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GLOBAL WELLPOSEDNESS TO THE INCOMPRESSIBLE

MHD EQUATIONS WITH SOME LARGE INITIAL DATA

XIAOPING ZHAI

Abstract. In this paper, we mainly study the global wellposedness for the n -dimensional homo-
geneous and nonhomogeneous incompressible magnetohydrodynamic equations in the critical
Besov spaces. By fully using the advantage of weighted function generated by heat kernel and
Fourier localization technique, we first get the global wellposedness for the homogeneous in-
compressible MHD equations with initial data under a nonlinear smallness hypothesis. It is
amazing that we can exhibit an initial data satisfying that nonlinear smallness assumption, de-
spite each component of the initial data could be arbitrarily large. Then, as an application of our
global well-posedness, we also extend our result to the inhomogeneous incompressible MHD
equations.
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