
Operators

and

Matrices

Volume 11, Number 4 (2017), 1149–1169 doi:10.7153/oam-2017-11-79

COFACTORS AND EIGENVECTORS OF BANDED TOEPLITZ MATRICES:

TRENCH FORMULAS VIA SKEW SCHUR POLYNOMIALS

EGOR A. MAXIMENKO AND MARIO ALBERTO MOCTEZUMA-SALAZAR

(Communicated by A. Böttcher)

Abstract. The Jacobi–Trudi formulas imply that the minors of the banded Toeplitz matrices can

be written as certain skew Schur polynomials. In 2012, Alexandersson expressed the correspond-

ing skew partitions in terms of the indices of the struck-out rows and columns. In the present

paper, we develop the same idea and obtain some new applications. First, we prove a slight

generalization and modification of Alexandersson’s formula. Then, we deduce corollaries about

the cofactors and eigenvectors of banded Toeplitz matrices, and give new simple proofs to the

corresponding formulas published by Trench in 1985.

1. Introduction

The first exact formulas for banded Toeplitz determinants were found by Widom

[31] and by Baxter and Schmidt [3]. Trench [29, 30] discovered another equivalent for-

mula for the determinants and exact formulas for the inverse matrices and eigenvectors.

Among many recent investigations on Toeplitz matrices and their generalizations we

mention [2, 5, 6, 10, 15, 16, 17, 18]. See also the books [8, 11, 12, 20] which employ

an analytic approach and contain asymptotic results on Toeplitz determinants, inverse

matrices, eigenvalue distribution, etc.

It is obvious from the Jacobi–Trudi formulas that there is a simple connection

between Toeplitz minors and skew Schur polynomials. Surprisingly for us, this con-

nection was not mentioned in the works cited above.

Gessel [19, Section 7] showed that some combinatorial generating functions can

be written as Toeplitz determinants (without actually naming them “Toeplitz determi-

nants”). With the help of Gessel’s formula, Borodin and Okounkov [7] expressed the

general Toeplitz determinant as the Fredholm determinant of some operator acting on

the Hilbert space ℓ2 . Tracy and Widom [28] used Gessel’s formula to compute some

asymptotic distributions related to combinatorial objects. They also observed that the

minors located in the first columns of the triangular Toeplitz matrix [h j−k] j,k can be

written as Schur polynomials, and expressed the corresponding partitions in terms of

the selected rows.
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Bump and Diaconis [14] considered Toeplitz minors with a fixed number of struck-

out rows and columns, and studied their asymptotic behavior as the order of the minor

tends to infinity. They indexed the minors with two partitions without writing explicitly

the relation between these partitions and the indices of the struck-out rows and columns.

Lascoux in his book [21] defined skew Schur functions sλ/µ as minors of the

triangular Toeplitz matrix [hk− j] j,k and explicitly related the partitions λ and µ with

the indices of the selected rows and columns. Reiner, Shaw, and van Willigenburg

mentioned the same relation in their article [24] about the problem of coinciding skew

Schur polynomials.

Alexandersson [1] found a new combinatorial proof of Widom’s formula for the

determinants of Toeplitz matrices. As an auxiliary result [1, Proposition 3], he wrote

the minors of triangular Toeplitz matrices [ek− j] j,k as skew Schur polynomials sα/β ,

with certain partitions α and β expressed explicitly in terms of the struck-out rows and

columns.

The aim of this paper is to complement [1] by showing that some other classical

results from the theory of Toeplitz matrices can also be naturally embedded into the

theory of skew Schur polynomials. When it comes to building bridges between these

two theories we prefer to stay on the “Toeplitz side”. Thus, we start with a general (non-

necessarily triangular) banded Toeplitz matrix Tn(a) generated by an arbitrary Laurent

polynomial a and express its minors as certain skew Schur polynomials evaluated at

the zeros of a . Then we deduce several formulas for the cofactors and eigenvectors,

and give new proofs for the classical Trench’s formulas.

2. Main results

Let a be a Laurent polynomial of the form

a(t) =
p

∑
k=p−w

aktk = apt p−w
w

∏
j=1

(t − z j), (2.1)

where p ∈ N0 = {0,1,2, . . .} , w ∈ N = {1,2, . . .} , ap−w, . . . ,ap are some complex

numbers and ap 6= 0. The coefficients ak are defined to be zero if k > p or k < p−w .

For every n in N denote by Tn(a) the n×n banded Toeplitz matrix generated by a :

Tn(a) = [a j−k]
n
j,k=1. (2.2)

Note that if n is sufficiently large, p is the index of the last nonzero diagonal below the

main diagonal and w+ 1 is the width of the band.

By Vieta’s formulas, the quotients ak/ap can be written as elementary symmet-

ric polynomials in the variables z1, . . . ,zw , with alternating signs. Thus, every mi-

nor of Tn(a) , after factorizing an appropriate power of ap , is a symmetric polynomial

in z1, . . . ,zw . It turns out that it is a certain skew Schur polynomial, up to a sign.

Given a skew partition λ/µ , we denote by sλ/µ(z1, . . . ,zw) or just by sλ/µ the cor-

responding skew Schur polynomial in variables z1, . . . ,zw . Given k in N0 , we denote

by hk(z1, . . . ,zw) the complete homogeneous polynomial of degree k . The details are

given in Section 3.
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For every two integers n,m such that 0 6 m 6 n , we denote by Im
n the set of all

strictly increasing functions {1, . . . ,m} → {1, . . . ,n} . Every element ρ of Im
n can be

written as an m-tuple (ρ1, . . . ,ρm) , where ρ1, . . . ,ρm ∈ {1, . . . ,n} and ρ1 < .. . < ρm .

We identify the function ρ with the subset {ρ1, . . . ,ρm} of {1, . . . ,n} . Let |ρ | denote

the sum ρ1 + · · ·+ ρm .

Given A in Cn×n , m in {0, . . . ,n} , and ρ ,σ in Im
n , we denote by Aρ ,σ the subma-

trix of A located in the intersection of the rows ρ1, . . . ,ρm and the columns σ1, . . . ,σm :

Aρ ,σ =
[
Aρ j ,σk

]m
j,k=1

.

Notice that if m = 0, then the submatrix Aρ ,σ is void, and its determinant is 1 .

Working with integer tuples we use a comma to denote the concatenation and

superior indices to denote the repetition. For example, (53,32) = (5,5,5,3,3) . For

every tuple ξ = (ξ1, . . . ,ξd) we denote by rev(ξ ) the reversed tuple (ξd , . . . ,ξ1) . Let

idd denote the identity tuple (1, . . . ,d) .

We start with two equivalent formulas for the minors of banded Toeplitz matrices.

THEOREM 2.1. Let a be a Laurent polynomial of the form (2.1), n,m ∈ Z , 0 6

m 6 n, ρ ,σ ∈ Im
n , d = n−m, and ξ ,η ∈ Id

n be the complements of ρ ,σ , respectively.

Then

det(Tn(a)ρ ,σ ) = (−1)pm+|ρ |+|σ | am
p s(mp,rev(ξ−idd))/ rev(η−idd)(z1, . . . ,zw), (2.3)

and also

det(Tn(a)ρ ,σ ) = (−1)pm+|ρ |+|σ | am
p s

(mp,md+idd −η)/(md+idd −ξ )
(z1, . . . ,zw). (2.4)

Let us rewrite the skew partitions from (2.3) and (2.4) in the expanded form. The

skew Schur polynomial from (2.3) is sλ/µ , where

λ = (m, . . . ,m︸ ︷︷ ︸
p

,ξd −d, . . . ,ξ1 −1), µ = (ηd −d, . . . ,η1 −1), (2.5)

and the skew Schur polynomial from (2.4) can be written as sα/β , where

α = (m, . . . ,m︸ ︷︷ ︸
p

,m+1−η1, . . . ,m+d−ηd), β = (m+1−ξ1, . . . ,m+d−ξd). (2.6)

If a pair of partitions λ ,µ does not form a skew partition, i.e. if λ j < µ j for some j ,

then we define the corresponding skew Schur polynomial sλ/µ to be zero; this conven-

tion is justified by Proposition 3.1.

Formula (2.4) is a simple generalization and modification of formula (3) from [1].

We prove Theorem 2.1 in Section 4 combining ideas from [1] with a couple of other

tools.

In the particular case of Toeplitz determinants, i.e. when d = 0, both identities

(2.3) and (2.4) reduce to

det(Tn(a)) = (−1)pnan
ps(np)(z1, . . . ,zw). (2.7)
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In fact, (2.7) follows immediately from the dual Jacobi–Trudi formula for Schur poly-

nomials, without the need for skew Schur polynomials. Formula (2.7) was noted by

Bump and Diaconis [14, proof of Theorem 1]. Equivalent forms of (2.7) were discov-

ered previously by Baxter and Schmidt [3] and by Trench [29, 30]; see Remark 4.9.

Theorem 2.1 says that every Toeplitz minor can be written as a skew Schur poly-

nomial. Bump and Diaconis mentioned this fact in [14, pp. 253 and 254], but they

did not express the skew partition in terms of the struck-out rows and columns. The-

orem 2.1 also easily implies that every skew Schur polynomial in variables z1, . . . ,zw

can be written as an appropriate minor of a Toeplitz matrix generated by a Laurent

polynomial with zeros z1, . . . ,zw ; see Proposition 4.10.

Applying Theorem 2.1, we obtain the following equivalent formulas for the cofac-

tors, i.e. for the entries of the adjugate matrix.

THEOREM 2.2. Let a be of the form (2.1) and n > 1 . Then for every r,s in

{1, . . . ,n}

adj(Tn(a))r,s = (−1)p(n−1) an−1
p s((n−1)p,s−1)/(r−1), (2.8)

adj(Tn(a))r,s = (−1)p(n−1) an−1
p s((n−1)p,n−r)/(n−s), (2.9)

adj(Tn(a))r,s = (−1)p(n−1) an−1
p

min(n−r,s−1)

∑
k=max(0,s−r)

s((n−1)p−1,n+s−r−1−k,k) (for p > 1),

(2.10)

adj(Tn(a))r,s = (−1)pn an−1
p

(
hs−r−ps(np)−

p−1

∑
k=0

(−1)khs+k−ps(np−k−1,(n−1)k,n−r)

)
.

(2.11)

The expansion in the right-hand side of (2.10) does not make sense for p = 0; in

this trivial case (2.8), (2.9), and (2.11) reduce to adj(Tn(a))r,s = an−1
0 s(r−s) = an−1

0 hr−s .

Of course, (2.8)–(2.11) can be easily converted into formulas for the entries of

the inverse matrix Tn(a)−1 : suppose that s(np) 6= 0, change the left-hand side for

(Tn(a)−1)r,s and divide the right-hand sides by (−1)pnan
ps(np) .

Formulas (2.8) and (2.9) are immediate corollaries from Theorem 2.1. In Section 5

we prove (2.10) applying a particular case of the Littlewood–Richardson rule and de-

duce (2.11) from (2.9) using the Jacobi–Trudi formula and expanding the corresponding

determinant by the first column. Note that (2.11) is essentially Trench’s formula for the

entries of the inverse matrix [29, Theorem 3]; it has an advantage over (2.10) because

the number of summands in (2.11) does not depend on n .

Finally, in the next theorem we give a simple formula for the components of an

eigenvector of Tn(a) , supposing that the associated eigenvalue x is known. More pre-

cisely, we construct a vector v in Cn satisfying Tn(a)v = xv ; there is no guarantee that

v is nonzero.
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THEOREM 2.3. Let a be of the form (2.1), p > 1 , n > 1 , and x be an eigenvalue

of Tn(a) . Denote by z1, . . . ,zw the zeros of a− x . Then the vector v = [vr]
n
r=1 with

components

vr = s((n−1)p−1,n−r)(z1, . . . ,zw) (2.12)

satisfies Tn(a)v = xv. If 1 6 p 6 w and the zeros of a− x are simple, then the vec-

tor v can be written as a linear combination of geometric progressions with ratios

1/z1, . . . ,1/zw and some complex coefficients C1, . . . ,Cw :

vr =
w

∑
j=1

C jz
n−r+w−p
j . (2.13)

In Section 6 we prove Theorem 2.3 and provide explicit expressions for C1, . . . ,Cw .

Formula (2.13) essentially coincides with Trench’s formula [30, Theorem 1].

Theorems 2.1, 2.2, 2.3, except for (2.13), are also true for Toeplitz matrices gener-

ated by semi-infinite Laurent series; in this situation one has to work with skew Schur

functions instead of skew Schur polynomials; see Remark 4.1.

It is worth noting that any Toeplitz matrix [a j−k]
n
j,k=1 can be viewed as a banded

Toeplitz matrix by putting p = n− 1 and w = 2n− 1, but the formulas from Theo-

rems 2.1–2.3, except for (2.10), are efficient for small values of w , p , and d .

We tested the main results with symbolic and numerical computations; see the

details in Remark 4.12.

3. Skew Schur polynomials: notation and facts

In this section, we fix some notation and recall some well-known facts about skew

Schur polynomials. See [23] and [27] for explanations and proofs.

For each r in N0 , the r -th elementary symmetric polynomial er is the sum of

all products of r distinct variables, and the r -th complete homogeneous symmetric

polynomial hr is the sum of all monomials of total degree r :

er(x1, . . . ,xw) = ∑
j1< j2<...< jr

r

∏
k=1

x jk , hr(x1, . . . ,xw) = ∑
j1,..., jr∈{1,...,w}

w

∏
k=1

x jk .

When x1, . . . ,xw are pairwise different complex numbers, hr(x1, . . . ,xw) can be com-

puted by the following efficient formula:

hr(x1, . . . ,xw) =
w

∑
j=1

xr+w−1
j

∏
k∈{1,...,w}\{ j}

(x j − xk)
. (3.1)

For brevity, from now on we omit the variables x1, . . . ,xw when possible. Note that

h0 = e0 = 1 and h1 = e1 . Define hr and er to be zero for r < 0. The above definitions

also imply that er = 0 for r > w . Consider the generating functions for the sequences

of polynomials (er)
∞
r=0 and (hr)

∞
r=0 :

E(t) =
w

∑
r=0

ert
r =

w

∏
s=1

(1 + xst), H(t) = ∑
r>0

hrt
r = ∏

s>0

(1− xst)
−1.
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The formal series E(−t) and H(t) are mutually reciprocal:

E(−t)H(t) = 1. (3.2)

Equivalently, the sequences (er)
∞
r=0 and (hr)

∞
r=0 are related by

j

∑
k=0

(−1)kekh j−k = δ j,0 ( j ∈ N0). (3.3)

Integer partitions (partitions, for short) are tuples of the form λ =(λ1,λ2, . . . ,λm) ,

where m ∈ N0 , λ1,λ2, . . . ,λm ∈ Z , and λ1 > λ2 > . . . > λm > 0. Each λ j is called a

part of λ . The number of parts is the length of λ , denoted by ℓ(λ ) ; and the sum of

the parts is the weight of λ , denoted by |λ | . The Young–Ferrers diagram of a partition

λ may be formally defined as the set of all points ( j,k) in Z2 such that 1 6 k 6 λ j .

The conjugate of a partition λ is the partition λ ′ whose diagram is the transpose of the

diagram λ . Hence, λ ′
k is the number of nodes in the k th column of λ :

λ ′
k = #{ j : λ j > k}. (3.4)

Here is an example of a partition and its conjugate, shown as Young–Ferrers diagrams:

λ = (5,3) = , λ ′ = (2,2,2,1,1) = .

Given two partitions λ and µ , it will be written µ ⊆ λ if ℓ(µ) 6 ℓ(λ ) and µ j 6 λ j

for all j in {1, . . . , ℓ(µ)} . In this case, the pair λ ,µ is called a skew partition and is

denoted by λ/µ . The diagram of λ/µ is defined as the set difference of the diagrams

associated to λ and µ . For example,

(7,4,2)/(2,1) = .

There are many equivalent definitions of skew Schur polynomials. Given a skew parti-

tion λ/µ , the skew Schur polynomial sλ/µ can be defined by the (first) Jacobi–Trudi

formula:

sλ/µ = det[hλ j−µk− j+k]
ℓ(λ )
j,k=1. (3.5)

In what follows we denote by JT (λ/µ) the matrix [hλ j−µk− j+k]
ℓ(λ )
j,k=1 that appears in

the right-hand side of (3.5).

The dual Jacobi–Trudi formula (also known as the second Jacobi–Trudi formula

or the Nägelsbach–Kostka formula) expresses sλ/µ in terms of the elementary polyno-

mials:

sλ/µ = det[eλ ′
j−µ ′

k
− j+k]

λ1
j,k=1. (3.6)

In formulas (3.5) and (3.6), the partition µ is extended with zeros up to the length of

the partition λ . Also notice that the extension of λ with zeros does not change the

corresponding skew Schur polynomial sλ/µ , though the matrix JT (λ/µ) changes its

size.

We use the notation λ/µ and the definition (3.5) for all pairs of partitions λ ,µ ,

without requiring µ ⊆ λ .
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PROPOSITION 3.1. For every integer partitions λ and µ such that µ * λ , the

determinants in the right-hand sides of (3.5) and (3.6) are zero.

Proof. Suppose that p ∈ {1, . . . , ℓ(λ )} and µp > λp . Then the (p, p) th entry of

JT (λ/µ) is zero, and so are the entries below and to the left of (p, p) . Indeed, if j > p

and k 6 p , then

λ j − µk − j + k 6 λp − µp < 0

and therefore JT (λ/µ) j,k = 0. Thus, the rank of the matrix formed by the first p

columns of JT (λ/µ) is strictly less than p , the matrix JT (λ/µ) is singular, and

det(JT (λ/µ)) = 0. Another way to obtain the same conclusion is to divide the rows

and columns of JT (λ/µ) into the parts {1, . . . , p} and {p+1, . . . ,w} and to apply the

formula for the determinant of block-triangular matrices.

The situation with the determinant in (3.6) is similar; let us just prove that µ ⊆ λ
if and only if µ ′ ⊆ λ ′ . Since the operation λ 7→ λ ′ is involutive, it is sufficient to verify

the if part. Suppose that µk 6 λk for each k . Then for each j we obtain {k : µk >

j} ⊆ {k : λk > j} , thus, µ ′
j 6 λ ′

j by (3.4). �

In particular, if µ is the void partition () , then the skew Schur polynomial sλ/µ

is called the Schur polynomial associated to λ and is denoted by sλ . In this case, the

Jacobi–Trudi formula (3.5) and its dual (3.6) become

sλ = det[hλ j− j+k]
ℓ(λ )
j,k=1

, (3.7)

sλ = det[eλ ′
j− j+k]

λ1
j,k=1. (3.8)

REMARK 3.2. The parts of λ are the degrees of the complete homogeneous poly-

nomials in the main diagonal of JT (λ ) , i.e. JT (λ ) j, j = hλ j
.

Schur polynomials can also be expressed as quotients of antisymmetric functions.

Notice first that if ℓ(λ ) > w , then (3.8) yields sλ (x1, . . . ,xw) = 0. If ℓ(λ ) 6 w , then

the partition λ can be extended with zeros up to the length w , and

sλ (x1, . . . ,xw) =
detAλ (x1, . . . ,xw)

detA(0w)(x1, . . . ,xw)
, (3.9)

where Aλ (x1, . . . ,xw) is the generalized Vandermonde matrix

Aλ (x1, . . . ,xw) =
[
x

λ j+w− j

k

]w
j,k=1

=




x
λ1+w−1
1 x

λ1+w−1
2 · · · x

λ1+w−1
w

x
λ2+w−2
1 x

λ2+w−2
2 · · · x

λ2+w−2
w

...
...

. . .
...

x
λw
1 x

λw
2 · · · xλw

w




. (3.10)

The denominator of the quotient in (3.9) is the Vandermonde determinant

V (x1, . . . ,xw) = detA(0w)(x1, . . . ,xw) = ∏
16 j<k6w

(x j − xk).
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REMARK 3.3. If some of the numbers x1, . . . ,xw coincide, then the quotient (3.9)

can be computed by the L’Hôpital’s rule, i.e. by differentiating the columns of the

determinants that correspond to the repeating variables. Following Trench [29, Def-

inition 1] and modifying slightly his notation, we denote by Cλ the vector-function

t 7→ [tλ j+w− j]wj=1 , and by C
(q)
λ the q -th derivative of this function. Suppose that the

list x1, . . . ,xw contains γ different complex numbers, and m1, . . . ,mγ are their multi-

plicities, such that m1 + . . .+ mγ = w , z1 = . . . = zm1
, zm1+1 = . . . = zm1+m2

, and so

forth. Denote by Aλ (x1, . . . ,xw) the confluent generalized Vandermonde matrix of or-

der w , whose first m1 columns are C(0)(x1), . . . ,C
(m1−1)(x1) , the next m2 columns are

C(0)(xm1+1), . . . ,C
(m2−1)(xm1+1) , etc. Then V = detA(0w)(x1, . . . ,xw) is the confluent

Vandermonde determinant. With these modifications, formula (3.9) is valid in the case

when some of x1, . . . ,xw coincide.

Schur polynomials form a basis for the vector space of homogeneous symmetric

polynomials. In particular, the skew Schur polynomials can be expressed as sums of

Schur polynomials. This is known as the Littlewood–Richardson rule.

In this paper we only use a particular case of the Littlewood–Richardson rule,

known as the skew version of Pieri’s rule. Let λ be a partition and r ∈ N . Then

sλ/(r) = ∑
ν

sν , (3.11)

where ν ranges over all partitions ν ⊆ λ such that λ/ν is a horizontal strip of size r .

It is said that a skew partition is a horizontal strip if in the associated diagram there is

no two nodes in the same column. Formally, ν from (3.11) satisfies

ℓ(ν) 6 ℓ(λ ), λ j+1 6 ν j 6 λ j (1 6 j 6 ℓ(λ )) and |λ |− |ν|= r. (3.12)

The flip operation over skew partitions is defined by

(λ/µ)∗ = (λ
ℓ(λ )
1 − rev(µ))/(λ

ℓ(λ )
1 − rev(λ )), (3.13)

i.e. (λ/µ)∗ = α/β , where

α j = λ1 − µℓ(λ )+1− j, β j = λ1 −λℓ(λ )+1− j. (3.14)

Here is an example of the action of the flip operation:

λ/µ = (6,6,3,1)/(3,2,2) = ,

(λ/µ)∗ = α/β = (6,4,4,3)/(5,3) = .

It is well known that s(λ/µ)∗ = sλ/µ ; see, for example, [27, Exercise, 7.56(a)].

For the reader’s convenience, we give another simple proof of this fact in the following

proposition by applying the Jacobi–Trudi formula and the concept of the pertranspose

matrix. Recall that the exchange matrix of order n is defined by Jn = [δ j+k,n+1]
n
j,k=1 ,

where δ is Kronecker’s delta. Given a matrix A in Cn×n , the matrix JnA⊤Jn is called

the pertranspose of A ; its entry ( j,k) equals An+1−k,n+1− j . The matrices JnA⊤Jn and

A have the same determinant because det(Jn) = (−1)n(n−1)/2 .
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PROPOSITION 3.4. Let λ and µ be some partitions. Then

sλ/µ = s(λ/µ)∗ . (3.15)

Proof. Denote the length of λ by n . The following computation shows that the

matrix JT ((λ/µ)∗) is the pertranspose of JT (λ/µ) :

JT ((λ/µ)∗) j,k = hλn+1−k−µn+1− j− j+k

= hλn+1−k−µn+1− j−(n+1−k)+(n+1− j) = JT (λ/µ)n+1−k,n+1− j.

Thus, the determinants of JT ((λ/µ)∗) and JT (λ/µ) coincide. �

If the pair λ ,µ does not form a skew partition, i.e. λ j < µ j for some j , then the

pair α,β defined by (3.14) have the same defect, hence in this case both sides of (3.15)

are zero.

REMARK 3.5. Many formulas for skew Schur polynomials do not involve explic-

itly the variables x1, . . . ,xw ; the corresponding abstraction leads to the concept of skew

Schur functions. In this paper, it is convenient to think that the argument of a skew

Schur function is not a list of variables x1,x2, . . . , but rather an arbitrary sequence of

numbers (ek)
∞
k=0 or, equivalently, the formal series E(t) = ∑∞

k=0 ektk . Then the num-

bers h0,h1, . . . are defined as the coefficients of the formal series H(t) = 1/E(−t) , i.e.

by formula (3.3), and the skew Schur functions are defined by Jacobi–Trudi formula

(3.5). This idea is explained in [22, pp. 99–100 and Chap. VII] and [27, Exercise 7.91].

Note that (3.9) makes sense only for Schur polynomials.

4. Minors of banded Toeplitz matrices

In this section we prove Theorem 2.1. Let a be a Laurent polynomial of the form

(2.1). Consider the polynomial

P(t) = tw−pa(t) =
w

∑
j=0

a j+w−pt j = ap

w

∏
j=1

(t − z j).

By Vieta’s formulas, the coefficients of this polynomial can be related with elementary

symmetric polynomials a j+p−w = ap(−1)w− jew− jt
j , which yields

a j = (−1)p− japep− j. (4.1)

Note that (4.1) is true not only for p−w 6 j 6 p , but for every integer j , since for

j > p or j < p−w both sides equal zero. Thus the matrix Tn(a) can be written as

Tn(a) = (−1)p ap [(−1) j+kep+k− j]
n
j,k=1. (4.2)
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REMARK 4.1. (Toeplitz matrices generated by semi-infinite Laurent series)

Instead of working with Laurent polynomials of the form (2.1) and corresponding

banded Toeplitz matrices, we consider the more general situation in which a is a formal

Laurent series of the form a(t) = ∑
p
k=−∞ aktk , with ap 6= 0. In other words, the initial

data is the sequence (ak)k∈Z such that ap 6= 0 and ak = 0 for k > p . Then the corre-

sponding Toeplitz matrices have only a finite number of nonzero diagonals below the

leading diagonal. We do not know how to define the zeros of a formal Laurent series

nor how to express the coefficients ak through these zeros. Thus we define (ek)
∞
k=0

directly by (4.1) and work with skew Schur functions, see Remark 3.5. Note that a can

be written in terms of (ek)
∞
k=0 as

a(t) =
p

∑
k=−∞

aktk = apt p
0

∑
k=−∞

(−1)ke−ktk = apt pE(−1/t). (4.3)

Almost all results of this paper are valid in this situation, except for (2.13).

Consider first the triangular case studied by other authors, in order to facilitate the

comparison of the results. Let

b(t) = E(1/t) =
∞

∑
k=0

ekt−k =
0

∑
k=−∞

e−ktk. (4.4)

If e0,e1, . . . are elementary symmetric polynomials in a finite number of variables,

z1, . . . ,zw , then the sums in (4.4) are finite, and −z1, . . . ,−zw are the roots of b .

The next lemma is a simple application of the dual Jacobi–Trudi formula.

LEMMA 4.2. Let n > 1 , m 6 n, ρ ,σ ∈ Im
n , and d = n−m. Then

det(Tn(b)ρ ,σ ) = det
[
eσk−ρ j

]m
j,k=1

= s(idm −ρ+dm)′/(idm −σ+dm)′ . (4.5)

Proof. The ( j,k) th entry of the matrix Tn(b)ρ ,σ is eσk−ρ j
. Rewrite the difference

σk −ρ j as

σk −ρ j = ( j−ρ j + d)− (k−σk + d)− j + k,

and define partitions λ and µ via their conjugates:

λ ′
j = j−ρ j + d, µ ′

k = k−σk + d. (4.6)

Then Tn(b)ρ ,σ coincides with the matrix from the right-hand side of (3.6). �

The summand d in (4.6) serves just to make λ ′
j and µ ′

k non-negative. This sum-

mand can be substituted by any integer greater or equal to max{ρm −m,σm −m} .

Lemma 4.2 is very close to the Subsection 4.2 from [24], but the Toeplitz matrix

considered there is [hk− j]
∞
j,k=0 , and the summand σm−m is used instead of d . See also

the Section 1.4 from [21], where the skew Schur functions are defined as certain minors

of the matrix [hk− j]
∞
j,k=0 , and the parts of the partitions are written in the increasing

order.
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If the number of the selected rows and columns (which we denote by m) is small,

then the corresponding Toeplitz minor is easy to compute directly. The interesting case

is when d = n−m is small, i.e. when we strike out only few rows and columns. We

are going to express λ and µ in terms of the deleted rows and columns. The follow-

ing elementary combinatorial lemma yields the ascending enumeration of a subset of

{1, . . . ,n} in terms of its complement.

LEMMA 4.3. Let m,n ∈ N , m 6 n, d = n−m, ρ ∈ Im
n and ξ ∈ Id

n such that

ξ = {1, . . . ,n} \ρ . Then for every j in {1, . . . ,d}

ξ j = j + #{k ∈ {1, . . . ,m} : ρk − k < j}. (4.7)

Proof. Put A j = {k ∈ {1, . . . ,m} : ρk < ξ j} and Bk = { j ∈ {1, . . . ,d} : ξ j < ρk} .

The set A j is the complement of {ξ1, . . . ,ξ j} in {1, . . . ,ξ j} , therefore ξ j = j + #A j .

Similarly, ρk = k + #Bk . Furthermore,

ρk < ξ j ⇐⇒ j /∈ Bk ⇐⇒ #Bk < j ⇐⇒ ρk − k < j,

and ξ j = j + #A = j + #{k : ρk − k < j} . �

To illustrate Lemma 4.3, take n = 10 and ρ =(1,3,4,6,9,10) , then ξ = (2,5,7,8)
and

ξ3 = 3 + #{k : ρk − k < 3} = 3 + #{1,2,3,4}= 7.

By comparing formulas (4.7) and (3.4) we see that the duality between the sets and

their complements is somehow similar to the duality between the partitions and their

conjugates. This is the key idea behind the proof of the following lemma.

LEMMA 4.4. In conditions of Lemma 4.2, denote by ξ and η the complements

of ρ and σ , with respect to the set {1, . . . ,n} . Then

det(T (b)ρ ,σ ) = srev(ξ−idd)/ rev(η−idd) (4.8)

and

det(T (b)ρ ,σ ) = s(md+idd −η)/(md+idd −ξ ). (4.9)

Proof. Let us compute λ j by applying (3.4), (4.6) and (4.7). For every j in

{1, . . . ,d} ,

λ j = #{k : λ ′
k > j} = #{k : k−ρk + d > j}

= #{k : ρk − k 6 d − j} = #{k : ρk − k < d + 1− j}

= ξd+1− j − (d + 1− j) = (ξ − idd)d+1− j = rev(ξ − idd) j.

Thereby we obtain λ = rev(ξ − idd) . The formula µ = rev(η − idd) can be proved

in a similar manner. As we know from Proposition 3.4, sλ/µ = sα/β , where α/β =
(λ/µ)∗ . We compute α and β by (3.13):

α = λ
ℓ(λ )
1 − rev(µ) = λ

ℓ(λ )
1 + idd −η , β = λ

ℓ(λ )
1 − rev(λ ) = λ

ℓ(λ )
1 + idd −ξ .
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Note that λ1 = ξd −d 6 n−d = m . The partitions md + idd −η and md + idd −ξ are

obtained from α and β by adding the same non-negative integer number m−λ1 to all

parts. This operation does not change the skew Schur function, thus (4.9) is proved. �

Formula (4.9) is the original Alexandersson’s formula (3) from [1]. The statements

and proofs of our Lemmas 4.2–4.4 may be viewed as another redaction of the proof of

Proposition 3 in [1].

In what follows we use extensively the obvious identity

idd+p = (idp, pd + idd) = (idd ,d
p + idp). (4.10)

The next lemma shows how to transform a general minor of Tn(a) to a certain

minor of the triangular matrix Tn+p(b) . As usual, in the notation for the submatrices

we have to indicate the selected rows and columns, but the real “characters of the tale”

are the struck-out rows and columns.

LEMMA 4.5. Let a and b be Laurent series of the forms (4.3) and (4.4), re-

spectively. Furthermore, let n,m ∈ Z , 1 6 m 6 n, ρ ,σ ∈ Im
n , ξ = {1, . . . ,n} \ ρ ,

η = {1, . . . ,n} \σ . Then

detTn(a)ρ ,σ = (−1)|ρ |+|σ |+mpam
p detTn+p(b)ρ̂,σ̂ , (4.11)

where ξ̂ = (ξ , idp +np) , η̂ = (idp,η + pd) , ρ̂ = {1, . . . ,n+ p}\ ξ̂ , and σ̂ = {1, . . . ,n+
p} \ η̂ .

Proof. First we express the submatrix Tn(a)ρ ,σ in terms of (ek)
∞
k=0 :

Tn(a)ρ ,σ = [aρ j−σk
]mj,k=1 = (−1)p ap [(−1)ρ j+σk ep+σk−ρ j

]mj,k=1.

Now we factorize (−1)ρ j from the j -st row, for every j , and (−1)σk from the k -st

column, for every k . Formally,

Tn(a)ρ ,σ = (−1)p ap diag([(−1)ρ j ]mj=1) [ep+σk−ρ j
]mj,k=1 diag([(−1)σk ]mk=1),

where diag(v) is the diagonal matrix generated by a vector v . Passing to determinants

we obtain

detTn(a)ρ ,σ = (−1)|ρ |+|σ |+mp am
p det[ep+σk−ρ j

]mj,k=1. (4.12)

Defining ρ̂, σ̂ ∈ Im
n+p by ρ̂ = ρ and σ̂ = σ + pm we arrive at (4.11). We are left

to compute the complements of ρ̂ and σ̂ in {1, . . . ,n + p} . Identifying subsets with

strictly increasing tuples and using (4.10) we obtain

idn+p\ρ̂ = (idn \ρ)∪ (idp +np) = (ξ , idp +np) = ξ̂ ,

idn+p\σ̂ = idp∪((idn +pn)\ (σ + pm)) = idp∪(η + pd) = (idp,ξ + pd) = η̂ . �

Proof of Theorem 2.1. By Lemma 4.5 and Lemma 4.4 applied to ξ̂ and η̂ ,

detTn(a)ρ ,σ = (−1)|ρ |+|σ |+pmam
p sλ/µ = (−1)|ρ |+|σ |+pmam

p sα/β ,
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where

λ = rev(ξ̂ − idd+p), µ = rev(η̂ − idd+p),

α = md+p + idd+p−η̂, β = md+p + idd+p−ξ̂ .

With the help of (4.10), these expressions are easily transformed to the partitions (2.5)

and (2.6) from Theorem 2.1. For example,

ξ̂ − idd+p = (ξ , idp +np)− (idd , idp +d p) = (ξ − idd ,m
p),

thus λ = rev((ξ − idd ,m
p)) = (mp, rev(ξ − idd)) . �

REMARK 4.6. Another way to prove Theorem 2.1 is to apply formula (3.6) and

Lemma 4.3 directly to det(Tn(a))ρ ,σ , without reducing the situation to the triangular

case. The equality between the right-hand sides of (2.3) and (2.4) can also be proved

directly, by verifying that α/β = (λ/µ)∗ or by applying the persymmetric property of

Toeplitz matrices.

REMARK 4.7. A sketch of an alternative proof of Theorem 2.1 is as follows. Con-

sider the following mutually reciprocal formal series in non-positive powers of t :

f (t) = E(−1/t) =
∞

∑
k=0

(−1)kekt−k, g(t) = H(1/t) =
∞

∑
k=0

hkt−k.

Similarly to Lemma 4.5,

detTn(a)ρ ,σ = am
p detTn+p( f )ρ̂ ,σ̂ .

The upper triangular Toeplitz matrices generated by f and g are mutually inverse.

Thus, by Jacobi’s theorem about the complementary minor, every minor of Tn+p( f )
can be expressed through a certain minor of Tn+p(g) . In our case,

detTn+p( f )ρ̂ ,σ̂ = (−1)|ξ̂ |+|η̂| detTn+p(g)
η̂,ξ̂

= (−1)|ξ |+|η|+mp det
[
h

ξ̂k−η̂ j

]d+p

j,k=1
.

In order to apply the Jacobi–Trudi formula and to identify the obtained minor of Tn+p(g)

with sα/β , we have to represent ξ̂k − η̂ j as α j −βk − j + k . This is achieved by taking

α j = m+ j− η̂ j and βk = m+ k− ξ̂k . The corresponding partitions are α and β from

(2.6):

α = mp+d + idd+p−η̂ = (mp,md + idd −η),

β = mp+d + idd+p−ξ̂ = (md + idd −ξ ,0p).

The importance of Jacobi’s theorem for the theory of Toeplitz matrices was already

noted in various papers, including [13].
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Let us illustrate Theorem 2.1 by an example.

EXAMPLE 4.8. For w = 5 and p = 2, the Laurent polynomial (2.1) takes the form

a(t) = ∑2
k=−3 aktk . Let a2 = 1, n = 7, ξ = (3,6) and η = (3,7) . Then d = 2, m = 5,

ρ = (1,2,4,5,7) and σ = (1,2,4,5,6) . By striking out the rows ξ and the columns η
in the Toeplitz matrix T7(a) we obtain the minor

det(T7(a)ρ ,σ ) =

∣∣∣∣∣∣∣∣∣∣

a0 a−1 a−3 0 0

a1 a0 a−2 a−3 0

0 a2 a0 a−1 a−2

0 0 a1 a0 a−1

0 0 0 a2 a1

∣∣∣∣∣∣∣∣∣∣

.

By Vieta’s formulas the coefficients ak are expressed through e2−k :

det(T7(a)ρ ,σ ) =

∣∣∣∣∣∣∣∣∣∣

e2 −e3 −e5 0 0

−e1 e2 e4 −e5 0

0 e0 e2 −e3 e4

0 0 −e1 e2 −e3

0 0 0 e0 −e1

∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣

e2 −e3 −e5 e6 −e7

−e1 e2 e4 −e5 e6

−e−1 e0 e2 −e3 e4

e−2 −e−1 −e1 e2 −e3

e−4 −e−3 −e−1 e0 −e1

∣∣∣∣∣∣∣∣∣∣

.

Using (2.5), we have λ = (52,6−2,3−1)= (52,4,2) and µ = (7−2,3−1)= (5,2) ,

then

det(Tn(a)ρ ,σ ) = (−1)10+19+18s(5,5,4,2)/(5,2) = −s(5,4,2)/(2).

By (2.6), α = (5,5,3) and β = (3,1) , thus

det(Tn(a)ρ ,σ ) = −s(5,5,3)/(3,1).

Note that α/β is related with λ/µ by the flip operation ∗ :

REMARK 4.9. The Schur function s(np) from the right-hand side of (2.7) can be

written by the Jacobi–Trudi formula (3.5). Then (2.7) takes the form

detTn(a) = an
p(−1)pn det

[
hn− j+k

]p

j,k=1
. (4.13)

Baxter and Schmidt [3] proved (4.13) without using the language of Schur functions.

They denoted by h j the coefficients of the reciprocal series to a given series ∑k ek(−t)k .

Essentially, they proved the Jacobi theorem about the complementary minor for this

particular situation. In the banded case, the Schur polynomial s(np) can also be written

by (3.9), as the quotient of two determinants:

detTn(a) = an
p(−1)pn

A(np)(x1, . . . ,xw)

V (x1, . . . ,xw)
. (4.14)

In this form (2.7) was deduced by Trench [30, Theorem 2]. These classical results are

also explained in [8, Chapter 2].
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PROPOSITION 4.10. Let λ/µ be a skew partition and d = ℓ(λ ) . Define a by

(2.1) with p = 0 and ap = 1 . Furthermore, let n = λ1 + d ,

ξ = rev(λ )+ idd = (λd + 1,λd−1 + 2, . . . ,λ1 + d),

η = rev(µ)+ idd = (µd + 1,µd−1 + 2, . . . ,µ1 + d),
(4.15)

and let ρ ,σ ∈ Id
n be the complements of ξ ,η , respectively. Then

sλ/µ(z1, . . . ,zw) = (−1)|λ |+|µ|detTn(a)ρ ,σ . (4.16)

Proof. Formulas (4.15) and (4.16) are equivalent to (2.5) and (2.3), if ap = 1 and

p = 0. �

REMARK 4.11. Given a skew partition λ/µ and a number w , the skew Schur

polynomial sλ/µ can be obtained not only as Proposition 4.10 states. For example,

one can choose an arbitrary n satisfying n > λ1 + d . Furthermore, instead of (2.5) one

could use (2.6) with p = 0 and define ξ and η by

ξ = (µ1 − (m+1), . . . ,µd − (m+d)), η = (λ1 − (m+1), . . . ,λd − (m+d)). (4.17)

We do not have a general necessary and sufficient condition to determine whether two

banded Toeplitz minors correspond to the same skew Schur polynomial. Two differ-

ent skew partitions can induce the same skew Schur polynomial, and the problem of

coincidences between skew Schur polynomials is not trivial, see [24].

REMARK 4.12. We tested Theorems 2.1, 2.2, 2.3 using symbolic computations

with Schur functions in SageMath [25, 26], which integrates the Littlewood–Richardson

Calculator library (lrcalc) developed by Anders S. Buch. In particular, we verified (2.3)

and (2.4) for all possible p,n,m,ρ ,σ with 0 6 p,n 6 8 and ap = 1. There were 138812

nonzero answers from 158193 minors in total. In each example, the determinant in the

left-hand side of (2.3) was computed by the recursive expansion. Such symbolic com-

putations can take much time even for modest values of m , say for m = 10. We also

tested Theorem 2.1 with pseudorandom values of p,d,w,n ( p,d,w 6 30, n 6 200),

pseudorandom subsets ξ ,η of {1, . . . ,n} and pseudorandom numbers z1, . . . ,zw .

5. Cofactors of banded Toeplitz matrices

The purpose of this section is to prove Theorem 2.2. Before a formal proof, we

show in the next example how to expand skew Schur functions of the form s(np,s)/(r) .

EXAMPLE 5.1. The skew Pieri rule (3.11) applied to (83,5)/(2) yields
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i.e.

s(83,5)/(2) = s(82,6,5) + s(82,7,4) + s(82,8,3).

The form of the initial diagram implies that the deleted nodes appear only in the last

two rows of the diagrams in the right-hand side.

The same skew Schur function can be represented as the determinant of the fol-

lowing matrix, by Jacobi–Trudi formula:

JT ((83,5)/(2)) =




h6 h9 h10 h11

h5 h8 h9 h10

h4 h7 h8 h9

h0 h3 h4 h5


 .

The columns 2,3,4 of JT ((83,5)/(2)) coincide with the columns 2,3,4 of JT ((83,5)) .

In each row of this submatrix, the degrees of the complete homogeneous polynomials

form arithmetic progressions. The first column of JT ((73,5)/(2)) disturbs this simple

structure. Therefore, we expand the determinant along the first column and convert

each cofactor into a Schur function (it is easily done with the rule from Remark 3.2):

s(83,5)/(2) = h6s(82,5)−h5s(9,8,5) + h4s(92,5)−h0s(93).

LEMMA 5.2. Let n, p ∈ N and r,s ∈ {1, . . . ,n} , then

s(np,s)/(r) =
min(n−r,s)

∑
k=max(0,s−r)

s(np−1,n+s−r−k,k). (5.1)

Proof. We apply the skew Pieri rule (3.11), like in Example 5.1. For λ = (np,s) ,

conditions (3.12) become

n 6 ν j 6 n (1 6 j 6 p−1), s 6 νp 6 n, 0 6 νp+1 6 s, np + s−|ν|= r.

Consequently, ν1 = . . . = νp−1 = n , and if νp+1 is denoted by k , then νp = n+s−r−k .

The corresponding diagram looks as follows (the deleted nodes are filled with the gray

background; they form a horizontal strip):

ν =
np−1

n + s− r− k r + k− s

k s− k

.

The conditions 0 6 k 6 s and s 6 n+ s− r− k 6 n determine the limits of the summa-

tion in (5.1). �

Proof of Theorem 2.2. Applying (2.3) and (2.4) with d = 1, ξ = (s) and η = (r) ,

we immediately obtain (2.8) and (2.9). Combining Lemma 5.2 with formula (2.8), we
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get (2.10). In order to prove the identity (2.11), consider the skew Schur function from

(2.9):

s((n−1)p,n−r)/(n−s) =

∣∣∣∣∣∣∣∣∣

hs−1 hn · · · hn+p−1

...
...

. . .
...

hs−p hn−p+1 · · · hn

hs−r−p hn−r−p+1 · · · hn−r

∣∣∣∣∣∣∣∣∣

.

As in the Example 5.1, we expand the determinant by the first column and use Re-

mark 3.2:

s((n−1)p,n−r)/(n−s) =
p

∑
j=1

(−1) jhs− js(n j−1,(n−1)p− j,n−r) +(−1)phs−r−ps(np).

Making the change of variable k = j− p we obtain

s((n−1)p,n−r)/(n−s) = (−1)phs−r−ps(np) − (−1)p
p−1

∑
k=0

(−1)khs+k−ps(np−k−1,(n−1)k,n−r).

The substitution of the latter expression into (2.8) leads to (2.11). �

REMARK 5.3. Identity (2.11) can also be verified by applying Pieri’s formula.

The sum in the right-hand side of (2.11) can be expanded into a certain telescopic sum

in terms of Schur functions, but the corresponding formulas are rather complicated, and

we decided to omit that proof.

REMARK 5.4. The number of summands in the right-hand side of (2.10) does not

depend on p and can be described as the distance from the cell (r,s) to the boundary

of the matrix:

min{n− r,s+ 1}−max{0,s− r}+ 1 = min{r,s,n + 1− r,n + 1− s}. (5.2)

For example, if n = 5, then (5.2) yields the following table:




1 1 1 1 1

1 2 2 2 1

1 2 3 2 1

1 2 2 2 1

1 1 1 1 1




.

Plotting the 3D graph of the function (r,s) 7→ (5.2) , i.e. representing the number of

summands by the height, we obtain a pyramid.

We already know that all entries of adj(Tn(a)) can be written as skew Schur func-

tions, up to certain coefficients. In the case of the entries belonging to the “border”

of the matrix adj(Tn(a)) , these skew Schur functions simplify to Schur functions. The

next result, being a corollary of Theorem 2.2, gives a formula for the entries of the first

column.
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COROLLARY 5.5. Let a be of the form (4.3) and n > 1 . Then for every r in

{1, . . . ,n}

adj(Tn(a))r,1 = an−1
p (−1)p(n−1)s((n−1)p−1,n−r). (5.3)

Proof. Apply (2.9) with s = 1 and the identity s((n−1)p,n−r)/(n−1) = s((n−1)p−1,n−r) .

Alternatively, use (2.8) with s = 1 and the flip operation ∗ . �

6. Eigenvectors of banded Toeplitz matrices

The starting point of our approach to eigenvectors is the elementary observation

that for a non-invertible square matrix A ,

A adj(A) = det(A)In = 0n×n.

Thus every column of the adjugate matrix adj(A) belongs to the null-space of A . Ap-

plying this reasoning to A−xI instead of A we arrive at the following statement which

was already mentioned and used in [9, Section 2].

LEMMA 6.1. Let A ∈ Cn×n and x be an eigenvalue of A. Then every column v

of the matrix adj(A− xIn) satisfies Av = xv.

Proof. [Proof of Theorem 2.3.] Let us define v ∈ Cn as the first column of

adj(Tn(a− x)) multiplied by (−1)p(n−1) . Then vr = s((n−1)p−1,n−r) by (5.3), and by

Lemma 6.1 Tn(a) = xv . This part is not only true for Laurent polynomials, but also for

Laurent series of the form (4.3).

Now suppose that a is a Laurent polynomial, and a− x has w distinct zeros

z1, . . . ,zw . Recall the notation (3.10) and consider the matrices

B = A((n−1)p−1,n−r)(z1, . . . ,zw), D = A(np)(z1, . . . ,zw),

i.e.

B =




zn+w−2
1 . . . zn+w−2

w

... . . .
...

z
n+w−p
1 · · · z

n+w−p
w

z
n−r+w−p
1 . . . z

n−r+w−p
w

z
w−p−1
1 . . . z

w−p−1
w

... . . .
...

z0
1 . . . z0

w




, D =




zn+w−1
1 . . . zn+w−1

w

zn+w−2
1 . . . zn+w−2

w

... . . .
...

z
n+w−p
1 · · · z

n+w−p
w

z
w−p−1
1 . . . z

w−p−1
w

... . . .
...

z0
1 . . . z0

w




.

After deleting the p -th row of B and the first row of D (these rows are filled with gray

background), one obtains the same submatrix. Therefore the cofactor of the entry (p, j)
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in B coincides with the cofactor of the entry (1, j) in D , up to the factor (−1)p−1 .

Denote by C j this cofactor divided by the Vandermonde polynomial V =V (z1, . . . ,zw) :

C j =
(adjB) j,p

V
=

(−1)p−1(adjD) j,1

V
. (6.1)

The matrix D does not depend on r , hence the numbers C j neither depend on r . Here

is a more explicit formula for C j :

C j =
(−1)p+ j

V

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

zn+w−2
1 . . . zn+w−2

r−1 zn+w−2
r+1 . . . zn+w−2

w

...
. . .

...
. . .

...

z
n+w−p
1 · · · z

n+w−p
r−1 z

n+w−p
r+1 · · · z

n+w−p
w

z
w−p−1
1 . . . z

w−p−1
r−1 z

w−p−1
r+1 . . . z

w−p−1
w

...
. . .

...
...

. . .
...

z0
1 . . . z0

r−1 z0
r+1 . . . z0

w

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Applying (3.9) we represent the Schur polynomial on the right–hand side of (2.12),

s((n−1)p−1,n−r) , as a quotient of two determinants. Expanding the numerator by the p th

row we obtain

vr =
detB

V
=

w

∑
j=1

C jBp, j, (6.2)

which coincides with (2.13). �

REMARK 6.2. Formula (2.13) can be generalized to the case when some of the

numbers z1, . . . ,zw coincide. In this case we apply (6.1) and (6.2) with B,D,V defined

as in Remark 3.3.

REMARK 6.3. The vector C = [C j]
w
j=1 , multiplied by (−1)p−1 , is the p -th col-

umn of the matrix adj(D) . Since det(D) = 0, this vector belongs to the null-space of

D . In [30], Trench wrote Toeplitz matrices in the transposed form [ak− j]
n
j,k=1 , thus

instead of (2.13) he obtained a linear combination of geometric progressions with in-

creasing powers. Up to these technical changes, he described the vector C as a nonzero

solution of the linear system DC = 0w . Thus the result obtained by Trench is slightly

more general than (2.13).

EXAMPLE 6.4. If a is of the form (4.3) with p = 1, then the corresponding

Toeplitz matrices Tn(a) have only one nonzero diagonal below the main diagonal and

are known as upper Hessenberg–Toeplitz matrices. In this case, (2.12) simplifies to

vr = hn−r. (6.3)

An analogue of the formula (6.3) for lower Hessenberg–Toeplitz matrices was estab-

lished in [4, Theorem 1.1].
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[20] U. GRENANDER AND G. SZEGŐ, Toeplitz Forms and Their Applications, University of California

Press, Berkeley, Los Angeles, 1958.

[21] A. LASCOUX, Symmetric Functions and Combinatorial Operators on Polynomials, In series: CBMS

Regional Conference Series in Mathematics, vol. 99, co-publication of the AMS and Conference Board

of the Mathematical Sciences Providence, Rhode Island, 2003, doi: 10.1090/cbms/099.

[22] D. E. LITTLEWOOD, The Theory of Group Characters and Matrix Representations of Groups, 2nd ed.

The Clarendon Press, Oxford University Press, Oxford, 1950.

[23] I. G. MACDONALD, Symmetric functions and Hall polynomials, 2nd ed. The Clarendon Press, Oxford

University Press, Oxford, 1995.

[24] V. REINER AND K. M. SHAW AND S. VAN WILLIGENBURG, Coincidences among skew Schur func-

tions, Adv. Math. 216, 1 (2007), 118–152, doi: 10.1016/j.aim.2007.05.006.

[25] THE SAGE DEVELOPERS, SageMath, the Sage Mathematics Software System (Version 7.5.1) (2017),

doi: 10.5281/zenodo.28514, http://www.sagemath.org.

[26] THE SAGE-COMBINAT COMMUNITY, Sage-Combinat: enhancing Sage as a toolbox for computer

exploration in algebraic combinatorics, (2008), http://combinat.sagemath.org.

[27] R. P. STANLEY, Enumerative Combinatorics, vol. 2. Cambridge University Press, Cambridge, 1999.

[28] C. A. TRACY, H. WIDOM, On the distributions of the lengths of the longest monotone subsequences in

random words, Probab. Theory Relat. Fields 119 (2001), 350–380, doi: 10.1007/s004400000107.

[29] W. F. TRENCH, Explicit inversion formulas for Toeplitz band matrices, SIAM J. on Algebraic and

Discrete Methods 6, 4 (1985), 546–554, doi: 10.1137/0606054.

[30] W. F. TRENCH, On the eigenvalue problem for Toeplitz band matrices, Linear Algebra Appl. 64

(1985), 199–214, doi: 10.1016/0024-3795(85)90277-0.

[31] H. WIDOM, On the eigenvalues of certain Hermitean operators, Trans. Amer. Math. Soc. 88, 2 (1958),

491–522, doi: 10.2307/1993228.

(Received June 3, 2017) Egor Maximenko

Instituto Politécnico Nacional
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