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TURAN TYPE INEQUALITIES FOR
q—-MITTAG-LEFFLER AND ¢g-WRIGHT FUNCTIONS

KHALED MEHREZ

(Communicated by J. Pecaric)

Abstract. Our aim in this paper is to derive several Turdn type inequalities for the ¢-Mittag Lef-
fler and ¢-Wright functions. Moreover, we prove the monotonicity of ratios for sections of series
of ¢-Mittag Leffler and ¢-Wright functions, the results is also closely connected with Turdn type
inequalities. In order to obtain some of the main results we apply the methods developed in the
case of classical Mittag—Leffler and Wright functions. At the end of the paper we pose two open
problems, which may be of interest for further research.

1. Introduction

The special functions of mathematical physics are found to be very useful for find-
ing solutions of initial and boundary—value problems governed by partial differential
equations and fractional differential equations. Several special functions, called re-
cently special functions of fractional calculus, play a very important and interesting
role as solutions of fractional order differential equations, such as the Mittag—Leffler
function and the Wright functions. Recently, this special functions plays an important
role in analysis where it is used in the theory of integral transforms and representa-
tions of complex-valued functions [3, 4], fractional calculus [12, 7, 15], and other areas
[14, 17]. Because of this their properties worth to be studied also from the point of view
of analytic inequalities. For a long list of applications concerning inequalities involv-
ing Mittag—Leffler and Wright functions of we refer to the papers [8], [9], [10] and to
the references therein. An important result which initiated a new field of research on
inequalities for special functions was proved by Paul Turdn, it is,

[Pa(x)]? = Pt (x) a1 (%) > 0,

where x € [0,1], n € N and P,(x) stands for the classical Legendre polynomial. For
more literature on Turdn inequality for various orthogonal polynomials and special
functions, we refer the reader to the details given in [1, 2, 11] and references therein.
The Turdn type inequalities now have an extensive literature and some of the results
have been applied successfully to different problems in information theory, economic
theory, biophysics, probability and statistics. Since Turan inequality was investigated
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for the orthogonal polynomials having hypergeometric representation, it is worth study-
ing the validity of such inequality for various special functions as well. In [8, 9, 10],
the Turdn type inequalities for the classical and generalized Mittag—Leffler functions
and the Wright function were discussed. In this paper, we would like to present the ¢-
version of some results obtained in [8, 9, 10] for the classical Mittag—Leffler functions
and the Wright function.

In our present investigation, we shall need the following notations and definitions.
First of all, for g € (0,1), a € C and n € Ny = NU{0} (N being the set of positive
integers), the ¢-shifted factorials are defined by

n—1 oo
(@:q)o=1, (a:q)a=[](1-aq"), (a:9)=]](1—aq").
k=0 k=0

The g-gamma function I'y(z) is defined by

© 1_ n+1

- q
Ty(z) = (1-¢q)' ZHW7 q€(0,1), zeC, (1
n=0 q
and
r ' g 0 1 C 2
= — 2 -
(@D =(q—1)"%g" ,Hol—q wre 4> 1 z€C. ()
From the previous definitions, for a positive z and g > 1, we get
. 1—2 (z=1)(z=2)
L) =(q—1)"¢ 2 Ti(2). 3)

The g-digamma function v, (x) is defined as the logarithmic derivative of the g-gamma
function

oo

V(o) = - (10gT(2)) = ~log(1 ~ ) +log() ¥
k=1

g
11—

“)

for g € (0,1) and from (3) we obtain for ¢ > 1 and x >0,

i " 1 5)

For further details about the g-calculus, one may refer to the books by Gasper and
Rahman [6].

The present sequel to some of the aforementioned investigations is organized as
follows. In section 2, we present some Turdn type inequalities for the g-Mittag—Leffler
functions. Moreover, we prove monotonicity of ratios for sections of series of g-Mittag-
Leffler functions, the result is also closely connected with Turdn—type inequalities. In
section 3, we prove several Turdn type inequalities for the ¢g-Wright functions. In addi-
tion, we derive the monotonicity of ratios for sections of series of g-Wright functions,
as consequence we obtain the Turdn type inequalities for the remainder of series of ¢-
Wright functions. Finally, in Section 4, we would like to comment the main results and
we present certain open problems, which may be of interest for further research.

l\)l'—‘

V(%) = — log(1 - ) + log(q) [
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2. Turan type inequalities for the ¢-Mittag—Leffler functions

In this section, we consider the g-Mittag—Leffler function [16]:

o k
Z
Eup(q:iz) =Y ————, «,B,z€C; R(ax) >0. (6)
%P ,;0 T, (ok+pB)
The g-Mittag—Leffler function contains many known functions as its special cases.

For example, we have

Eopla:2) = 2 E11(g:2) = e(q:2)
Ep(g:z) = ? ; Ei3(q:2) = % 0
E114(q;2) = (1+q)(6‘((1qr;)71§,1)7z

where ¢(g;z) one of the g-analogues of the classical exponential function ¢* given by

= |
e(q:2) = =——, |7 <1,
n;) (@) (2q)=

Another widely-studied g-analogue of the classical exponential function e* is given by

n =

Zq”z“) < :H(l—i—zqk),ze(C.

(@D 5

Our first main result is asserted by the following theorem.

THEOREM 1. Let o, >0 and q € (0,qp), such that fg(qg) =0 where fg is
defined on (0,1), by fg(x) = xPH1 4 x — 1. Then the following Turdn type inequality

2
(Ea,ﬁﬂ(q;Z)) —Eq5(9:2)Eq p12(952) =0, (®)

hold for all z > 0.

Proof. By applying the Cauchy product, we find that

ok Zk
Fuplebapled) = 2 Y Gt - B
and .
. 27 s <
(Eapii(a:2) _I;);)r CIEY RS T EY ESTHE

In views of (9) and (10) and the functional equation:

T(x+1)= llqur (x), (11)
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Eop(@:2)Eap2(a:2) —Eq g 1(4:2)

_ o o 1 _ 1 k
_l;);) Ly(oj+B)Ty(o(k—j)+B+2) Fq(ozj+13+1)Fq(oc(k—j)+13+1))Z

o k qa(kfj)Jrl _ qaj
—(1-q)’ ¥ Y —— ( ) &
k:ojzorq(al"‘ﬁ"‘l)rq(a(k_1)+ﬁ+2)
ok
1
=(1-9)P ¥ Y T (e, B:g)*
k=0 j=0
(12)
where ()41 _
m qa —j _qa
T (o,B:9) = 13
P = G B T (alk— )+ B D) -
Case 1. Let n be an even positive integer. Then
71 T S
Y 7 (@ Big) = ¥ T (. Big)+ Y T, an+Tk/2k(aﬁq)
j=0 j=0 j=5+1
54 S0 (14)
=Y (1 @)+ 1" (0. Bi0)
j=0
ak
g7 (q—1)
Ly(ok/24 B+ 1)Cy(ok/2+ B +2)’
where, as usual, [k] denotes the greatest integer part of k € R.
Case 2. Let n be an odd positive integer. Then, just as in Case 1, we get
ko (2] -
Y1) = Y (7)) (@Bi) + 1) (@ Bia)
/=0 /=0 (15)

g% (=1
Ly(ak/2+B+ 1), (ak/2+B+2)

+

Thus, by combining Case 1 and Case 2, we have

=

—l

o [
Eqp(@:0)Eapia(0:2) —Ep (@)=Y, Y (T} (0. B:q) + T, (o0, Bi )"
k=0 j=0
ak
T(g—1
N q2(q—1)

Ly(ak/2+ B+ 1)y (ak/2+B+2)
(16)
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Simplifying, we find that
1
T (o, Biq) + T, (0. Big)
qa(k JFL_

T T (@it B+ Og(ak— )+ B+2)  Tyak—j)+ B+ )ly(aj+B+2)
aj+1 _qa(kfj)

qaj qotj+l _ qa(kfj)

l—g qa(kfj)Jrl _qaj q

. + :

- Dy(aj+B+1)(alk—j)+B+1) | 1—qel=i+hsl =1 — gajth+]
_ (1-9)Ajx(a;B;q)
Lg(oj+ B +2)0g ok —j)+ B +2)

a7
where is Aj (o, B:q) is defined by
Ajr(o,Big) = (q“""")“—q‘”)(l—q“”ﬁ“)Jr(qaj“—q“"""))(l—qa("””ﬁ“)
— (gD _qohi)y g (T gy g B (200 2k)) ke
o(k—j)+ a(k )+(qaj+1 (Xj)_'_qﬁ*‘rl(qaj_i_qa(kf.))_zqak+ﬁ+2

<(

S

)( aj+q o(k—j )+qﬁ+l(qaj+qa(k7j))_2qak+ﬁ+2
1+qﬁ+l)( +qa(k j))_zqak+ﬁ+2

- (4=
~ (g
— Fp @) g% +q ") =2 P,
(18)

Then A; (o, B;q) <0, forall &, >0 and g € (0,gp), which yields that

T (0, Big) + T, (@, Big) <O,

forall &, >0 and g € (0,gg). By means of (16), we deduce the Turén type inequality
(8). The proof of Theorem 1 is completes. [

Taking in (8) the value = 1 and using the relations (7), we obtain the Turén type
inequalities for the g-Mittag—Leffler function.

COROLLARY 1. Let >0 and g € (0, @), Then the q-Mittag Leffler function
Ew.1(q;z) satisfies the following Turdn type inequality

2
(Ea,z(q;Z)) —Eq1(q:2)Ea3(q:2) >0, (19)
SJorall z>0.

THEOREM 2. Let a,f3 >0 and g € (0,1/2). Then the following Turdn type in-
equality

2
Eqp42(4:2)Eap(@:2) = (Eap1(@2)) +Eapii(@2)Eapia(@:) 20 Q0)

is true for all z € (0,00).
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Proof. The relations (9), (10) and the Cauchy product gives

2
B0 p(:7) = Eap2(@:)Eap(@:2) = (Eapr(452)) +Eapi(@2)Eapia(a:2)

SO
k=0 j=0
2D
where
Py )
7% (o, Big) = '
ik APV (o B+ DEg(a(k—j) + B +2)
Thus,
o k 1/2 )
= 5 L (110 1)
j (22)

. 1-gP % (1-g)
Ly(ak/2+ B+ 1)y (ak/2+B+2)

By computation, we have

@0 g @ g (qa(k—j>+1 N qaj) +1
T (a,Big)+ 1,7, (o, Big) = N T R o (I iy
g (1-q) (q“” l—qu(kfj)) 1 03
Ty(a(k—j)+B+1)g(aj+p+2)
— (1—g)By(o,B:q)
Ly(aj+B+2)Cy(o(k—j)+B+2)

where
B ‘) =dP(1— a(k=j)+1 _ oy — goi+B+1
v(a,B:q) = 4" (1-q)((q q*)(1—¢q )

+ (qozj+l _qa(kfj))(l _qa(kfj)+ﬁ+1)]

+ (1 _ qaj+B+1)(1 _ qa(k7j>+ﬁ+l)
=2-¢"(¢" + ")+ P (1= q)ld T (W

+q* ) — (1 - q)(¢% + g% 7)) — 2™ P
=2-¢P(g+ (1-9)")(q™ +4"* )

+qﬁ(1 —61) qﬁ+1(q2aj+q2a(k7j)) _zqak+ﬁ+2 )
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Since a, 8 >0 and g € (0,1/2), then by the above equation we get
B(a,B39) >2—(q" +q“* )+ 4P (1—q) [qﬁ“(qz‘” +q* ) - 261“"“”2}

= (1=4)+(1=q"47))+¢P (1-q) [+ (P 220 7)) 24 "4+P+2
>qP(1-¢q) [qBJrl(anj_’_an(kfj)) _zqak+ﬁ+2} '

For k—j > j (i.e., for [(k—1)/2] > j) and g € (0,1), we have ¢** > ¢g* and conse-
quently we have
Bi(a,B:q) > ¢"(1-4q) [qﬁ“ (g% +g** 7)) - 261“"“”2]
_ qzﬁ+ak+1(1 —g)(1— 2q+qa(k72j)) (24)
=0,
forall g € (0,1/2). According to (22), (23) and (24) we get the Turén type inequality
20). O

THEOREM 3. Let 1 #£¢ >0, a >0 and B > 0. Then the following Turdn type
inequality

1—gP
Eqp2(9:2)Eq p(q:2) — <1—7qﬁ+1> (Ea7/3+1(f192))2 =0, (25)

hold for all z € (0,e).

Proof. For convenience, let us write

Eap(@:) = ¥ w(.Biq)e, wheregammay(at,B:q) = Ty(B)/Ty(ck+ B).
k=0
Thus,

2 ) .
9L g}a’k[(g,ﬁ,q)] =/ (B) - v/ (ak+B).

By using (4) it is easy to see that the g-digamma function y,(x) is concave on (0,o0)
for each g € (0, 1). On the other hand, from the relation (3) we get

vy (x) = logg + y/4(x),
for ¢ > 0, and consequently the the ¢-digamma function y,(x) is concave on (0,c)
for all 1 # g > 0. So, using the fact that sums of log—convex functions are log—convex
too, we deduce that the function B — E, g(g;2) is log—convex (0,0) forall g > 0. It
follows that for 81,5, > 0, 7 € [0, 1], we have
t 1—t
Ea,tﬁl+(l—t)ﬁz (g:2) < [Ea,ﬁﬁr(‘ﬁz)} [Ea,l}z (‘121)}
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Choosing 1 = B, B = +2 and t = 1/2, the above inequality reduces to the Turdn
type inequality (25). [

THEOREM 4. Let n € N, we define the function E, ﬁ(q;z) by

n Zk

n ( . — . — _

q:z) = Ey 5(¢:2) , (26)
a.p a.p ,;)Fq(ak+ﬁ)

ora € (0,1) and o, p,z > 0. Then, the following Turdn type inequali
Il qge (0,1 d 0. Then, the foll g typ quality
2

(Eri(@:0)) ~ B pla:0EL 7 (:2) >0, @)

hold true for all q € (0,1) and «a,B,z > 0. Furthermore, the following Turdn type
inequality

2
(Ea,ﬁ+(n+z>a(q§z)) —Egp+(nr1)a(GDEq p+(n+3)a(g:2) = 0, (28)

holds true for all g € (0,1) and a, B,z > 0.

Proof. By using the definition of the function E, B (g;2), we get

n+1
E" : :En+1 ; Z— 29
ap(4:2) =Eqg(q Z)Jrrc,(oc(n+1)+ﬂ)’ =
and 2
En+2(q;z) :En+l(q;z) _ L 30)
a.p a.p L (a(n+2)+pB)’
which yields that
(EnJrl( . ))Z_En ( . )En+2( . )
Ohﬁ CI,Z O!,ﬁ CI,Z avﬁ q,Z
n+2 n+t1
=E" N (g; ( - B 2 )
B (9:2) Lyan+2)+p) Ty(ar+1)+p)
2n+3
n z
T,(a(n+2)+B)T,(a(n+1)+p)
o en+2 d e+l

kmia Tg(a(n+2) + B)Ty(ak+ B) k:%g Ly(a(n+1)+B)ly(ak+B)

B ) Zk+n+l Zk+n+1
TE, <rq<a<n+2>+mrq<a<k— DB Tylalnt 1)+ﬁ)Fq(ak+B)>

_ i Ck(a,ﬁ;q)zkﬂﬂ
pot  Ty(a(n+2) + B)Cy(a(k— 1)+ B)Ty(a(n+ 1)+ B)Ty(ak+ B)’




TURAN TYPE INEQUALITIES FOR ¢-M-L AND ¢-W FUNCTIONS 1143

where (Cr(a, B;q))i=n+3 is defined by
Cr(a, B:q) =Tg(a(n+1)+B)y(ak+B)—Ty(a(n+2)+B)Iy(alk—1)+B). (31)

By using the fact that the ¢-gamma function I';(x) is log—convex on (0,e0), we deduce
that the function x — % is increasing on (0,e0), when a > 0. Thus implies the
following inequality

Iy(x+a) - Ly (x+a+D)

Ly(x)  ~ Tyx+b)

holds for all a,b > 0. Now, let x=a(n+1)+B,a=0>0,b=0o(k—n—2)>0 in
(32), we get Cr(et,B59) =0, foreach k >n+3, ¢ € (0,1) and @, > 0. The desired
inequality (27) is thus established. Next, we prove the inequality (28). It is clear from
The definitions of the functions E, (g;z) and E}, ﬁ( Z) we obtain

(32)

n+1

Eqp(q:2) =" Eqpia(nin)(4:2)-

The above relation and the Turan type inequality (27) gives the inequality (28), which
evidently completes the proof of Theorem 4. [

In the proof of the next Theorem, we require the following two lemmas:

LEMMA 1. Let (a,) and (b,) (n=0,1,2...) be real numbers, such that b, >

. . . agy...+a, .
0, n=0,1,2,... ( ) is increasing (decreasing), then (bgier’:,)n is also

increasing (decreasmg)

The second lemma is about the monotonicity of two power series, see [13] for
more details.

LEMMA 2. Let {an}tn=0 and {by}n>0 be two sequences of real numbers, and let
the power series f(x) =Y, >0anX" and g(x) = ¥,>obux" be convergent for |x| < r. If
b, > 0 for n > 0 and if the sequence {a,,/b,,}wo is (strictly) increasing (decreasing),
then the function x — f(x)/g(x) is (strictly) increasing (decreasing) on (0,r).

The idea of the proof of this interesting result is taken from [9].

THEOREM 5. Let n be a positive integer, let o, > 0 and let either g € (0,1).
We define the function K, B (q;2) by

Ep 5(4:2)Ep 5 (432)
n+ly . 2
(E ,;(q,Z))

Then, the function 7 — Kgﬁ(q;z) is increasing on (0,00). Moreover, the following

wp(a:z) = , 2>0. (33)

Turdn type inequality

l"?l(a(n-l-Z)—i-ﬁ) ( 1

2
Eap DB )~ Gl )+ BTyt 137y (e (@09) 20 09
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I2(a(n+2)+p)
Ly(a(n+1)+B)g(a(n+3)+pB)

is valid for z € (0,00). The constant
sharp.

in inequality (34) is

Proof. The Cauchy product rule gives
&y ey k
Kop(a) =Y Y ui(eBia) [ ¥ Y vilo Big)2
k=0 j=0 k=0 j=0

where
B 1

YT T (a(+n+ 1)+ BT (a(k—j+n+3)+B)

and
B 1

T (a(jtn+2) + B (alk—j+n+2)+B)
Next, we define the sequence (w; =u;/v;);>0. Then
wit1 _ [ Tglalj+n+1)+B)Ty(a(j+n+3)+B)
w; 2(a(j+n+2)+B)

} (Fq(a(k—j+n+3)+ﬁ)Fq(a(k—j+n+1)+ﬁ)>.

(35)

C(a(k—j+n+2)+B)
Firstly, let x=a(j+n+1)+f, a=b = a in (32), we obtain the following inequality
Ty(a(j+n+1)+B)y(alj+n+3)+p)—To(a(j+n+2)+)=0.  (36)
Secondly, let x = a(k— j+n+1)+ B, a=b = a in (32), we have
Ty(a(k—j+n+1)+B)Cy(alk—j+n+3)+p)—To(a(k—j+n+2)+B)>0. (37)

In view of inequalities (35) and (36) and (37), we deduce that the sequence (w;) j>0 18
increasing. Consequently Z'J‘-:O uj/ Z'J‘-:O v; is increasing, by means of Lemma 1. Thus
the function z — K7 4 (¢;z) 1s increasing on (0,0), in view of Lemma 2. Moreover,

I (a(n+2)+B)
Cy(a(n+1)+B)Ty(a(n+3)+B)

lim K} 5(q:2) =
This completes the proof. [

3. Turan type inequalities for ¢-Wright functions

Let k be a positive integer, let 3 be a complex number, and let either o >
—log(1 —¢q)/log(1 —¢*) and z # 0 or @ = —log(l —q)/log(1 —¢*) and |z| < I,
the ¢g-Wright function is defined by [5]

oo

n(n+1) Z
W o (gkz) = . S— (38)
ap(d":2) n;)q [n]g!T s (an+B)
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where [n],! = (¢:9)n/(1 —q)". For g tends to 1 the g-Wright function tends to the
classical Wright function

ZV!

Wen (&)= X i amt B

THEOREM 6. Let k be a positive integer, let o, > 0 and let either q € (O,qll‘;).
Then the following Turdn type inequality

2
(Wa,ﬁ+l (q";Z)) —Wo5(q":2)Wq p42(d"52) 20, (39)

hold true for all z € (0,00).

Proof. By again using the Cauchy product we find that

o n (U +(k=f)(k=j+1))/2,n
Wap 0 Warpald'd) = B Y e I (ars BT (ale—) 5 )
and
( o n q(j(j+1)+(kfj)(kfj+1))/2Zn
apinld9)’ :,,:0,:20 — I Tp(aj+ B+ Dl x(ak—j)+B+1)
Thus,

2
Wor (6320 War s 12(6%52) = (Wagp 11(4552))
UG =) = +1)2

IR (1)
= . : T}, (a

LYy e @hd)?

o [(n—1)/2] JUtDHe—f)n=j+l) (40)
_ q 2 (1) k (1) kY n
“L L g @kl epd):

q n(n+2;xk+2) (C[k* 1>Zn

([/2]g1)° T (an/2+ B+ )Ty (an/2+ f +2)’

+

where T ((x B,q) as defined in (13). In view of (17) and (18), we get
(1—-¢")Ajn(a, Biq")
Fp(oj+B+2)Tp(a(n—j)+B+2)
< fﬁ (qk)(qakj + qak(nfj)) _ zqk(an+ﬁ+2)
<0,

T (0. B,d") + T, (0. B.g") =
(41

forall ¢, >0 and g € (0, q’l;) , which leads us readily to the required result. [J
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THEOREM 7. Let k be a positive integer, let o, 3 > 0 and let either g € (0,1/2).
Then the following Turdn type inequality

2
Wee (652 Werp2('52) = (Waup 1(652) )+ Werpia (6452 Wa g 12(0552) > 0, (42)

hold true for all z € (0,00).

Proof. From (40) and (24) we get

Ay 5)(4:2)
k k k 2 k k
=Wap(q3:2)Wapi2(q32) — (WaBH(q ;Z)) +Wop11(q":2)Wo g12(4",2)

(1(1+1) (n—j)(n—j+1))/2
Jq!ln— jlg!
q(./(./+1>+(nfj)(nfj+1))/2(
[lg!n— jlg!

1 — gHB+3) (1 — gk)2

T 2T (a2 4 B+ 1)r§(an/2+ﬁ+2)
i [(n—1)/2] q(j(j+1)+(nfj>(nfj+1)>/23k(a7ﬁ;qk)
n=0 j=0 []]qk'[n_]]qk'qu(a]—i_ﬁ+2)Fqk(a(n_])+ﬁ+2)
+ 1= g P37 (1 — )2
([n/2]g)* Ty (an/2+ B+ DI w(an/2+ B +2)

T\ (0t B:g")2"

ii

ZZ Z T,(,i)(a,ﬁ;qk)+(T,ff)m(oc,[i;q"))z"
n=0 j=0

2k/3+k ZZ [(n=1)/2] gUUH D))=+ 0))[2gekn (] _ gk 4 ghe(n=2)))
S = U=l Tp(ej+B+2)T u(a(n—j)+B+2)
l1—g k(B+9")2" (1—4")?
([n/2]41)*T pan/24+ B+ 1D (an/2++2)

+

>0,

for all o,f,z >0, ¢ € (0,1/2) and k € N. The proof of Theorem 7 is thus com-
pleted. O

THEOREM 8. Let o, 3,q > 0 and k be a positive integer. Then the function 3 —
Wep(q"2) = L (B)Wa g (z:4%) is log-convex on (0,e0). In particular ¥ g(z:q")
satisfies the following Turdn type inequality, that is for o, 3,q > 0 and k be a positive
integer we get

W k. k. 1—¢" k)2
w.p(q 320 Wa pia(g ,Z)—m Wopt1(q32)) =0, 2>0. (43)
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Proof. Let us write W, g (¢%;z) in the following form

o qn(n+1)+/2qu(ﬁ)

W p(q":2) = 265,,(06,&61)5’, where §,(a,B;q) = T (@< p)
n= T q

Thus,

d*log (8,(ax, B:q)
(azﬁ ) — VA (B)— Vy(an+ ),

and the last expression is nonnegative by using the fact that the g-digamma function
1//; . is decreasing on (0,0) foreach ¢ > 0 and k be a positive integer, and consequently

the function B — #¢, g(¢*;2) is log—convex on (0,e0) for each ¢ > 0 and k € N. Thus
implies that for B, 5, > 0, t € [0,1], we have

t 1—¢
Wiy (1-0)p, (4"32) < [Wa,ﬁﬂr(z;qk)} [Wa,ﬁz(zqk)} :

Choosing 1 = B, B> = +2 and t = 1/2, the above inequality reduces to the Turdn
type inequality (43). [

THEOREM 9. Let n € N, we define the function W! ﬁ(QQZ) by

gIU+D/25k

Wi 5(q"52) = Wj 5(d"52) Z RCTE I

(44)

forall g €(0,1), ke N and o, 3,z > 0 Then, the following Turdn type inequality

2
(W"?( )) — Wy (55 2)W, 5 (d"52) >0, 45)

hold true for all g € (0,1), ke N and a,,z > 0.

Proof. By using the definition of the function E, B (¢;z), we get

n k ntl; k q(”+1)(n+2)/zzn+l
Wa,ﬁ(q 5Z) Waﬁ (q ’Z)+ [n+1]q|rq(a(n+1)+ﬁ)7 (46)
and
(n+2)(n+3)/2n+2
Wi2(gs2) = Wil (¢s2) — —2 @

[n+2],'T,(a(n+2)+B)
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Therefore,

2
(Wi (¢52)) = wa pla 2wy (d52)
. g+ (nt3) /2,042 gD 2) /2,041
(¢"2) [

_ Wn+1
n+2,\Ty(a(n+2)+p) [n+1],!Ty(a(n+1)+pB)

Ot,ﬁ

(n+2)% n+1

Z

+ [n+ 1]q![n+2]q!rq(2c(n+ 1)+ B)Cy(a(n+2)+p)

q(n+2)(n+3)/2Zn+2 oo qj(jfl)/zzkfl (48)
T 2y (a(n+2) + B) 2=, [~ g Ty(tj+ B — )
q(n+l)(n+2)/2zn+l s qj(j“)/zzk
1]y (a(n+1)+B) ;2 5 [Jlg'T e (0tj + B)

B 1 = Mj(a,ﬁ;qk)zk”“

[n 414! j=n+3 [ = 1g! 7

where (M;(et, B;¢"))i=n+3 is defined by

Mj(a.Bsq")
g\t 2)(n3)+i(-1))/2 gt D(+2)+j(+1))/2
" 2 Cp(antBr20)C(aj+p—a) [l Tp(antB+a)l(aj+p)
1 g\t t3)+i(-1)/2 g\t t2)+i(+1))/2
> s (Fqk(an+ﬂ+2a)1“qk(aj+ﬁ —a) Fqk(an+B+a)Fqk(aj+B)>

g\t t2)+i(+1))/2

g 7

1 1
8 <Fqk(an+ﬁ+2a)l“qk(aj+ﬁ—a) a Fqk((xn—l-ﬁ—i-a)qu(aj—i-ﬂ))
_ q((n+1)(n+2)+j(j+1))/2cj(a’B;qk)
i (ant B+ 20Ty (o + B— )l (o + B+ T (@i + B

where C;(a, B:q~) as defined in (31). Following the proof of Theorem 4 we see that
the coefficient Cj(e, B;¢*) is nonnegative for all j > n+ 3. Hence M;(a,B;¢~) >0,
forall j >n+3 and g€ (0,1), o, > 0 and k be a positive integer. From thus fact
and (48) we deduce the desired result. This ends the proof of Theorem 9. [

The next theorem is the g-version of [8, Theorem 3.4].

THEOREM 10. Let n,k be a positive integer, let o, 3 > 0 and let either g € (0,1).
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We define the function Sy, g (¢;2) by
. 2 .
Wy (a5 2)Wy 5 (d":2)

(o' (ah:2) ’

np(d52) = , 2>0. (49)

Then, the function z — S¢ 4 (¢5:2) is increasing on (0,e0). Moreover, the following
Turdn type inequality

P (1= T e(n+2)+ )
Wi g (0:2)Wy 2 (452) — <(1 )T, (an f) + BT, (a(n+3) +B)>
< (W @2) =0, 50

q(1—¢" )I3(a(n+2)+B)

is valid for z € (0,00). The constant = (@l )BT (@3B in inequality (50)
is sharp.
Proof. From the Cauchy series product we get
k SR k ol k
Sap(dsd) =X L ul(e.Bsa")" | Y vi(e Big)2",
m=0j=0 j=0
where
((An+1) (An+2)+ (k= j+n+3) (k= j+n+4)) /2
uj(er.Brqt) = - ! : ,
/ [+n+1]g! k= j+n+3]g! T (@(j+n+1)+B) e ((ot(k—j+n+3)+pB)

and

q((j+n+2)(j+n+3)+(kfj+n+2)(kfj+n+3))/2

vj(o.Bia) = [n+ 2] k= j4n+2] T (a(j+n42)+B)L g (o (k— j+n+2)+B)

: 1_ 11 :
Now, we consider the sequence (W.' =u;/vj)j=0- By using the fact that the sequence

j
(wj)j>0 is increasing we have

Wi (1—g/t) (1= gk i) (w.,-+1<a,ﬁ,qk>>
wio g (1= (1 =gk 7tmi2) "\ wy(a, B, qb)
(1 =g/t 3) (1 —g7tmt3) <wj+1(a,ﬁ,q")>
T (1—gr ) (1= gk 2) " wy(a, Byg*)
WjJrl(aaBaqk)
wj(a,B,q*)
21,

(51
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forall g € (0,1), 0,8,z >0 and k,n be a positive integer. So, the sequence (W}-)j}()is
increasing and consequently the sequence (Zj-”:o u } / Zj-”:o v}) . is also increasing by
J) >

means of Lemma 1. In view of Lemma 2, we deduce that the function z +— S7, 5 (d2)

is increasing on (0,0). On the other hand we have
q(1—q")5(a(n+2)+p)
I=g" ) (a(n+ 1)+ )Ty(a(n+3)+p)’

: n k..\ _
Jim S p(q"52) = (
which proves Theorem 10. [J

4. Concluding Remarks

In this section we would like to comment the main results of this paper.

1. Open Problems: Motivated by the results of Section 2 and Section 3 we pose
the following problems: find a generalization of the Turdn type inequalities (8) and
(39) for ¢ € (0,1). In particular, proved the following Turédn type inequalities for the
Mittag—Leffler and Wright functions:

2
(Bapi1(2) —Fapl@)Eupia() >0 (52)

and
2
(Wap1(2)) = Wep(Wap () >0, (53)
forall o, B,z > 0.

2. We note is another proof of the Turdn type inequalities (25) and (43). Since
the function B+ T'y(B)Eq g(g;2) is log—convex on (0,0) for z > 0, it follows that
the function B+ (T'y(B+ 1)Eq g+1(¢:2))/(Fy(B)Eq g (g;2)) is increasing on (0,0).

Thus
LB +2)Eqpia(a:2) _ To(B+1)Eqp+i(q:2)
Lg(B+DEqpi(4:2) = Ty(B)Eqp(g:2)
which leads us readily to the required result. A similar argument for the Turdn inequal-
ity (43).

3. Observe that if ¢ tends to 1 in Theorem 3, then we get the following result: if
o, 3 > 0. Thus, the following Turdn type inequality

- %(Ea,ﬁﬂ(z))z >0,

is valid for z > 0. We note that this inequality was proved by Mehrez and Sitnik [9,
Theorem 1, eq. 3].

Eq 5(2)Eqp12(2)

4. Observe that when ¢ tends to 1 the Turdn type inequality (27) reduce to [9,
Theorem 2, eq. 5]

2
(Eg:ﬁlﬂ(z)) —Ey 5 (E 15 5(2) >0,
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where n be a positive integer and o, 3,z > 0.

5. It is important to mention here that the Turdn type inequalities (43) and (45) are

in fact the g-version of the inequalities (3.1) and (3.6) in [8].
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