INTERPOLATING SEQUENCES FOR THE BANACH ALGEBRAS GENERATED BY A CLASS OF TEST FUNCTIONS

ANINDYA BISWAS AND VIKRAMJEET SINGH CHANDEL

Abstract. The problem of characterizing interpolating sequences in a bounded domain $\Omega \subset \mathbb{C}^n$ for the Banach algebra $H^\infty(\Omega)$ of bounded holomorphic functions is well-studied in the literature. For the unit disc \mathbb{D}, the bidisc \mathbb{D}^2 and the symmetrized bidisc \mathbb{G}^2, there is a way to such a characterization via the realization formula that the function algebras $H^\infty(\Omega)$ possess in these cases. Our aim in this article is to present such a characterization of interpolating sequences in a more general setting for a class of Banach algebras that possess such a realization formula. The closed unit ball of these Banach algebras are known as the Schur–Agler-class associated to a class of test functions Ψ on Ω. We shall also note that the case of \mathbb{D}, \mathbb{D}^2 and \mathbb{G}^2 are special cases of our main result. A few other examples of function algebras is also mentioned where our main result applies leading to a characterization of interpolating sequences.

Mathematics subject classification (2020): Primary 47A48, 47A57; Secondary 30E05.

Keywords and phrases: Interpolating sequence, test functions, Schur–Agler class, Grammian.

REFERENCES

