show that f ∈ Ḃ
p,p
θ (∂Ω) .

We begin with (ak − a
x0,2r
k )ϕ . If rk > r , let ãk = (ak − a

x0,2r
k )ϕ . By the bound

on ∇τ ak , we have that |ak −a
x0,2r
k | 6 Cr

θ−1−(d−1)/p

k r in suppϕ . Thus, |∇τ ãk| 6

Cr
θ−1−(d−1)/p

k . If θ < 1 then the exponent is negative, and so |∇τ ãk|6Crθ−1−(d−1)/p .

Furthermore, ãk is supported in B(x0,2r) , and so is a constant multiple of a Ḃ
p,p
θ (∂Ω)-

atom.

If rk 6 r , then |∇(akϕ)| 6 Cr
θ−1−(d−1)/p

k and akϕ is supported in suppak ∩

suppϕ ⊂ B(xk,rk)∩∂Ω , and so akϕ is a multiple of an atom. Furthermore, |a
x0,2r

k | 6

Cr
d−1+θ−(d−1)/p

k r−(d−1) , and so |∇(a
x0,2r

k ϕ)| 6 Cr
d−1+θ−(d−1)/p

k r−d . If p > (d −1)/

(d−1+ θ ) , then the exponent of rk is positive and so |∇(ax0,2r
k ϕ)| 6 Crθ−1−(d−1)/p .

Because ϕ is supported in B(x0,2r) , this means that a
x0,2r

k ϕ is also a bounded multiple

of an atom.

We are left with the term f x0,2rϕ . We begin by bounding the average value of f .

Observe that
ˆ

B(x0,2r)∩∂V

|( f − f x0,2r)ϕ |dσ 6 ∑
k

|λk|

ˆ

B(x0,2r)∩∂V

|(ak −a
x0,2r

k )ϕ |dσ .

By the above arguments, (ak −a
x0,2r
k )ϕ is a multiple of an atom (or two) with charac-

teristic length scale at most r ; thus,
ˆ

B(x0,2r)∩∂V

|(ak −a
x0,2r

k )ϕ |dσ 6 Crd−1+θ−(d−1)/p.

If p 6 1, then
ˆ

B(x0,2r)∩∂V

|( f − f x0,2r)ϕ |dσ 6 Crd−1+θ−(d−1)/p
(
∑
k

|λk|
p
)1/p

and by the definition of the Ḃ
p,p
θ (∂V )-norm,

ˆ

B(x0,2r)∩∂V

|( f − f x0,2r)ϕ |dσ 6 Crd−1+θ−(d−1)/p‖ f‖Ḃ
p,p
θ (∂V ).

Because f = 0 in B(x0,2r)\B(x0,(3/2)r) , we have that

| f x0,2r|

ˆ

∂V∩B(x0,2r)\B(x0,(3/2)r)
|ϕ |dσ 6 Crd−1+θ−(d−1)/p‖ f‖Ḃ

p,p
θ (∂V )

and estimating the left-hand integral, we see that

| f x0,2r| 6 Crθ−(d−1)/p‖ f‖Ḃ
p,p
θ (∂V ).

Observe that rθ−(d−1)/pϕ is a multiple of a Ḃ
p,p
θ (∂Ω) -atom, and so f x0,2rϕ = λ a for

some Ḃ
p,p
θ (∂Ω)-atom a and some |λ | 6 C‖ f‖Ḃ

p,p
θ (∂V ) , as desired. �
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5.3. The case p < ∞ , m > 1 of finite p and high order

To extend to the case m > 1, observe that if u ∈ Ẇ
p,θ ,q

m,av (Ω) , then by definition

∂ γ u ∈ Ẇ
p,θ ,q

1,av (Ω) for any γ with |γ| = m−1; thus TrΩ ∂ γ u ∈ Ḃ
p,p
θ (∂Ω) .

If q < ∞ , then by Theorem 3.20, smooth functions are dense in Ẇ
p,θ ,q

m,av (Ω) , and if

ϕ is smooth then ṪrΩ
m−1 ϕ lies in ẆA

p
θ (∂Ω) , a closed subspace of (Ḃp,p

θ (∂Ω))r ; thus,

ṪrΩ
m−1 u ∈ ẆA

p
θ (∂Ω) for all u ∈ Ẇ

p,θ ,q
m,av (Ω) . If q = ∞ , then by Hölder’s inequality, if

u ∈ Ẇ
p,θ ,∞

m,av (Ω) then u ∈ Ẇ
p,θ ,1

m,av (Ω) and so ṪrΩ
m−1 u ∈ ẆA

p
θ (∂Ω) . This completes the

proof.

6. Extensions: Neumann boundary data

We have now established that ẆA
p
θ (∂Ω) = {Ṫru : u ∈ Ẇ

p,θ ,q
m,av (Ω)} , that is, that the

space of Whitney-Besov arrays is the space of Dirichlet traces of Ẇ
p,θ ,q

m,av (Ω)-functions.

We would like to similarly identify the space of Neumann traces N = {ṀΩ
m Ġ : Ġ ∈

L
p,θ ,q
av (Ω), divm Ġ = 0} .

In this section we show that, if Ω is any Lipschitz domain and if (d−1)/(d−1+
θ ) < p 6 ∞ , then ṄA

p
θ−1(∂Ω)⊆N . We will not be able to prove the reverse inequality

in general, but in Section 7 we will establish that ṄA
p
θ−1(∂Ω) = N in some special

cases.

THEOREM 6.1. Suppose that 0 < θ < 1 and that (d −1)/(d−1+ θ ) < p 6 ∞ .

Let Ω be a Lipschitz domain with connected boundary.

Suppose that ġ ∈ ṄA
p
θ−1(∂Ω) . Then there is some Ġ ∈ L

p,θ ,∞
av (Ω) such that

divm Ġ = 0 in Ω , ġ = ṀΩ
m Ġ , and such that

‖Ġ‖
L

p,θ ,∞
av (Ω)

6 C‖ġ‖Ḃ
p,p
θ (∂Ω).

The remainder of Section 6 will be devoted to a proof of this theorem.

6.1. The case p > 1

Let ġ ∈ ṄA
p
θ−1(∂Ω) . Observe that by Theorem 5.1 and by the duality characteri-

zation of ṄA
p
θ−1(∂Ω) , the operator Tġ , given by

Tġ(Φ) =
〈
ġ, Ṫrm−1 Φ

〉
∂Ω

,

is a well-defined, bounded linear operator on Ẇ
p′,1−θ ,1

m,av (Ω) . We may regard the space

Ẇ
p′,1−θ ,1

m,av (Ω) as a closed subspace of (L
p′,1−θ ,1
av (Ω))r , where r is the number of mul-

tiindices α with |α| = m . By the Hahn-Banach theorem we may extend Tġ to a lin-

ear operator (of the same norm) on all of (Lp′,1−θ ,1
av (Ω))r . Because the dual space to

L
p′,1−θ ,1
av (Ω) is L

p,θ ,∞
av (Ω) , there is some Ġ with

‖Ġ‖
L

p,θ ,∞
av (Ω)

≈ ‖ġ‖
(ẆA

p′

1−θ (∂Ω))∗
= ‖ġ‖ṄA

p
θ−1

(∂Ω)
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that satisfies 〈
Ġ,∇mF

〉
Ω

= Tġ(F) =
〈
ġ, Ṫrm−1 F

〉
∂Ω

for all F ∈ Ẇ
p′,1−θ ,1

m,av (Ω) . In particular, if Ṫrm−1 F = 0 then
〈
Ġ,∇mF

〉
Ω

= 0, and so

divm Ġ = 0. We then have that ġ = ṀΩ
m Ġ , as desired.

6.2. The case p < 1

We now turn to the case p 6 1; recall that in this case Ḃ
p,p
θ−1(∂Ω) receives an

atomic characterization. We will use the following two lemmas.

LEMMA 6.2. ([28, Theorem 3.2]) Let Ω be bounded C1 domain. If 0 < θ < 1

and (d−1)/(d−1+θ ) < p 6 1 , then the Neumann problem for the Laplacian is well

posed in Ω in the sense that, for every g ∈ B
p,p
θ−1(∂Ω) , there is a unique function u that

satisfies

∆u = 0 in Ω, MΩ
1 ∇u = g on ∂Ω, ‖u‖B

p,p
θ+1/p

(Ω) 6 C‖g‖B
p,p
θ−1

(∂Ω).

Notice that MΩ
1 u is a single function rather than an array; if ∇u is continuous up to

the boundary then we have an explicit formula MΩ
1 ∇u = ν ·∇u , where ν is the unit

outward normal vector.

The norm ‖u‖B
p,p
θ+1/p

(Ω) is different from the norms we prefer to use in this paper.

However, using the atomic decomposition of B
p,p
θ+1/p

(Ω) (see [19]), it is straightforward

to establish that if p 6 1 then

‖∇u‖
L

p,θ ,1
av (Ω)

6 C‖u‖B
p,p
θ+1/p

(Ω).

Because u is harmonic, we have that ‖∇u‖
L

p,θ ,∞
av (Ω)

6 C‖∇u‖
L

p,θ ,1
av (Ω)

, and so we may

replace the B
p,p
θ+1/p

(Ω)-norm in Lemma 6.2 by a Ẇ
p,θ ,∞

m,av (Ω)-norm. (If u is harmonic

then the B
p,p
θ+1/p

(Ω) -norm is equivalent to the Ẇ
p,θ ,∞

1,av (Ω)-norm for p > 1 as well; see

[23, Theorem 4.1].)

The second lemma we will require is well known in the theory of second order

divergence form elliptic equations and may be verified using elementary multivariable

calculus.

LEMMA 6.3. Let Ψ : Ω 7→V be any bilipschitz change of variables and let JΨ be

the Jacobean matrix, so ∇(u ◦Ψ) = JT
Ψ (∇u) ◦Ψ . Let A be a matrix-valued function.

Let Ã be such that

JΨ ÃJT
Ψ = |JΨ|(A◦Ψ)

where |JΨ| denotes the determinant of the matrix.

Let u ∈W 1
1 (V ) and let ϕ ∈W ∞

1 (V ) . Then

ˆ

Ω
∇ϕ̃ · Ã∇ũ =

ˆ

V

∇ϕ ·A∇u
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where ũ = u ◦Ψ and ϕ̃ = ϕ ◦Ψ . In particular, divA∇u = 0 in V if and only if

div Ã∇ũ = 0 in Ω , and the conormal derivative MΩ
1 Ã∇ũ is zero on some ∆ ⊂ ∂Ω

if and only if MV
1 A∇u is zero on Ψ(∆) ⊂ ∂V .

One may use Lemma 6.3 to relate the conormal derivatives of u and ũ even when

they are not zero.

Let a be a Ḃ
p,p
θ−1(∂Ω)-atom, supported in the surface ball B(x0,r)∩∂Ω . Our goal

is to construct the Neumann extension of a . If ∂Ω is compact, then we may assume that

r is small enough that B(x0,4r) ⊂ B(x j,2r j) for one of the points x j of Definition 2.2.

Let V = V j be the associated Lipschitz graph domain of Definition 2.2. (If ∂Ω is not

compact then Ω is itself a Lipschitz graph domain; let V = Ω .)

It suffices to show that, for all such atoms a , and for all γ with |γ| = m−1, there

exists some Ġ ∈ L
p,θ ,∞
av (Ω) , with norm at most C , such that divm Ġ = 0 in Ω and such

that if F ∈ Ẇ ∞
m,loc(Ω) , then

〈Ġ,∇mF〉Ω = 〈a,∂ γ F〉∂Ω.

Now, observe that there is some Lipschitz function ψ and some coordinate system

such that V = {(x′,t) : t > ψ(x′)} . Let U be the Lipschitz cylinder given by

U = {(x′,t) : |x′− x′0| < 2r, ψ(x′) < t < ψ(x′)+ r}.

Let ∆ = ∂V ∩∂U . Notice that a is supported in ∆ , and so we may extend a by zero to

a Ḃ
p,p
θ−1(∂U)-atom.

Let B̃ be the ball in Rd of radius r centered at the origin; then there is some

bilipschitz change of variables Ψ : B̃ 7→U with ‖∇Ψ‖L∞ +‖∇(Ψ−1)‖L∞ 6 C , where C

depends only on the Lipschitz character of Ω . We may choose Ψ such that ∆̃ = Ψ−1(∆)
is a hemisphere.

Let ã be the function defined on ∂ B̃ that satisfies
ˆ

∂ B̃

ϕ(Ψ(x)) ã(x)dσ(x) =

ˆ

∂U

ϕ(x)a(x)dx

for all smooth, compactly supported test functions ϕ ; notice a(Ψ(x)) = ã(x)ω(x) for

some real-valued function ω that is bounded above and below. In particular, |ã(x)| 6
C‖a‖L∞(∂Ω) 6 Crθ−1/p(d−1) and

´

∂ B̃
ã(x)dσ(x) = 0; thus ã is a (bounded multiple of

a) Ḃ
p,p
θ−1(∂ B̃)-atom.

By Lemma 6.2, we have that there is some harmonic function ũ with MB̃
1 ∇ũ = ã

on ∂ B̃ ; by the remarks following that lemma, we have that ∇ũ ∈ L
p,θ ,∞
av (B̃) , and so by

Lemma 3.11, ũ ∈ Ẇ 1
1 (B̃) . Because p 6 1 and dist(x, ∆̃) > dist(x,∂ B̃) for any x ∈ B̃ ,

we have that
ˆ

B̃

sup
B(x,dist(x,∂ B̃)/2)

|∇ũ|p dist(x, ∆̃)p(1−θ)−1 dx 6 C‖∇ũ‖
L

p,θ ,∞
av (B̃)

= C.

Now, we extend ũ to a function defined on all of R
d by letting ũ(x) = ũ(r2|x|−2x)

for all x /∈ B̃ . It is straightforward to establish that ũ is harmonic away from supp ã⊆ ∆̃ .
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Using Lemma 3.11 and standard pointwise bounds on harmonic functions, we may

show that
ˆ

B̃

sup
B(x,dist(x,∆̃)/2)

|∇ũ|p dist(x, ∆̃)p−1−pθ dx 6 C.

Let u(Ψ(x)) = ũ(x) . We will construct Ġ from 1U∇u . Thus we must estimate

∇u . Notice that
ˆ

U

sup
B(x,dist(x,∆)/C)

|∇u|p dist(x,∆)p−1−pθ dx 6 C.

But if x ∈U then dist(x,∆) ≈ dist(x,∂Ω) and so

ˆ

Ω
sup

B(x,dist(x,∂Ω)/C)

1U |∇u|p dist(x,∂Ω)p−1−pθ dx 6 C.

Thus 1U ∇u ∈ L
p,θ ,∞
av (Ω) .

We now consider the Neumann boundary values of u . By Lemma 6.3, there is a

bounded matrix A such that
ˆ

U

∇ϕ ·A∇u =

ˆ

B̃

∇ϕ̃ ·∇ũ

for all smooth, compactly supported functions ϕ . But by the definition of conormal

derivative,
ˆ

B̃

∇ϕ̃ ·∇ũ =

ˆ

∂ B̃

ϕ̃ ã dσ

and by definition of ã ,
ˆ

∂ B̃

ϕ̃ ã dσ =

ˆ

∂U

ϕ adσ .

Recall that we chose a multiindex γ with |γ|= m−1. If |α|= m and α > γ , then there

is some coordinate vector ~ei with 1 6 i 6 d and with α = γ +~ei ; let Gα = 1U(A∇u)i .

If |α| = m and α 6> γ , let Gα = 0.

Then for any smooth, compactly supported function F ,

〈Ġ,∇mF〉Ω =

ˆ

Ω
1U A∇u ·∇∂ γF =

ˆ

U

A∇u ·∇∂ γF =

ˆ

∂U

a∂ γF dσ

as desired.

7. Traces: Neumann boundary data

In the previous section, we established that

ṄA
p

θ−1(∂Ω) ⊆ {ṀΩ
m Ġ : Ġ ∈ Lp,θ ,q

av (Ω), divm Ġ = 0}.

We conclude our study of Dirichlet and Neumann boundary values by establishing that,

in certain special cases, the reverse inclusion is valid. Specifically, we will establish the
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reverse inclusion in the case p > 1 (Theorem 7.1), in the case Ω = Rd
+ (Theorem 7.2),

and in the case where m = 1 and Ω is a Lipschitz graph domain (Corollary 7.3).

We conjecture that the reverse inclusion is true even in the case m > 2, (d −1)/
(d−1 + θ ) < p 6 1 and for Ω 6= R

d
+ an arbitrary Lipschitz domain with connected

boundary.

THEOREM 7.1. Suppose that 0 < θ < 1 , that 1 < p 6 ∞ , and that 1 6 q 6 ∞ .

Let Ω be a Lipschitz domain with connected boundary.

If Ġ ∈ L
p,θ ,q
av (Ω) and divm Ġ = 0 in Ω , then ṀΩ

m Ġ ∈ ṄA
p

θ−1(∂Ω) .

Proof. By Hölder’s inequality, L
p,θ ,q
av (Ω)⊆L

p,θ ,1
av (Ω) for any q > 1. Choose some

Ġ ∈ L
p,θ ,1
av (Ω) .

Recall from Remark 2.18 that ṄA
p
θ−1(∂Ω) is the dual space to ẆA

p′

1−θ (∂Ω) .

Let ϕ̇ ∈ ẆA
p′

1−θ (∂Ω) ; then by Theorem 4.1 there is some Φ ∈ Ẇ
p′,1−θ ,∞

m,av (Ω) with

ṪrΩ
m−1 Φ = ϕ̇ .

We then have that

〈ϕ̇ ,ṀΩ
m Ġ〉∂Ω = 〈∇mΦ,Ġ〉Ω 6 C‖∇mΦ‖

L
p′,1−θ ,∞
av (Ω)

‖Ġ‖
L

p,θ ,1
av (Ω)

6 C‖ϕ̇‖
ẆA

p′

1−θ (∂Ω)
‖Ġ‖

L
p,θ ,1
av (Ω)

.

Thus, ṀΩ
m Ġ ∈ ṄA

p
θ−1(∂Ω) with ‖ṀΩ

m Ġ‖ṄA
p
θ−1

(∂Ω) 6 C‖Ġ‖
L

p,θ ,1
av (Ω)

, as desired. �

THEOREM 7.2. Suppose that 0 < θ < 1 , that (d −1)/(d−1+ θ ) < p 6 1 , and

that 1 6 q 6 ∞ .

If Ġ ∈ L
p,θ ,q
av (Rd

+) and divm Ġ = 0 in Rd
+ , then ṀRd

+
m Ġ ∈ ṄA

p
θ−1(R

d−1) .

Before presenting the (somewhat involved) proof of Theorem 7.2, we will mention

an important corollary in the case m = 1.

COROLLARY 7.3. Let θ , p and q be as in Theorem 7.2. Let

Ω = {(x′,t) : x′ ∈ R
d−1, t > ψ(x)}

for some Lipschitz function ψ . Suppose that m = 1 .

If ~G ∈ L
p,θ ,q
av (Ω) and div ~G = 0 in Ω , then MΩ

1
~G ∈ Ḃ

p,p
θ−1(∂Ω) .

Proof. Consider the change of variables Ψ(x′,t) = (x′,t + ψ(x′)) ; observe that

Ψ(Rd
+) = Ω .

Let ϕ be smooth and compactly supported. Define

ϕ̃(x) = ϕ(Ψ(x)), ~H(x) = |JΨ(x)|JΨ(x)−1~G(Ψ(x)) = JΨ(x)−1~G(Ψ(x))
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where JΨ(x) is the Jacobian matrix, so that ∇ϕ̃(x) = JΨ(x)T ∇ϕ(Ψ(x)) . An elementary

argument in multivariable calculus (compare Lemma 6.3) establishes that

ˆ

Ω
∇ϕ · ~G =

ˆ

Rd
+

∇ϕ̃ · ~H. (7.4)

In particular, observe that div ~H = 0 in Rd
+ . Also, dist(x,∂Rd

+) ≈ dist(Ψ(x),∂Ω) , and

so ~G ∈ L
p,θ ,q
av (Ω) if and only if ~H ∈ L

p,θ ,q
av (Rd

+) . Thus, by Theorem 7.2, we have that

MRd
+

1
~H ∈ Ḃ

p,p
θ−1(R

d−1) .

Furthermore, by formula (7.4), we have that

ˆ

∂Ω
ϕ(x)MΩ

1
~G(x)dσ(x) =

ˆ

∂Rd
+

ϕ(Ψ(x))MRd
+

1
~H(x)dσ(x)

and so MRd
+

1
~H(x) = MΩ

1
~G(Ψ(x))s(x) , where s(x) is the infinitesimal change of area

(essentially, the Jacobian determinant of the change of variables Ψ : ∂Rd
+ 7→ ∂Ω).

Observe that the atomic definition 2.8 implies that MRd
+

1
~H ∈ Ḃ

p,p
θ−1(R

d−1) if and

only if MΩ
1

~G ∈ Ḃ
p,p
θ−1(∂Ω) , as desired. �

Proof of Theorem 7.2. Let ϕ be smooth and compactly supported; for notational

convenience we will also take ϕ real-valued. Let ϕ j(x) = ∂ j
t ϕ(x,t)

∣∣
t=0

. We then have

that

Ṫrm−1 ϕ = Ṫrm−1

m−1

∑
j=0

1

j!
t jϕ j(x)η(t)

where η is a smooth cutoff function identically equal to 1 near t = 0.

Observe that 〈∇mϕ ,Ġ〉
Rd

+
depends only on the functions ϕ j and on Ġ , and so

there exist functions M jĠ such that

〈∇mϕ ,Ġ〉
Rd

+
=

m−1

∑
j=0

〈ϕ j,M jĠ〉∂Rd
+

=
m−1

∑
j=0

〈∂ j
d ϕ ,M jĠ〉∂Rd

+
.

Notice that {M jĠ}m−1
j=0 is not equal to our Neumann trace ṀRd

+
m Ġ but is closely

related. In particular, observe that each M jĠ is a well-defined function but that ṀRd
+

m Ġ

is an equivalence class of functions. We will first bound M jĠ for each 0 6 j 6 m−1,

and then use M jĠ to construct a representative of ṀRd
+

m Ġ that lies in Ḃ
p,p
θ−1(R

d−1) .

Fix some j with 0 6 j 6 m− 1. We will use Daubechies wavelets to show that

M jĠ ∈ Ḃ
p,p
θ+ j−m(Rd−1) . The homogeneous Daubechies wavelets were constructed in

[17, Section 4]. We will need the following properties.

LEMMA 7.5. For any integer N > 0 there exist real functions ψ and ϕ defined

on R that satisfy the following properties.

• | dk

dxk ψ(x)| 6 C(N) , | dk

dxk ϕ(x)| 6 C(N) for all k < N ,

• ψ and ϕ are supported in the interval (−C(N),1 +C(N)) ,
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•
´

R
ϕ(x)dx 6= 0 ,

´

R
ψ(x)dx =

´

R
xk ψ(x)dx = 0 for all 0 6 k < N .

Furthermore, suppose we let ψi,m(x) = 2i/2ψ(2ix−m) and ϕi,m(x) = 2i/2ϕ(2ix−m) .

Then {ψi,m : i,m ∈ Z} is an orthonormal basis for L2(R) , and if i0 is an integer then

{ϕi0,m : m ∈ Z}∪{ψi,m : m ∈ Z, i > i0} is also an orthonormal basis for L2(R) .

The functions ϕ and ψ are often referred to as a scaling function and a wavelet,

or as a father wavelet and a mother wavelet.

We may produce an orthonormal basis of L2(Rd−1) from these wavelets by con-

sidering the 2d−1 −1 functions Ψℓ(x) = η1(x1)η2(x2) . . .ηd−1(xd−1) , where for each

i we have that either ηi(x) = ϕ(x) or ηi(x) = ψ(x) , and where ηk(x) = ψ(x) for at

least one k . Let Ψℓ
i,m = 2i(d−1)/2Ψℓ(2ix−m) ; then {Ψℓ

i,m : 1 6 ℓ 6 2d−1−1, i ∈ Z, m ∈

Zd−1} is an orthonormal basis for L2(Rd−1) . Notice that we may instead index the

wavelets Ψℓ
i,m by dyadic cubes Q , with Ψℓ

i,m = Ψℓ
Q if Q = {2−i(y+m) : y ∈ [0,1]d−1} .

We then have that Ψℓ
Q has the following properties:

• Ψℓ
Q is supported in CQ ,

• |∂ β Ψℓ
Q(x)| 6 C(N)ℓ(Q)−(d−1)/2−|β | whenever |β | < N ,

•
´

Rd−1 xβ Ψℓ
Q(x)dx = 0 whenever |β | < N .

Because {Ψℓ
Q} is an orthonormal basis of L2(Rd−1) , we have that if f ∈ L2(Rd−1)

then

f (x) = ∑
Q

2d−1−1

∑
ℓ=1

〈 f ,Ψℓ
Q〉Rd−1Ψℓ

Q(x). (7.6)

By [26, Theorem 4.2], if f ∈ Ḃ
p,p
σ (Rd−1) for some 0 < p 6 ∞ and some −∞ < σ < ∞ ,

the decomposition (7.6) is still valid. Furthermore, we have the inequality

‖ f‖p

Ḃ
p,p
σ (Rd−1)

6 C∑
Q

2d−1−1

∑
ℓ=1

|〈 f ,Ψℓ
Q〉Rd−1 |pℓ(Q)(d−1)(1−p/2)−pσ . (7.7)

The reverse inequality is also proven in [26, Theorem 4.2]; however, we will only use

the direction stated above. Thus, to bound M jĠ , we need only analyze 〈M jĠ,Ψℓ
Q〉Rd−1 .

Let ϕ(x,t) = Ψℓ
Q(x) 1

j!
t jη(t) . Then by definition of M jĠ ,

〈Ψℓ
Q,M jĠ〉

Rd−1 = 〈∇mϕ ,Ġ〉
Rd

+
.

We choose the smooth cutoff function η in the definition of ϕ so that η(t) = 1 if

t < ℓ(Q) and η(t) = 0 if t > 2ℓ(Q) , with the usual bounds on the derivatives of η . We

then have that

〈∇mϕ ,Ġ〉
Rd

+
= ∑

|α |=m

1

j!

ˆ

Rd
+

∂ α (t j η(t)Ψℓ
Q(x))Gα (x,t)dxdt.
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Because η and Ψℓ
Q are compactly supported, we have that

〈∇mϕ ,Ġ〉
Rd

+
= ∑

|α |=m

1

j!

ˆ 2ℓ(Q)

0

ˆ

CQ

∂ α(t j η(t)Ψℓ
Q(x))Gα (x,t)dxdt.

Applying our bounds on the derivatives of Ψℓ
Q and η , we see that

〈∇mϕ ,Ġ〉
Rd

+
6 Cℓ(Q) j−(d−1)/2−m

ˆ 2ℓ(Q)

0

ˆ

CQ

|Ġ(x,t)|dxdt.

Thus, by the bound (7.7),

‖M jĠ‖p

Ḃ
p,p
σ (Rd−1)

6 C∑
Q

2d−1−1

∑
ℓ=1

|〈Ψℓ
Q,M jĠ〉

Rd−1 |pℓ(Q)(d−1)(1−p/2)−pσ

6 C∑
Q

ℓ(Q)(d−1)(1−p)−pσ+p j−pm

(
ˆ 2ℓ(Q)

0

ˆ

CQ

|Ġ|

)p

.

Recalling Lemma 3.11, we set σ = θ + j−m , so that

‖M jĠ‖p

Ḃ
p,p
θ+ j−m

(Rd−1)
6 C∑

Q

ℓ(Q)(d−1)(1−p)−pθ

(
ˆ 2ℓ(Q)

0

ˆ

CQ

|Ġ|

)p

which by Lemma 3.11 is at most C‖Ġ‖p

L
p,θ ,1
av (Rd

+)
.

We have now bounded M jĠ . We wish to show that some representative of ṀRd
+

m Ġ

lies in Ḃ
p,p
θ−1(R

d−1) .

Recall from [43, Section 5.2.3] that the partial derivative operator ∂ ζ is a bounded

operator from Ḃ
p,p
σ (Rd−1) to Ḃ

p,p
σ−|γ|(R

d−1) , and that the Laplace operator −∆ is a

bounded operator Ḃ
p,p
σ (Rd−1) 7→ Ḃ

p,p
σ−2(R

d−1) with a bounded inverse. Let

g j = (−∆) j−m+1M jĠ;

then g j ∈ Ḃ
p,p
θ− j+m−2(R

d−1) . For each multiindex γ , let γ = (γ‖,γ⊥) , where γ‖ is a

multiindex in (N0)
d−1 and where γ⊥ = γd is an integer. For each γ with |γ| = m−1,

define

gγ =
(m−1− γ⊥)!

γ‖!
∂ γ‖gγ⊥ .

Then gγ ∈ Ḃ
p,p
θ−1(R

d−1) . Now,

〈ṪrR
d
+

m−1 ϕ , ġ〉∂Rd
+

= ∑
|γ|=m−1

ˆ

Rd−1

∂ γ‖ϕγ⊥(x)gγ(x)dx.

We integrate by parts to see that

〈ṪrR
d
+

m−1 ϕ , ġ〉∂Rd
+

= ∑
|γ|=m−1

(−1)m−1−γ⊥

ˆ

Rd−1

ϕγ⊥(x)∂ γ‖gγ(x)dx.
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We have that

∑
|γ‖|=k

k!

γ‖!
∂ 2γ‖ = ∆k.

Applying this formula and using the definition of gγ , we see that

〈ṪrR
d
+

m−1 ϕ , ġ〉∂Rd
+

=
m−1

∑
|γ⊥|=0

ˆ

Rd−1
ϕγ⊥(x)(−∆)m−1−γ⊥gγ⊥(x)dx

=
m−1

∑
|γ⊥|=0

ˆ

Rd−1

ϕγ⊥(x)Mγ⊥ Ġ(x)dx

=
m−1

∑
j=0

〈ϕ j,M jĠ〉
Rd−1 = 〈∇mϕ ,Ġ〉

Rd
+
.

Thus, ġ is a representative of ṀΩ
m Ġ , and ġ ∈ Ḃ

p,p
θ−1(R

d−1) , as desired. �
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[36] S. M. NIKOL’SKIĬ, P. I. LIZORKIN, AND N. V. MIROSHIN, Weighted function spaces and their

applications to the investigation of boundary value problems for degenerate elliptic equations, Izv.

Vyssh. Uchebn. Zaved. Mat. 8 (1988), 4–30.

[37] JAAK PEETRE, New thoughts on Besov spaces, Mathematics Department, Duke University, Durham,

N. C., 1976. Duke University Mathematics Series, no. 1.

[38] S. ROLEWICZ, On a certain class of linear metric spaces, Bull. Acad. Polon. Sci. Cl. III., 5 (1957),

471–473, XL.



870 A. BARTON

[39] THOMAS RUNST AND WINFRIED SICKEL, Sobolev spaces of fractional order, Nemytskij operators,

and nonlinear partial differential equations, de Gruyter Series in Nonlinear Analysis and Applications,

vol. 3, Walter de Gruyter & Co., Berlin, 1996.

[40] V. V. SHAN’KOV, The averaging operator with variable radius, and the inverse trace theorem, Sibirsk.

Mat. Zh. 26, 6 (1985), 141–152, 191.

[41] ELIAS STEIN, Singular integrals and differentiability properties of functions, Princeton Mathematical

Series, no. 30, Princeton University Press, Princeton, N. J., 1970.

[42] HANS TRIEBEL, Interpolation theory, function spaces, differential operators, North-Holland Mathe-

matical Library, vol. 18, North-Holland Publishing Co., Amsterdam, 1978.

[43] HANS TRIEBEL, Theory of function spaces, Monographs in Mathematics, vol. 78, Birkhäuser Verlag,
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