NON–LINEAR CASAZZA–KALTON–CHRISTENSEN–VAN EIJNDHOVEN PERTURBATION WITH APPLICATIONS

K. Mahesh Krishna

Abstract. Let \mathcal{X}, \mathcal{Y} be Banach spaces and $S: \mathcal{X} \to \mathcal{Y}$ be an invertible Lipschitz map. Let $T: \mathcal{X} \to \mathcal{Y}$ be a map and there exist $\lambda_1, \lambda_2 \in [0,1)$ such that

$$
\|Tx - Ty - (Sx - Sy)\| \leq \lambda_1 \|Sx - Sy\| + \lambda_2 \|Tx - Ty\|, \quad \forall x, y \in \mathcal{X}.
$$

Then we prove that T is an invertible Lipschitz map. This is non-linear version of 26 years old Casazza-Kalton-Christensen-van Eijndhoven perturbation. It also a non-linear version of 29 years old Soderlind-Campanato perturbation and 3 years old Barbagallo-Ernst-Thera perturbation. We give applications to the theory of metric frames. The notion of Lipschitz atomic decomposition for Banach spaces is also introduced.

Keywords and phrases: Paley-Wiener perturbation, Lipschitz map, metric frame, atomic decomposition.

REFERENCES

[38] CARL NEUMANN, Untersuchungen über das logarithmische und Newtonsche Potential, Teubner, Leipzig, 1877.
[40] A. PELCZYŃSKI, Any separable Banach space with the bounded approximation property is a complemented subspace of a Banach space with a basis, Studia Math., 40: 239–243, 1971

