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Dedicated to Luka Korkut, upon his retirement

(Communicated by Yuki Naito)

Abstract. In this review article, we present results concerning fractal analysis of Fresnel and gen-
eralized Fresnel integrals. The study is related to computation of box dimension and Minkowski
content of spirals defined parametrically by Fresnel integrals, as well as computation of box di-
mension of the graph of reflected component function which are chirp-like function. Also, we
present some results about relationship between oscillatority of the graph of solution of differ-
ential equation, and oscillatority of a trajectory of the corresponding system in the phase space.
We are concentrated on a class of differential equations with chirp-like solutions, and also spiral
behavior in the phase space.

1. Introduction

As coauthors of Luka Korkut, we present here an overview of his scientific con-
tribution in fractal analysis of Fresnel integrals and chirp-like functions. We cite the
main results from joint articles of Korkut, Resman, Vlah, Žubrinić and Županović,
[18, 19, 20, 21, 22, 23]. The articles are mostly based on qualitative theory of differen-
tial equations. A standard technique of this theory is phase plane analysis. We study
trajectories of the corresponding system of differential equations in the phase plane,
instead of studying the graph of the solution of the equation directly. Our main interest
is fractal analysis of behavior of the graph of oscillatory solution, and of a trajectory
of the associated system. This approach has been extended to the study of oscillatory
integrals. From the point of view of fractal geometry, fractal properties of trajectories in
the phase plane have been analyzed and compared with fractal properties of the graphs
of solutions of differential equations. The particularly interesting case are curves with
an accumulation point in whose neighborhood the curve itself is non-rectifiable, that is,
of infinite length.

Fractal dimension theory in dynamics has over the years evolved into an indepen-
dent field of mathematics. Fractal dimensions enable better insight into the dynamics
appearing in various problems in physics, engineering, medicine and in many other
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branches of mathematics. Some of the fractal dimensions that are important for dy-
namics are Hausdorff dimension, box dimension, the Rényi spectrum for dimensions,
correlation dimension, information dimension and packing dimension.

In our considerations, the box dimension is used, in order to give better insight to
oscillatority of a class of integrals and to oscillatority of solutions of a class of differen-
tial equations. The box dimension is a tool for distinguishing between non-rectifiable
curves, near an accumulation point. For planar curves, box dimension of a curve in
the neighborhood of an accumulation point lies in the interval [1,2] . It measures the
”amount” of accumulation of the curve at the accumulation point. Note that another
commonly used fractal dimension, the Hausdorff dimension, cannot distinguish be-
tween non-rectifiable smooth curves. Using the countable stability of the Hausdorff
dimension, and a fact that every smooth non-rectifiable curve is a countable union of
rectifiable curves, we get that the Hausdorff dimension of every non-rectifiable smooth
curve is always trivial and equal to 1.

The main observation in our work is that there exists an interesting relationship
between oscillatority of the graph of the solution and oscillatority of a trajectory in
the phase space. Box dimension of a trajectory is thus called the phase dimension of
the solution of the equation. In this study, the two curves are significant. Their box
dimensions have been calculated in the book of Claude Tricot [49]:

(i) The α -power-type spiral, given by r = ϕ−α in polar coordinates, where ϕ � ϕ0 > 0,
α ∈ (0,1] . It is non-rectifiable near the origin, with box dimension

d =
2

1+ α
.

(ii) The (α,β )-chirp function, given by the formula y(x) = xαsin(x−β ) , where x ∈
(0,x0) , x0 > 0. For 0 < α � β , its graph is non-rectifiable near the origin and accu-
mulates in the neighborhood of the origin with box dimension

d = 2− 1+ α
1+ β

.

If we want to measure oscillatority at infinity instead at the origin, we can perform
the change of coordinates which puts the infinity to the origin. Such graph is called the
reflected graph.

In this overview article, we present some results that originate from the articles
of Luka Korkut and his coauthors. Each subsection treats the results from a differ-
ent article, and the contribution of Luka Korkut is explained at the beginning of each
section.

This article is dedicated only to the results of Luka Korkut, upon his retirement.
Other articles from collaborators of Luka Korkut dealing with the similar subjects in
fractal analysis of differential equations and dynamical systems are: [28, 40, 41, 42,
43, 44, 45, 51] for fractal analysis of solutions of ordinary differential equations, [14,
32, 48, 56] for fractal analysis of trajectories of discrete dynamical systems, and [53,
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54, 55] for fractal analysis of spiral trajectories of continuous dynamical systems in the
phase plane and phase space. More specifically, Euler type equations are considered in
[41, 40, 51], Hartman-Wintner type equations in [28], half linear equations in [44], the
Bessel equation in [43] and the first results connecting fractal properties of chirps and
spirals, with applications to Liénard and Bessel equations, can be found in [45].

In [14], bifurcations of 1-dimensional discrete systems were treated. It was noted
that the box dimension around the bifurcation point reveals number of fixed points ap-
pearing in perturbations. As far as continuous systems are concerned, the main object
of research was the connection between the cyclicity of simple limit periodic sets (el-
liptic singular points or periodic orbits) and the box dimension of a spiral trajectory in
their neighborhood. It was noted in [54] that the density of accumulation is correlated
with number of cycles born in perturbations. Continuous systems were related to dis-
crete systems via Poincaré map in [55], using [8]. The result was then extended to some
simple polycycles in [32].

It is worth knowing that chirp functions are considered in the time-frequency anal-
ysis, see references [3, 5, 15, 37, 47]. For some applications of the time-frequency
analysis, see for instance [2, 16, 39, 46, 50]. Finally, for essential qualitative properties
of chirp-like solutions, see classical references [6, 13, 38, 1, 17]. For oscillations of
solutions of second order quasilinear differential equations, see for instance [27, 26],
while for oscillations in biology, see for instance [12]. In this article we investigate the
fractal approach to the theory of oscillations.

1.1. Notations

Let us now recall some basic definitions from fractal analysis. By d(x,A) we
denote the Euclidean distance from point x to a given subset A in R

N . Let Aε be the
open ε -neighborhood of A . The upper s-dimensional Minkowski content of a bounded
subset A in R

N , s � 0, is defined by

M ∗s(A) := limsup
ε→0

|Aε |
εN−s ,

where |Aε | denotes the N -dimensional Lebesgue measure of Aε . The lower s-dimen-
sional Minkowski content of A is defined by

M s
∗(A) := liminf

ε→0

|Aε |
εN−s .

If both of these quantities coincide, the common value is denoted by M s(A) . See
Krantz and Parks [25, p. 74], Mattila [33, p. 79], and Žubrinić [52] for basic properties
of the Minkowski contents. Value s at which the function s �→ M ∗s(A) jumps from
infinity to zero is called the upper box dimension of A , denoted by d = dimBA . More
precisely,

dimBA = inf{s � 0 : M ∗s(A) = 0} = sup{s � 0 : M ∗s(A) = ∞}.
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The lower box dimension of A , denoted by d = dimBA , is defined analogously. If both
of these dimensions are equal, the common value is called the box dimension of A , and
denoted by d = dimB A . See Falconer [11].

If 0 < M d∗ (A) � M ∗d(A) < ∞ , we say that A is Minkowski nondegenerate, see
[52]. If M d∗ (A) = M ∗d(A) , the common value is denoted by M d(A) , and called d -
dimensional Minkowski content of A . If moreover M d(A) ∈ (0,∞) , we say that A is
Minkowski measurable. Box dimension appears very often, in particular in dynamics.
For more information, see the survey article [56]. The Minkowski content is a subject
of extensive study undertaken by M. Lapidus and his collaborators in various directions,
see [24], [29], [30] and the references therein.

Finally, we introduce some notations used in the articles. For two real functions
f , g of real variable, we write

f (t) ∼ g(t), as t → 0 (t → ∞),

if limt→0 (t→∞) f (t)/g(t) = 1. Let k be a nonnegative integer, and f , g of class Ck .
We write

f (t) ∼k g(t), as t → 0 (t → ∞),

if f ( j)(t) ∼ g( j)(t) as t → 0 (t → ∞), for all j = 0,1, ...,k .
Similarly, we write

f (t) � g(t), as t → 0 (t → ∞),

if there exist two positive constants C > 0 and D > 0, such that C f (t) � g(t) � D f (t) ,
for all t sufficiently close to t = 0 (for all t sufficiently large). Let k be a nonnegative
integer and let f and g be of class Ck . We write

f (t) �k g(t), as t → 0 (t → ∞),

if f ( j)(t) � g( j)(t) , as t → 0 (t → ∞), for all j = 0,1, ...,k .
Furthermore, we write f (t) = O(g(t)) , as t → 0 (t → ∞), if there exists a positive

constant C > 0 such that | f (t)| � C|g(t)| , for all t sufficiently close to t = 0 (for all t
sufficiently large). Similary, we write f (t) = o(g(t)) , as t → 0 (t → ∞), if, for every
positive constant ε > 0, it holds that | f (t)|� ε|g(t)| , for all t sufficiently close to t = 0
(for all t sufficiently large).

2. Fractal analysis of Fresnel integrals

In this section we study, from the point of view of fractal geometry, clothoids and
generalized clothoids, defined by Fresnel and generalized Fresnel integrals. That is,
we compute their box dimension and Minkowski content, as well as box dimension of
graphs of their component functions.
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Figure 1: Graph of the clothoid.

2.1. Standard clothoid

Luka Korkut has been working on the problem of clothoid since Vladimir Kostov,
see [7], proposed fractal study of clothoid as an interesting problem. The clothoid, also
called the Cornu spiral or the Euler spiral, is widely used in robotics, civil engineering,
number theory etc. It is used for finding the optimal path for a robot with prescribed
initial and final angles and curvatures, in modeling road shapes and in computer aided
geometric design applications. So called clothoid splines are used among others in
computer typography and cartography, see for instance [36, 35, 34]. Also, the clothoid
is associated with the concept of diffraction in optics, see [4, p. 428]. This subsection
is devoted to results from article [23].

Clothoid is a planar curve defined parametrically by

x(t) =
∫ t

0
cos(s2)ds, y(t) =

∫ t

0
sin(s2)ds, (2.1)

where t ∈ R . The graph consists of two spiral curves converging to two focus points,
in the first and in the third quadrant, as t → ±∞ . The two spirals are symmetric with
respect to the origin. At any point, the curvature is proportional to the arc length from
the origin: the curvature at the point (x(t),y(t)) is equal to 2t , and the arc length from
the origin to the point (x(t),y(t)) is equal to t . The spirals are thus nonrectifiable, as
t →±∞ , see Figure 1 above.

In [23], several results about box dimension and Minkowski content of the clothoid
are proved.

THEOREM 1. (Box dimension and Minkowski content of the clothoid, [23]) Let Γ
be the clothoid defined by (2.1). Then

dimB Γ = 4/3.
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Furthermore, Γ is Minkowski measurable with Minkowski content

M 4/3(Γ) = 3 ·2−2/3π1/3.

The idea of the proof. For finding box dimension of spiral trajectories of the
clothoid, we use Theorem 5 from [54]. The theorem is a generalization of Tricot’s for-
mula [49, p. 121] for the box dimension of spiral trajectories r(ϕ) = ϕ−α , mentioned
in the Introduction. It deals with spirals with the asymptotics r(ϕ) ∼ ϕ−α , ϕ → ∞ . To
prove that spirals of the clothoid satisfy the assumptions of Theorem 5 from [54], we
exploit the known asymptotics of Fresnel integrals from Lebedev [31, p. 23],

C(x) =
∫ x

0
cos

(
πs2

2

)
ds, S(x) =

∫ x

0
sin

(
πs2

2

)
ds.

For large values of |x| → ∞ , we have

⎧⎨
⎩

C(x) = 1
2 − 1

πx

[
B(x)cos(πx2

2 )−A(x)sin(πx2

2 )
]

S(x) = 1
2 − 1

πx

[
A(x)cos(πx2

2 )+B(x)sin(πx2

2 )
]
.

Here,

A(x) =
N

∑
k=0

(−1)kα2k

(πx2)2k +O(|x|−4N−4), B(x) =
N

∑
k=0

(−1)kα2k+1

(πx2)2k+1 +O(|x|−4N−6),

for any N � 0, and

αk = 1 ·3 · · ·(2k−1), for k � 1, α0 = 1.

We now apply the above expansions to (2.1), to get the expansions of component func-
tions, as t → ∞ : ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
x(t) =

∫ t

0
cos(s2)ds =

√
π
2
C

(√
2
π

t

)

y(t) =
∫ t

0
sin(s2)ds =

√
π
2

S

(√
2
π

t

)
.

Using the above expansions, after some computation, we get the asymptotics of the
spiral trajectory of the clothoid in polar coordinates r(ϕ) , as ϕ → ∞ . �

Furthermore, in [23], fractal analysis of the graphs of the component functions
x(t) and y(t) of the clothoid is provided. It turns out that the reflected component
functions are almost chirp functions, and thus their box dimensions follow easily from
Tricot’s formula for chirps, see Introduction.

We first state two definitions from Pašić, Žubrinić and Županović [45] that we
need in the sequel.
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Figure 2: Graph of reflected component function X(τ) = x(1/τ) , of the clothoid.

DEFINITION 1. (Oscillatory function near t = ∞ or t = 0, [45]) Let x : [t0,∞) →
R , t0 > 0, be a continuous function. We say that x(t) is oscillatory function near
t = ∞ if there exists a sequence tk → ∞ such that x(tk) = 0, and the functions x|(tk ,tk+1)
alternately change sign for k ∈ N .

Analogously, let u : (0,t0] → R , t0 > 0, be a continuous function. We say that u
is oscillatory function near the origin if there exists a sequence sk such that sk ↘ 0 as
k → ∞ , u(sk) = 0 and restrictions u|(sk+1,sk) alternately change sign for k ∈ N .

To measure the oscillatority of x(t) at infinity, the following notion of oscillatory
dimension has been introduced in [45]. It was mentioned in the context of solutions
of nonlinear ODEs of the second order, defined on (t0,∞) , with oscillatory nature near
t = ∞ .

DEFINITION 2. (Oscillatory dimension, [45]) Let x : [t0,∞)→R be an oscillatory
function near t = ∞ . Let X : (0,1/t0] → R be its reflected function, that is, X(τ) =
x(1/τ) . The oscillatory dimension dimosc(x) of x(t) near t = ∞ is defined as the box
dimension of the graph G(X) of X(τ) near τ = 0,

dimosc(x) = dimB G(X),

provided that the box dimension exists.

The reflected function X(τ) is smooth, so the oscillatory dimension does not depend
on t0 .

The second main theorem from [23], stated below, concerns oscillatory dimensions
of component functions x(t) and y(t) of the clothoid, see Figure 2 above.

THEOREM 2. (Oscillatory dimension of the component functions, [23]) Let x(t)
and y(t) be component functions of the clothoid, defined by (2.1). The oscillatory di-
mension of both of them is equal to 4/3 . Furthermore, the graphs of the corresponding
reflected functions X(τ) and Y (τ) are Minkowski nondegenerate.

Sketch of the proof. The proof relies on the following result from [23, Lemma 2].
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LEMMA 1. Let g : (0,τ0) → R be a smooth function, and G(g) its graph in R
2 .

If h : (0,τ0) → R is a Lipschitz function then

dimBG(g+h) = dimBG(g), dimBG(g+h) = dimBG(g).

In particular, if there exists dimB G(g) , then dimB G(g+h)= dimB G(g) . Furthermore,
if the graph G(g) is Minkowski nondegenerate, then the same holds for G(g+h) .

We show that the reflected component functions X(τ) and Y (τ) can be written
as sums of an appropriate chirp function and remainder function with the bounded
first derivative, which is therefore Lipschitz. The result follows directly from Tricot’s
formula for graphs of chirp functions and Lemma 1 above. �

2.2. Generalized clothoids

This subsection is devoted to the results of Luka Korkut and his coauthors pub-
lished in [20], where the generalization of the standard clothoid, so-called p-clothoid,
has been considered. As in previous section, we cite here the results concerning fractal
analysis of graphs of p -clothoids, as well as of their component functions.

By p-clothoid, p > 1, we mean a planar curve defined parametrically by

x(t) =
∫ t

0
cos(sp)ds, y(t) =

∫ t

0
sin(sp)ds, (2.2)

where t � 0. We may replace sp by |s|p in (2.2), and allow t ∈ R . Then the clothoid,
as before, consists of two spirals with foci in the first and in the third quadrant that
are symmetric with respect to the origin. Note that the standard clothoid from Subsec-
tion 2.1 corresponds to p = 2. For p -clothoid, see Figure 3 below, the arc length from
the origin to the point (x(t),y(t)) is equal to t , and the curvature at (x(t),y(t)) is equal
to pt p−1 .

The focus point of the p -clothoid defined by (2.2) has the following coordinates:⎧⎨
⎩

a =
∫ ∞
0 cos(sp)ds = 1

pΓ(1/p)cos(π/2p),

b =
∫ ∞
0 sin(sp)ds = 1

p Γ(1/p)sin(π/2p).
(2.3)

Here, Γ(z) is the gamma function, see [9, p. 13, Vol. I]. It was proven in [20, Lemma
2] that the improper integrals converge due to p > 1. For standard clothoid, p = 2, the
focus points in (2.3) have been computed by Euler, see [10].

The main result of [20] is the following Theorem 3, which is a generalization of
Theorem 1 from Subsection 2.1. It was proven in a similar way as Theorem 1 in previ-
ous section, but using asymptotic expansions of generalized Fresnel integrals associated
to generalized Euler spirals.

THEOREM 3. (Box dimension and Minkowski content of p -clothoids, [20]) Let Γp

be the p-clothoid defined by (2.2), p > 1 . Then

d = dimB Γp = 2p/(2p−1).
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Figure 3: Graph of the p -clothoid, t � 0, for values p = 3/2 and p = 3, for bigger
and smaller accumulation, respectively.

Furthermore, Γp is Minkowski measurable and its Minkowski content is equal to

M d(Γp) = (2p−1)
(
p(p−1)p−1)−2/(2p−1)π1/(2p−1).

Example. For the standard 2-clothoid, we get from Theorem 3 that its box dimension
is equal to 4/3.
Sketch of the proof. The following asymptotic expansions and Theorem 5 from [54],
are the keypoints of the proof. For these expansions, see [9, pp. 149-150, Vol. II].
Also, in [20], a short, elementary proof of these expansions is proposed. Let x(t) and
y(t) be generalized Fresnel integrals defined by (2.2), p > 1, and a = limt→∞ x(t) ,
b = limt→∞ y(t) . Then, for any nonnegative integer N , we have{

x(t) = a+AN(t)sin(t p)−BN(t)cos(t p)+O(t−(2N+3)p+1),
y(t) = b−BN(t)sin(t p)−AN(t)cos(t p)+O(t−(2N+3)p+1),

when t → ∞ . Here,

AN(t) =
N

∑
k=0

(−1)ka2kt
−(2k+1)p+1,

BN(t) =
N

∑
k=0

(−1)ka2k+1t
−(2k+2)p+1,



536 MAJA RESMAN, DOMAGOJ VLAH AND VESNA ŽUPANOVIĆ
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Figure 4: Graph of reflected component function X(τ) = x(1/τ) , of the p -clothoid for
p = 3/2 and p = 3 respectively.

an = p−n−1(p−1)(2p−1) . . .(np−1), n � 1 and a0 = p−1.

�

With the same definitions of oscillatority as in Subsection 2.1, we have the follow-
ing theorem about the component functions of p -clothoid.

THEOREM 4. (Box dimension of the component functions of p -clothoid, [20]) As-
sume that p � 2 and let x(t) and y(t) be the component functions of the p-clothoid
defined by (2.2). The oscillatory dimension of both of them is equal to (2+ p)/(1+ p) .
Furthermore, the graphs of the corresponding reflected functions X(τ) and Y (τ) are
Minkowski nondegenerate.

This theorem is proved in the same manner as Theorem 2. The reflected functions
X(τ) and Y (τ) , can be written as sum of chirp functions and remainder term whose first
derivative is bounded, due to the assumption that p � 2. We can then apply Lemma 1.
For graphs of reflected function X(τ) for different values of p , see Figure 4 above.
Remember, for p = 2, see Figure 2.

REMARK 1. There is a generalization of the previous theorem for p > 1 , pub-
lished in [18]. The same conclusion holds. The difference in the proof is that the
remainder term in the reflected functions in the case 1 < p < 2 does not have bounded
first derivative and we cannot directly apply Lemma 1. Instead, we have to consider the
first two terms in the development of X(τ) , as τ → 0, instead of only the first term.
The sum of first two terms turns out to be the so-called generalized chirp-like function.
Computing the box dimension of such functions was therefore needed. It is a subject
of the following section.

3. Fractal analysis of chirp-like functions and spirals

The link between chirp-type oscillatority of graphs of solutions of ordinary differ-
ential equations and power-type oscillatority of spirals generated by these solutions in
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Figure 5: Graph of (1/2,1)-chirp-like function y(x) = P(x)sin(Q(x)) , near x = 0,
where P(x) = x1/2 +2x2/3 sin(x−1) and Q(x) = x−1 + x−1/2 .

the phase plane has been observed by Luka Korkut and his coauthors. In the paper [45],
phase oscillatority and phase dimension of functions has been introduced. These results
have been applied to the class of planar autonomous systems which have weak focus at
the origin, that is which have strictly imaginary eigenvalues. For definitions and nota-
tions, see Subsection 3.2 below. It has been proven that α -power-type oscillations in
the phase plane imply oscillatority of component functions of (α,1)-chirp type, where
α ∈ (0,1) .

Due to this observation and Remark 1, a need arose for fractal analyis of the so-
called chirp-like functions. They behave asymptotically like chirps, but are not exactly
chirps, see Definition 3 below. We expected the same Tricot’s formula for box di-
mension to hold in this case. This was the subject of the article [18], described in
Subsection 3.1 below.

3.1. Chirp-like functions

This subsection is devoted to results from article [18] and [22] about box dimen-
sion and Minkowski content of the so-called chirp-like functions.

DEFINITION 3. (Chirp-like functions) Functions of the form

y = P(x)sin(Q(x)) or y = P(x)cos(Q(x)),

where P(x) � xα , Q(x) �1 x−β , as x → 0, are called (α,β )-chirp-like functions near
x = 0.

For the example of (α,β )-chirp-like function near x = 0, see Figure 5 above.
Let us remark here that we use the name chirp-like in a descriptive and imprecise

manner. We will call all functions from Theorem 5 and Theorem 6 chirp-like, although
their properties differ slightly from those in Definition 3.

In the sequel we need the following definition from Pašić [40].
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DEFINITION 4. (d -dimensional fractal oscillatority) Suppose that v : I → R, I =
(0,1], is an oscillatory function near the origin. Let d ∈ [1,2) . We say that v is d -
dimensional fractal oscillatory near the origin if

dimB G(v) = d and 0 < M d
∗ (G(v)) � M ∗d(G(v)) < ∞.

Here, G(v) denotes the graph of v .

In [18], [22], Luka Korkut proved several results concerning box dimension of
chirp-like functions. Sufficient chirp-like behavior conditions have been established for
a function to have the box dimension of the standard chirp, d = 2− (1+ α)/(1+ β ) .

THEOREM 5. (Box dimension of chirp-like functions, [18]) Let 0 < α � β , α /∈
{1,2,3,4} , δ > 0 , I = (0,δ ] . Suppose y(x) = p(x)S(q(x)) , where p, q ∈ C5(I) ,
p(x) > 0 , q(x) > 0 on I and p(x) , q(x) satisfy the following estimates:

p(x) ∼5 xα , q(x) ∼5 x−β ,

as x→ 0 . Let S(t) =Ccos(t)+Dsin(t) , C,D ∈ R, be an arbitrary linear combination
of sine and cosine functions. Then y(x) is d-dimensional fractal oscillatory near the
origin, where d = 2− (α +1)/(β +1) .

REMARK 2. Theorem 5 is also true for α ∈ {1,2,3,4} , but under slightly differ-
ent assumptions on p(x) , as x → 0:

α = 1 : p(x) ∼ x, p′(x) ∼ 1, p( j)(x) = o(x−( j−1)), j = 2,3,4,5,

α = 2 : p(x) ∼ x2, p′(x) ∼ 2x, p′′(x) ∼ 2, p( j)(x) = o(x−( j−2)), j = 3,4,5,

α = 3 : p(x) ∼ x3, p′(x) ∼ 3x2, p′′(x) ∼ 6x, p′′′(x) ∼ 6,

p( j)(x) = o(x−( j−3)), j = 4,5,

α = 4 : p(x) ∼ x4, p′(x) ∼ 4x3, p′′(x) ∼ 12x2, p′′′(x) ∼ 24x,

p(iv)(x) ∼ 24, p(v)(x) = o(x−1).

From Theorem 5, the following corollary about box dimension of sum of chirp
functions was deduced:

COROLLARY 1. ([18]) Let 0 < α1 , 0 < α2 , β � α = min{α1,α2} . Let

y(x) = C1x
α1 sinx−β +C2x

α2 cosx−β ,

where C1 and C2 are nonzero real constants. Then y(x) is d -dimensional fractal
oscillatory near the origin, where d = 2− (α +1)/(β +1) .

Proof. The sum y(x) can be written as y(x) = p(x)sin(q(x)) . It can be checked
that y(x) is chirp-like in the sense of Theorem 5.

Finally, the following theorem proven by Luka Korkut in [22] is an improved
version of Theorem 5 from [18].
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THEOREM 6. (Box dimension of chirp-like functions, [22]) Let I = (0,c], c > 0 .
Let y(x) = p(x)S(q(x)) , x∈ I , where p(x) ∈C(I)∩C1(I), q(x) ∈C1(I), S(t)∈C1(R).
Let S(t) be a 2T -periodic real function defined on R , T > 0 , such that{

S(a) = S(a+T) = 0 for some a ∈ R,

S(t) �= 0 for all t ∈ (a,a+T)∪ (a+T,a+2T).

Let moreover S(t) alternately change sign on intervals (a+(k−1)T,a+ kT) , k ∈ N .
Without loss of generality, we take a = 0 . Let

p(x) �1 xα , as x → 0,

q(x) �1 x−β , as x → 0,

where 0 < α � β . Then y(x) is d -dimensional fractal oscillatory near the origin, with
d = 2− (α +1)/(β +1) .

Idea of the proof of Theorems 5 and 6. The proof relies on [45]. We check that the
conditions of Theorem 1 and of modified Theorem 2 from [45] are fullfilled, and the
conclusion follows. For this purpose, Luka Korkut made essential modifications of
Theorem 2 in [18]. �

3.2. Connection between chirps and spirals

This subsection is devoted to the results from article [22]. Luka Korkut worked in
this subject, as well as in subjects of the following two subsections, as PhD advisor of
Domagoj Vlah.

Already mentioned several times, fractal connection between oscillatority in the
phase plane and oscillatority of the graph of a function, showed as an interesting prob-
lem. In this subsection we explain this relation, while in two proceeding subsections
we show some applications of the obtained results.

Similary to definitions of oscillatority and oscillatory dimension, here we first in-
troduce definitions of a phase oscillatory function, phase dimension and precisely define
a spiral.

DEFINITION 5. Assume now that x is of class C1 . We say that x is a phase
oscillatory function if the following condition holds: the set Γ = {(x(t), ẋ(t)) : t ∈
[t0,∞)} in the plane is a spiral converging to the origin.

DEFINITION 6. By a spiral here we mean the graph of a function r = f (ϕ) , ϕ �
ϕ1 > 0, in polar coordinates, where⎧⎪⎨

⎪⎩
f : [ϕ1,∞) → (0,∞) is such that f (ϕ) → 0 as ϕ → ∞,

f is radially decreasing (i.e., for any fixed ϕ � ϕ1

the function N 
 k �→ f (ϕ +2kπ) is decreasing).
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This definition appears in [54]. Depending on the context, by a spiral we also
mean the graph that is a mirror image of the spiral from Definition 6, with respect to
the x -axis. As expected, by a spiral near the origin we mean the graph of function
r = f (ϕ) , ϕ � ϕ1 > 0, defined in polar coordinates, such that there exists ϕ2 � ϕ1 and
the graph of the function r = f (ϕ) , ϕ � ϕ2 , viewed in polar coordinates, is a spiral.

DEFINITION 7. The phase dimension dimph(x) of a function x : [t0,∞) → R of
class C1 is defined as the box dimension of the corresponding planar curve

Γ = {(x(t), ẋ(t)) : t ∈ [t0,∞)}.

Phase dimension is, also as the oscillatory dimension, the fractal dimension, intro-
duced in the study of chirp-like solutions of second order ODEs, see [45].

Next, in [22] we introduced the notion of a wavy spiral defined by a wavy function.

DEFINITION 8. Let r : [t0,∞) → (0,∞) be a C1 function. Assume that r′(t0) � 0.
We say that r = r(t) is a wavy function if the sequence (tn) defined inductively by:

t2k+1 := inf{t : t > t2k,r
′(t) > 0}, k ∈ N0,

t2k+2 := inf{t : t > t2k+1,r(t) = r(t2k+1)}, k ∈ N0,

is well-defined, and satisfies the waviness condition:⎧⎪⎪⎨
⎪⎪⎩

(i) The sequence (tn) is increasing and tn → ∞ as n → ∞.

(ii) There exists ε > 0, such that for all k ∈ N0 holds t2k+1− t2k � ε .

(iii) For all k sufficiently large it holds osc
t∈[t2k+1,t2k+2]

r(t) = o
(
t−α−1
2k+1

)
, α ∈ (0,1),

where osc
t∈I

r(t) = max
t∈I

r(t)−min
t∈I

r(t) .

DEFINITION 9. Let a spiral Γ′ , given in polar coordinates by r = f (ϕ) , where
f is a given function. If there exists increasing or decreasing function of class C1 ,
ϕ = ϕ(t) , such that r(t) = f (ϕ(t)) is a wavy function, then we say Γ′ is a wavy spiral.

For example, function r(t) =
√

x2(t)+ ẋ2(t) , t � t0 > 0, for carefully chosen t0 ,
where x(t) = t−α sin t , α ∈ (0,1) , is a wavy function, see Figure 6 below. By defining
function ϕ(t) = t , in the sense of Definition 9, we get a wavy spiral, see Figure 7 below.

Now we can state the first result here, about the box dimension of a spiral generated
by a chirp-like function, which is one of the main results from [22].

THEOREM 7. (Chirp–spiral comparison, [22]) Let α > 0 . Assume that

X : (0,1/t0] → R, t0 > 0, X(τ) = P(τ)sin1/τ,

where P(τ) is a positive function such that P(τ)∼3 τα as τ → 0 . Define x(t) = X(1/t)
and a continuous function ϕ(t) by tanϕ(t) = ẋ(t)/x(t) .
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(i) If α ∈ (0,1) then the planar curve Γ := {(x(t), ẋ(t)) : t ∈ [t0,∞)} generated by
X is a wavy spiral r = f (ϕ) , ϕ ∈ (−∞,−ϕ0] , ϕ0 > 0 , near the origin. We have
f (ϕ) � |ϕ |−α as ϕ →−∞ , and

dimph(x) := dimB Γ =
2

1+ α
.

(ii) If α > 1 then the planar curve Γ := {(x(t), ẋ(t)) : t ∈ [t0,∞)} is a rectifiable wavy
spiral near the origin.
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Figure 6: Left picture: graph of wavy function r(t) =
√

x2(t)+ ẋ2(t) , where x(t) =
t−α sin t , α = 2/3 and t0 = 0.5.

Figure 7: Right picture: graph of wavy spiral given parametrically in polar coordi-
nates (r(t),ϕ(t)) , where r(t) =

√
x2(t)+ ẋ2(t) , t � 0.5, x(t) = t−α sin t , α = 2/3 and

ϕ(t) = t .

The other two results are, in some way, reversals of Theorem 7. They tell us about
the box dimension and rectifiability of a chirp-like function generated by a spiral.

THEOREM 8. (Spiral-chirp comparison, [22]) Let α ∈ (0,1) , and assume that
x : [t0,∞) → R , t0 > 0 , is a function of class C2 , such that the planar curve

Γ = {(x(t), ẋ(t)) : t ∈ [t0,∞)}
is a spiral r = f (ϕ) , ϕ ∈ (ϕ0,∞) , ϕ0 > 0 , in polar coordinates, near the origin, such
that f (ϕ) �1 ϕ−α , as ϕ → ∞ , and ϕ̇(t) � 1 , as t → ∞ , where ϕ(t) is a function of
class C1 defined by tanϕ(t) = ẋ(t)/x(t) . Define X(τ) = x(1/τ) . Then X = X(τ) is
(α,1)-chirp-like function, and

dimosc(x) := dimB G(X) =
3−α

2
,

where G(X) is graph of the function X . Furthermore, G(X) is Minkowski nondegen-
erate.
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Figure 8: Graph of spiral (x(t), ẋ(t)) , t � 1, generated by x(t) = J1(t) and x(t) = J10(t)
respectively.

THEOREM 9. (Rectifiability of a chirp generated by a rectifiable spiral, [22]) Let
α > 1 , and assume that x : [t0,∞) → R , t0 > 0 , is a function of class C2 such that the
planar curve Γ = {(x(t), ẋ(t)) : t ∈ [t0,∞)} is a rectifiable spiral r = f (ϕ) , ϕ ∈ (ϕ0,∞) ,
ϕ0 > 0 in polar coordinates, near the origin, such that f (ϕ) �1 ϕ−α , as ϕ → ∞ ,
| f ′′(ϕ)| � Cϕ−α−2 and ϕ̇(t) � 1 as t → ∞ , where ϕ(t) is a function of class C1

defined by tanϕ(t) = ẋ(t)/x(t) . Define X(τ) = x(1/τ) . Then X = X(τ) is (α,1)-
chirp-like rectifiable function near the origin.

3.3. Bessel functions

These subsection is devoted to results from article [19].
Bessel system is a nonautonomous planar system with non-rectifiable spiral tra-

jectories. It is proved in [19] that the phase dimension of the Bessel equation does not
depend on the order of Bessel functions, which are the solutions. For any order, trajec-
tories behave as 1/2-power-type spirals. Given the fact that the planar Bessel system
is nonautonomous, it can also be interpreted as a three-dimensional system with spatial
spiral trajectories.

The Bessel equation of order ν , widely known in literature, see e.g. [31, p. 98], is
the linear second-order ordinary differential equation given by

t2x′′(t)+ tx′(t)+ (t2 + ν2)x(t) = 0,

where ν ∈ R is a parameter. Bessel equation has two linearly independent solutions,
which are called Bessel functions of the first and second kind of order ν , designated
Jν and Yν , respectively. For graphs of spirals (x(t), ẋ(t)) , generated by Bessel function
Jν , for different values of parametar ν , see Figure 8 above.

THEOREM 10. (Phase dimension of Bessel functions [19]) Phase dimension of
Bessel functions Jν and Yν is equal to 4/3 , for every ν ∈ R .
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3.4. Autonomous spatial systems

These subsection is devoted to results from article [21], which also examines some
of the other three-dimensional systems that are associated with the study of connection
between oscillatority of chirp-type and oscillatority of power-type. It extends work
from [53] about the box dimension of spatial spirals, lying on surfaces and accumulating
to the origin. It turned out that it is important whether the surface is Lipschitz or Hölder
type, that is, whether it has finite or infinite derivative at the origin, respectively.

Here we study, as a model, a class of second-order nonautonomous equations,
exhibiting both chirp-like and spiral behavior,

ẍ− 2 p′(t)
p(t)

ẋ+
[
1+

2p′2(t)
p2(t)

− p′′(t)
p(t)

]
x = 0, t ∈ [t0,∞), t0 > 0, (3.1)

where function p is of class C2 . This equation has explicit solution

x(t) = C1p(t)sin t +C2p(t)cost.

Introducing change in variables z = 1/(t−C3) , we acquire cubic system

ẋ = y

ẏ =
2p′( 1

z )

p( 1
z )

y−
[
1− p′′( 1

z )

p( 1
z )

+
2p′2( 1

z )

p2( 1
z )

]
x, z ∈ (0,

1
t0

]

ż = −z2. (3.2)

In order to explain fractal behavior of the system (3.2) we need a lemma dealing
with a bi-Lipschitz map, see [21]. It is a well known result from [11] that the box
dimension of a set is invariant under bi-Lipschitz maps. Putting together these two
results we obtain desired results about (3.2). For the sake of simplicity, but with no loss
of generality, we work with trajectory Γ of the solution of system (3.2) that is defined
by

x(t) = p(t)sin t

y(t) = p′(t)sin t + p(t)cost

z(t) =
1
t
.

The following result relies on the fact that trajectory Γ has projection Γxy to (x,y)-
plane which is a planar spiral. For graphs of several trajectories Γ for different func-
tions p(t) , see Figure 9 below.

THEOREM 11. (Trajectory in R
3 , [21]) Let p(t) ∼3 t−α , α > 0 , as t → ∞ .

(i) Phase dimension of any solution of the equation (3.1) near the origin is equal to
dimph(x) = 2/(1+ α) for α ∈ (0,1) .
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Figure 9: Trajectory Γ of the solution of system (3.2) for the function p(t) = t−1/2 ,
p(t) = t−1 and p(t) = t−4 respectively.

(ii) Trajectory Γ of the system (3.2) near the origin has box dimension dimB Γ =
2/(1+ α) for α ∈ (0,1) .
(iii) Trajectory Γ of the system (3.2) for α > 1 is a rectifiable spiral and dimB Γ = 1 .

The following two theorems proved by Luka Korkut complete the study of system
(3.2). A solution of system (3.2) projected to (x,y)-plane is a spiral. The following
theorem gives us informations about projections to other two coordinate planes. Proof
relies on Theorem 8.

THEOREM 12. (Projections, [21]) Suppose p(t) ∼3 t−α , α > 0 , as t → ∞ . Then
the projection Gyz of a trajectory of the system (3.2) to (y,z)−plane is a (α,1)-chirp-
like function, and dimB Gyz = (3−α)/2 if α ∈ (0,1) . Analogously for projection Gxz .

It is interesting to see that this nonrectifiable case corresponds to spiral contained
in Lipschitzian surface, while rectifiable spiral trajectory of the system lies in Hölderian
surface.

We would also like to concern rectifiability on the Hölderian surface. In the case
of system (3.2), α > 1 the Hölderian surface does not affect the rectifiability. We have
the following theorem that gives sufficient conditions in the case of a more general
situation, that is, for a spiral lying in the Hölderian surface z = g(r) , g(r) � rβ , β ∈
(0,1) . Notice that, if a spiral lies in the Hölderian surface, and tend to the origin, we
call it a Hölder-focus spiral.

THEOREM 13. (Rectifiability in R
3 , [21]) Let f [ϕ1,∞)→ (0,∞) , ϕ1 > 0 , f (ϕ)�

ϕ−α , | f ′(ϕ)| � Cϕ−α−1 , α > 1 , r = f (ϕ) define a rectifiable spiral. Assume that
g (0, f (ϕ1)) → (0,∞) is a function of class C1 such that

g(r) � rβ , |g′(r)| � Drβ−1, β ∈ (0,1).
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Let Γ be a Hölder-focus spiral defined by r = f (ϕ) , ϕ ∈ [ϕ1,∞) , z = g(r) , then Γ is
rectifiable spiral.
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Birkhäuser Boston, Inc., Boston, MA (1999).

[26] T. KUSANO, Y. NAITO, Oscillation and nonoscillation criteria for second order quasilinear differen-
tial equations, Acta Math. Hungar. 76 (1997), 81–99.

[27] T. KUSANO, Y. NAITO, A. OGATA, Strong oscillation and nonoscillation of quasilinear differential
equations of second order, Differential Equations Dynam. Systems, 2 (1994), 1–10.
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Bulletin des Sciences Mathématiques, 129, 6 (2005), 457–485.



Differ. Equ. Appl. 5 (2013), 527–547. 547
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