MULTIPLICATIVELY NUMERICAL RANGE–PRESERVING MAPS

HAMID NKHAYLIA

Abstract. Given a complex Hilbert space \mathcal{H}, we denote by $B(\mathcal{H})$ the algebra of all bounded linear operators on \mathcal{H}, and \mathcal{A}, \mathcal{B} two subsets of $B(\mathcal{H})$ containing all operators of rank at most one. Let $W(A)$ the numerical range of $A \in B(\mathcal{H})$. For an infinite-dimensional space \mathcal{H}, we prove that surjective maps $\phi_1, \phi_2 : \mathcal{A} \rightarrow \mathcal{B}$ satisfy

$$W(\phi_1(A)\phi_2(B)) = W(AB), \quad (A, B \in \mathcal{A})$$

if and only if there exist $\mu, \nu \in \mathbb{C}$ with $\mu \nu = 1$, a bounded invertible linear operator U on \mathcal{H} and a unitary operator V on \mathcal{H} such that $\phi_1(A) = \mu V A U^{-1}$ and $\phi_2(A) = \nu U A V^*$ for all $A \in \mathcal{A}$. We also obtain an analogue result for the finite-dimensional case. Furthermore, some known results are obtained as immediate consequences of our main results.

Keywords and phrases: Numerical range, numerical radius, nonlinear preserver.

REFERENCES

