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PROPERTIES OF SOLUTIONS OF THE SCALAR RICCATI EQUATION

WITH COMPLEX COEFFICIENTS AND SOME THEIR APPLICATIONS

GEVORG A. GRIGORIAN

(Communicated by Tingbin Cao)

Abstract. The definition of normal and extremal solutions of the scalar Riccati equation with
complex coefficients is given. Some properties of normal and extremal solutions to Riccati
equation are studied. On the basis of the obtained, some theorems which describe the asymptotic
behavior of solutions of the system of two linear first order ordinary differential equations are
proved (in particular a minimality theorem of a solution of the system of two linear first order
ordinary differential equations is proved).

1. Introduction

Let a(t) , b(t) and c(t) be complex valued continuous functions on [t0;+∞) . Con-
sider the Riccati equation

z′(t)+a(t)z2(t)+b(t)z(t)+ c(t) = 0, t � t0, (1.1)

and associated with it the linear system{
φ ′(t) = a(t)ψ(t);

ψ ′(t) = −c(t)φ(t)−b(t)ψ(t),
t � t0. (1.2)

The solutions z(t) of Eq. (1.1), existing on the some interval [t1; t2) (t0 � t1 <
t2 � +∞) , are connected with solutions (φ(t),ψ(t)) of the last systems by the relations
(see [1], pp. 153–154):

φ(t) = φ(t1)exp

{ t∫
t1

a(τ)z(τ)dτ
}

, φ(t1) �= 0, ψ(t) = z(t)φ(t). (1.3)

In the particular case when a(t) ≡ 1, b(t) ≡ 0 the system (1.2) is reducible to the
following second order linear differential equation

φ ′′(t)+ c(t)φ(t) = 0, t � t0. (1.4)
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Any solution z(t) of Eq. (1.1), with the initial condition z(t0) = z(0)(∈ C) , is or else
continuable on [t0;+∞) , or else not continuable on [t0;+∞) and therefore exists on
[t0;t1) for some t1 > t0 . In the first case we call the solution z(t) regular. For the case
real c(t) I. M. Sobol (see. [2,3]) successfully applied some important properties of real
and regular solutions of the equation

y′(t)+ y2(t)+ c(t) = 0, t � t0, (1.5)

to establish asymptotic behavior of solutions of Eq. (1.4). In the work [4] these prop-
erties of regular solutions of Eq. (1.5) were spread on the real and regular solutions of
Eq. (1.1) to the case of real a(t) , b(t) and c(t) . These properties have found applica-
tions in the questions of global solvability of Riccati equation [5], of stability [6–8] and
oscillation [9–11] of systems of two linear first order ordinary differential equations, as
well of linear second order differential equations.

In the section 2 we represent two global existence criteria for the scalar Riccati
equation. In the section 3 we prove some important properties of solutions of scalar
Riccati equation spreading the results of work [4] on the case of complex coefficients
of Eq. (1.1). Some of the main results of section 3 as well as a particular version
of Theorem 4.1 of section 4 (see below) are presented in [12] without their’s proofs.
The results of sections 2 and 3 are used in the section 4 to investigate some asymp-
totic properties of solutions to the systems of two first order linear ordinary differential
equations.

2. Two global existence criteria

In this paragraph we represent two global existence criteria for the scalar Riccati
equation. They will be used with the results of paragraph 3 to investigate in the para-
graph 4 some asymptotic properties of solutions to the systems of two first order linear
ordinary differential equations.

Denote a1(t)≡Rea(t) , a2(t)≡ Ima(t) , b1(t)≡Reb(t) , b2(t)≡ Imb(t) , c1(t)≡
Rec(t) , c2(t) ≡ Imc(t) . In this paragraph we will assume that

I) ak(t) � 0, t � t0 , k = 1,2.

The cases: II)

{
a1(t) � 0;
a2(t) � 0, t � t0,

III)

{
a1(t) � 0;
a2(t) � 0, t � t0,

IV)

{
a1(t) � 0;
a2(t) � 0, t � t0,

can be reduced to the case I) by replacing z(t) → z(t) , z(t) →−z(t) , z(t) →−z(t) in
(1.1) respectively.

Set
Dk(t) ≡ b2

2(t)−4(−1)kak(t)ck(t), t � t0.

THEOREM 1. Let ak(t) � 0 , t � t0 , and let Dk(t) � 0 if ak(t) �= 0 and (−1)kck(t)
� 0 if ak(t) = 0 , k = 1,2 , t � t0; moreover assume that if a1(t)a2(t) = 0 , then b2(t) =
0, . Then for arbitrary γ0 � 0 and δ0 � 0 Eq. (1.1) has a solution z0(t) on [t0;+∞) ,
satisfying the initial condition z0(t0) = γ0− iδ0 , moreover

Re z0(t) � 0 Imz0(t) � 0, t � t0.
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If γ0 > 0 and δ0 > 0, then

Re z0(t) > 0, Imz0(t) < 0, t � t0. (2.1)

See proof in [12]. Set

r±k (t) ≡
{

(−1)k+1b2(t)±
√

Dk(t), if ak(t) �= 0;

0, if ak(t) = 0,
k = 1,2, t � t0.

THEOREM 2. Let ak(t) � 0 , t � t0 , and let Dk(t) � 0 if ak(t) �= 0 and (−1)kck(t)
� 0 if ak(t) = 0 , k = 1,2 , t � t0 ; moreover, assume that if a1(t)a2(t) = 0, then b2(t) =
0 . In addition assume that either r+

1 (t) � 0 and r−2 (t) � ε or r−1 (t) � ε and r+
2 (t) � 0 ,

t � t0 for some ε > 0 . Then for arbitrary γ0 > 0 , δ0 > 0 Eq. (1.1) has a solution z0(t)
on [t0;+∞), satisfying the initial condition z0(t0) = γ0 − iδ0, and inequalities (2.1).

See proof in [13].

3. Some properties of solutions of the scalar Riccati equation

Let t1 � t0 .

DEFINITION 1. A solution of Eq. (1.1) is said to be t1 -regular, if it exists on
[t1;+∞) .

DEFINITION 2. A t1 -regular solution z(t) of Eq. (1.1) is said to be t1 -normal,
if there exists a neighborhood U of the point z(t1) such that each solution z̃(t) of Eq.
(1.1) with z̃(t1) ∈U is t1 -regular. Otherwise z(t) is said to be t1 -extremal.

DEFINITION 3. Eq. (1.1) is said to be regular, if it has a t1 -regular solution for
some t1 � t0 .

REMARK 1. For a(t) > 0, Imb(t) = Imc(t) ≡ 0 the regularity of Eq. (1.1) is
equivalent to the non oscillation of the equation(

φ ′(t)
a(t)

)′
+

b(t)
a(t)

φ ′(t)+ c(t)φ(t) = 0, t � t0.

Regularity criteria of Eq. (1.1) in the real-valued case of a(t) , b(t) and c(t) are proved
in the works [5] and [15]. A non oscillatory criterion for the last equation is proved in
[16].

In what follows a t0 -regular (t0 -normal, t0 -extremal) solution we will just call a
regular (normal, extremal) solution. Since the solutions of Eq. (1.1) are continuously
depending on their initial values, each t1 -regular solution of Eq. (1.1) is t1 -normal (t1 -
extremal) if and only if it is t2 -normal (t2 )-extremal for t2 > t1 . Note that a t2 -regular
solution for t2 > t1 in general is not t1 -regular.
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For arbitrary continuous on [t0;+∞) function u(t) denote:

eu(t1; t) ≡ exp

{
−

t∫
t1

[2a(s)u(s)+b(s)]ds

}
, μu(t1;t) ≡

t∫
t1

a(τ)eu(t1;τ)dτ, t1, t � t0.

Let Z(t; t1;λ ) be the general solution of Eq. (1.1) in the region Gt1 ≡ {(t;z) : t ∈
It1(λ ), z ∈C} , where It1(λ ) is the maximal existence interval for the solution z̃λ (t) of
Eq. (1.1) whit z̃λ (t1) = λ (∈C) .

LEMMA 1. If z0(t) is a regular solution of Eq. (1.1), then on the Gt1 ∩[t0;+∞)×C
the general solution Z(t;t1;λ ) of Eq. (1.1) is given by

Z(t; t1;λ ) = z0(t)+
λez0(t1;t)

1+ λ μz0(t1;t)
, t, t1 � t0, λ ∈C. (3.1)

The proof of this lemma is elementary and we omit it (see [4]).

EXAMPLE 3.1. Consider the equation

z′(t)+a(t)z2(t) = 0, t � −1. (3.2)

The general solution of this equation in the region G0 ∩ [−1;+∞)×C is given by for-
mula

Z(t;0;λ ) =
λ

1+ λ
t∫
0

a(τ)dτ
, λ ∈C, 1+ λ

t∫
0

a(τ)dτ �= 0, t � −1. (3.3)

Suppose
t∫
0

a(τ)dτ = arctgt(cost + isin t) , t � −1. Then from (3.3) is seen that all

solutions z(t) of Eq. (3.2) with |z(0)| = π
2 are 0-extremal, and with |z(0)| < π

2 they
are 0-normal (for |z(0)| > π

2 the solution z(t) is not 0-regular). Suppose in (3.2) the
function a(t) has bounded support. Then from (3.3) is seen that (3.2) has no extremal
solution. For u0 ∈C and 0 < r < R � +∞ denote Kr,R(u0)≡{z∈C : r < |z−u0|< R} a
ring with its center in u0 and radiuses r and R . Let ε > 0 and let Kε,r,R(u0)(⊂Kr,R(u0))
denotes a ε - net for Kr,R(u0) , i. e. a finite set ξ1, . . . ,ξmε ∈ Kr,R(u0) such that for
each u ∈ Kr,R(u0) there exists v ∈ Kε,r,R(u0) with |u− v| < ε . Consider the sequence

of sets {K 1
2n , 1

n ,n(u0)}+∞
n=1. Let the function f (t) ≡

t∫
0

a(τ)dτ , t � 0, has the following

properties. f (t) �= u0 , t ∈ [0;1] when t varies from n to n+1 the curve f (t) crosses all
points of K 1

2n , 1
n ,n(u0) (i. e. for each v∈K 1

2n , 1
n ,n(u0) there exists ξv ∈ [n;n+1] such that

f (ξv) = v) and values of f (t) remain in K 1
2n ,+∞(u0) . Obviously for all T � 0 the set of

values of f (t) on [T ;+∞) is everywhere dense in C and f (t) �= u0 , t � t0 . From here
and from (3.3) it follows that Eq. (3.2) has no t1 -normal solutions for all t1 � t0 and
has at least two extremal solutions z0(t) ≡ 0 and z1(t) with z1(0) = − 1

u0
. By analogy
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using 1/2n - nets K 1
2n , 1

n ,n(u0;u1; . . . ,um) of intersections ∩m
k=0K 1

n ,n(uk) in place of

K 1
2n , 1

n ,n(u0) , n = 1,2, . . . one can show that there exists a Riccati equation which has

no t1 -normal solutions for all t1 � t0 and has at least m+2 extremal solutions.

REMARK 2. Let z0(t) be a t1 -regular solution of Eq. (1.1). Then since the
function μz0(t1; t) is continuously differentiable by t , there exists λ0 �= 0 such that
1+ λ0μz0(t1; t) �= 0, t � t1 (the curve {μz0(t1;t) : t � t1} is not space filling). Then

by virtue of Lemma 1 the function z1(t) ≡ z0(t)+
λ0ez0 (t1;t)

1=λ0μz0 (t1;t)
, t � t1 , is a t1 -regular

solution of Eq. (1.1), different from z0(t) .

From Lemma 1 we immediately get

THEOREM 3. A t1 -regular solution z0(t) of Eq. (1.1) is t1 -normal if and only if
μz0(t1; t) is bounded with respect to t ∈ [t1;+∞) .

Let z1(t) and z2(t) be regular solutions of Eq. (1.1). Then by virtue of Lemma 1
for each t1, t � t0 the following equalities hold

z j(t) = zk(t)+
λ jk(t1)ezk (t1;t)

1+ λ jk(t1)μzk (t1;t)
, j,k = 1,2, (3.4)

where λ jk(t1) ≡ z j(t1)− zk(t1) , j,k = 1,2. From here we have:

z j(t)− zk(t) =
λ jk(t1)ezk(t1;t)

1+ λ jk(t1)μzk(t1;t)
, t1,t � t0, j,k = 1,2, (3.5)

The left hand sides of these equalities are independent of t1 . Consequently, so are their
right hand sides. In view of this following [4] denote:

νz j ,zk(t) ≡−1+ λ jk(t1)μzk (t1;t)
λ jk(t1)ezk (t1;t)

, t � t0, j,k = 1,2 ( j �= k).

Then the equalities (3.4) can be rewritten in the form

z j(t) = zk(t)− 1
νz j ,zk(t)

, t � t0, j,k = 1,2 ( j �= k).

From here is seen that
νz1,z2(t) = −νz2,z1(t), t � t0. (3.6)

THEOREM 4. Regular solutions z1(t) and z2(t) of Eq. (1.1) satisfy the relations

a(t)[z1(t)+ z2(t)] =
ν ′

z1,z2(t)
νz1,z2(t)

−b(t), t � t0. (3.7)

a(t)z1(t)z2(t) = z′1(t)+ z1(t)
ν ′

z1,z2(t)
νz1,z2(t)

+ c(t), t � t0. (3.8)
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The proof of this theorem in the case of real functions a(t) , b(t) , c(t) , z1(t) and
z2(t) can be found in [4]. The same proof remains valid in the general case.

From (3.4) we deduce:

−2a(t)z j(t)−b(t) = −2a(t)zk(t)−b(t)− 2λ jk(t1)a(t)ezk(t1; t)
1+ λ jk(t1; t)

, t � t0, j,k = 1,2.

Integrating these equalities from t1 to t we obtain:

t∫
t1

[2a(τ)z j(τ)+b(τ)]dτ =
t∫

t1

[2a(τ)zk(τ)+b(τ)]dτ− ln[1+λ jk(t1)μzk (t1; t)]
2, t1, t � t0,

j,k = 1,2. From here it follows

ez j (t1;t) =
ezk(t1;t)

[1+ λ jk(t1)μzk(t1;t)]2
, t1,t � t0, j,k = 1,2,

so for all t1, t � t0

ez1(t1; t)ez2(t1; t) =
ez1(t1;t)ez2(t1;t)

[1+ λ12(t1)μz2(t1;t)]2[1+ λ21(t1)μz1(t1; t)]2
, j,k = 1,2. (3.9)

Since 1+λ jk(t1)μzk(t1;t1) = 1, j,k = 1,2, and the solutions z j(t) ( j = 1,2) are regu-
lar, from (3.4) it follows that 1+ λ jk(t1)μzk(t1;t) �= 0, t1,t � t0 , j,k = 1,2. Therefore
by virtue of (3.9) we will have:

[1+ λ12(t1)μz2(t1;t)][1+ λ21(t1)μz1(t1; t)] ≡ 1.

From here it is easy to derive the equalities

μz j (t1;t) =
μzk(t1;t)

1+ λ jk(t1)μzk(t1;t)
, t1,t � t0, j,k = 1,2. (3.10)

Multiplying (3.5) on a(t) and integrating from t1 to t we will have:

Iz j ,zk(t1; t) ≡
t∫

t1

a(τ)[z j(τ)− zk(τ)]dτ = ln[1+ λ jk(t1)μzk (t1; t)], t1, t � t0, (3.11)

j,k = 1,2. If z2(t) ≡ zext (t) is an extremal solution then

liminf
t→+∞

|1+ λ1,2(t0)μz1(t0;t)| = 0.

Hence by (3.4)

liminf
t→+∞

Re

t∫
t0

a(τ)(zezt(τ)− z0(τ))dτ = −∞. (3.12)
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The last equality particularly implies that if z∗1(t) and z∗2(t) are extremal solutions then

liminf
t→+∞

Re

t∫
t0

a(τ)(z∗1(τ)− z∗2(τ))dτ = −∞. (3.13)

limsup
t→+∞

Re

t∫
t0

a(τ)(z∗1(τ)− z∗2(τ))dτ = +∞. (3.14)

From (3.4), from Theorem 3 and from (3.11) we conclude

THEOREM 5. For t1 -regular solutions z1(t) and z2(t) the function Iz1,z2(t1; t) is
bounded with respect to t ∈ [t1;+∞) if and only if these solutions are t1 -normal.

In what follows, we assume that Eq. (1.1) has at least one regular solution. For an
arbitrary continuous function u(t) on [t1;+∞) we introduce the notation

νu(t) ≡
+∞∫
t

a(τ)exp

{
−

τ∫
t

[2a(s)u(s)+b(s)]ds

}
dτ, t � t0.

THEOREM 6. Let the integral νz0(t0) be convergent for some regular solution
z0(t) of Eq. (1.1). Then the following assertions hold.

A) For all normal solutions z(t) of Eq. (1.1) and only for them, the integrals νz(t)
are convergent for all t � t0 ;

B) The integral
+∞∫
t0

a(τ)[z1(τ)− z2(τ)]dτ is convergent for arbitrary normal solu-

tions z1(t) and z2(t);
C) Eq. (1.1) has an extremal solution if and only if νz0(t) �= 0 , t � t0 . Under this

condition the unique extremal solution z∗(t) of Eq. (1.1) has the form

z∗(t) = z0(t)− 1
νz0(t)

, t � t0, (3.15)

in addition
νz∗(t) = ∞, t � t0, (3.16)

Re

+∞∫
t0

a(τ)[z∗(τ)− z0(τ)]dτ = −∞, (3.17)

+∞∫
t

a(τ)[z1(τ)− z2(τ)]dτ = ln

[
z∗(t)− z1(t)
z∗(t)− z2(t)

]
, t � t0, (3.18)

for arbitrary normal solutions z1(t) and z2(t) of Eq. (1.1).
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Proof. Note that νz0(t0) = lim
t→+∞

μz0(t0;t) . Therefore μz0(t0; t) is bounded. By

virtue of Theorem 3 from here it follows, that z0(t) is a normal solution. Let z(t) be a
normal solution of Eq. (1.1), different from z0(t) . By (3.10) we have

νz(t0) = lim
t→+∞

μz(t0;t) = lim
t→+∞

μz0(t0; t)
1+ λ (t0)μz0(t0; t)

, (3.19)

where λ (t0) ≡ z(t0)− z0(t0) . On the strength of Theorem 5 the function Iz,z0(t0; t) is
bounded with respect to t ∈ [t0;+∞) . From here and from (3.11) it follows lim

t→+∞
[1+

λ (t0)μz0(t0; t)] �= 0. From here and from (3.19) it follows the convergence of νz(t0) .
From the equality νz(t0) = μz(t0;t)+ez(t0;t)νz(t) , t � t0, and from the convergence of
νz(t0) it follows the convergence of νz(t) for all t � t0 . If z̃(t) is an extremal solution
of Eq. (1.1), then due to Theorem 3 μz̃(t1;t) is not bounded with respect to t ∈ [t1;+∞)
for each t1 � t0 . Therefore νz̃(t1) diverges for all t1 � t0 . The assertion A) is proved.
Let us prove B). Denote λ0 ≡− 1

νz0 (t0) . Then

1+ λ0μz0(t0; t) = −νz0(t0)− μz0(t0;t)
νz0(t0)

= −νz0(t)ez0(t0; t)
νz0(t0)

�= 0, t � t0.

On the strength of Lemma 1 from here it follows that

z∗(t) ≡ z0(t)+
λ0ez0(t0;t)

1+ λ0μz0(t0;t)
, t � t0. (3.20)

is a regular solution of Eq. (1.1). Since lim
t→+∞

[1+ μz0(t0; t)] = 1+ λ0νz0(t0) = 0, from

(3.20) is seen that z∗(t) is an extremal solution of Eq. (1.1). Moreover by virtue
of Lemma 1 from convergence of νz0(t0) and from (3.20) it follows that z∗(t) is the
unique extremal solution of Eq. (1.1). From (3.20) also it follows (3.16). Show that
from the existence of an extremal solution zext (t) of Eq. (1.1) it follows inequality
νz0(t) �= 0, t � t0 . Due to Lemma 1 we have

zext (t) = z0(t)+
λext ez0(t0;t)

1+ λext μz0(t0;t)
, t � t0, (3.21)

for some λext �= 0. Since νz0(t0) = lim
t→+∞

μzo(t0;t) , and zext (t) is an extremal solution, it

is necessary lim
t→+∞

[1+ λext μz0(t0;t)] = 0. Therefore νz0(t0) = − 1
λext

�= 0. Then

1+ λext μz0(t0;t) = −ez0(t0;t)νz0(t)
νz0(t0)

, t � t0. (3.22)

Since zext (t) is regular, from (3.18) it follows that 1+ λext μz0(t0; t) �= 0, t � t0 . From
here and from (3.22) it follows νz0(t) �= 0, t � t0 . By (3.10) we have

μz∗(t1;t) =
μz0(t1;t)

1+ λ∗(t1)μz0(t1;t)
, t � t1 � t0, (3.23)
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where λ∗(t1) = z∗(t1)− z0(t1) , t1 � t0 . Since according to Theorem 3 μz∗(t1; t) is
unbounded with respect to t ∈ [t1;+∞) , and there exists a finite limit lim

t→+∞
μz0(t1; t) =

νz0(t1) �= 0, from (3.23) it follows that

lim
t→+∞

[1+ λ∗(t1)μz0(t1;t)] = 0. (3.24)

Then passing to the limit in (3.23) when t →+∞ we arrive at the equality νz∗(t1) = ∞ ,
t � t0 . The equality (3.16) is proved. By virtue of Lemma 1 we have

z∗(t)− z0(t) =
λ∗(t0)ez0(t0;t)

1+ λ∗(t0)μz0(t0; t)
, t � t0.

Multiplying both sides of this equality on a(t) and integrating from t0 to t we will get

t∫
t0

a(τ)[z∗(τ)− z0(τ)]dτ = ln[1+ λ∗(t0)μz0(t0; t)], t � t0.

Then

Re

t∫
t0

a(τ)[z∗(τ)− z0(τ)]dτ = ln |1+ λ∗(t0)μz0(t0; t)|, t � t0.

Passing to the limit in this equality when t → +∞ and taking into account (3.24) we
come to (3.17). Let z1(t) and z2(t) be normal solutions of Eq. (1.1), and let

φ1(t) ≡ exp

{ t∫
t1

a(τ)z1(τ)dτ
}

, ψ1(t) ≡ z1(t)φ1(t);

φ2(t) ≡ exp

{ t∫
t1

a(τ)z∗(τ)dτ
}

, ψ2(t) ≡ z∗(t)φ2(t), t1,t � t0.

By virtue of (1.3) (φk(t),ψk(t)) (k = 1,2) is a solution of the system (1.1) on [t1;+∞) .
Then by virtue of (1.3) for each λ ∈C the function

Z̃(t;t1;λ ) ≡ ψ1(t)+ λ ψ2(t)
φ1(t)+ λ φ2(t)

is a solution of Eq. (1.1) in such a domain of variation of t (� t1) , in which φ1(t)+
λ φ2(t) �= 0. Let us divide the numerator and denominator of the fraction Z̃(t; t1;λ ) on
φ1(t) . Taking into account (1.3) we will get

Z̃(t; t1;λ ) =
z1(t)+ λ z∗(t1)exp

{
t∫

t1
a(τ)[z∗(τ)− z1(τ)]dτ

}
1+ λ exp

{
t∫

t1
a(τ)[z∗(τ)− z1(τ)]dτ

} , t � t1 � t0.
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In view of the equality Z̃(t1;t1;λ ) = z1(t1)+λ z∗(t1)
1+λ from here we will have

z2(t) =
z1(t)+ λ2z∗(t1)exp

{
t∫

t1
a(τ)[z∗(τ)− z1(τ)]dτ

}
1+ λ2 exp

{
t∫

t1
a(τ)[z∗(τ)− z1(τ)]dτ

} , t � t1 � t0.

where λ2 ≡ z2(t1)−z1(t1)
z∗(t1)−z1(t1) . Then

a(t)[z2(t)− z1(t)] =
λ2a(t)[z∗(t)− z1(t)]exp

{
t∫

t1
a(τ)[z∗(τ)− z1(τ)]dτ

}
1+ λ2 exp

{
t∫

t1
a(τ)[z∗(τ)− z1(τ)]dτ

} , t � t1 � t0.

Integrating this equality from t1 to t we will get

t∫
t1

a(τ)[z2(τ)− z1(τ)]dτ = ln

[
z∗(t1)− z2(t1)
z∗(t1)− z1(t1)

]

+ ln

[
1+ λ2 exp

{ t∫
t1

a(τ)[z∗(τ)− z1(τ)]dτ
}]

, t � t1 � t0.

Passing to the limit in this equality when t → +∞ and taking into account (3.14) we
will get

+∞∫
t1

a(τ)[z2(τ)− z1(τ)]dτ = ln

[
z∗(t1)− z2(t1)
z∗(t1)− z1(t1)

]
, t1 � t0,

which proves (3.18). The theorem is proved. �

COROLLARY 1. If νz∗(t0) = ∞ for some regular solution z∗(t) of Eq. (1.1) then
z∗(t) is the unique extremal solution of Eq. (1.1). Eq. (1.1) has normal solutions and for
each normal solution of Eq. (1.1) and for all t � t0 the integrals νz(t) are convergent
and for arbitrary normal solutions z0(t) , z1(t) , z2(t) of Eq. (1.1) and for z∗(t) the
relations (3.15)–(3.18) are valid.

Proof. From the condition of the corollary it follows that

|μz0(t0;t)| > 1, t � T, (3.25)

for some T > t0 . As a continuously differentiable function the curve μz∗(t) , t ∈ [t0;T ]
is rectifiable (has finite length). So its plane measure is null. Therefore the set of values
of μz∗(t0; t) on [t0;T ] cannot cover the disk |z| < 1. From here and from (3.25) it
follows that for some u0 �= 0 with |u0| < 1 the inequality μz∗(t0; t) �= 0, t � t0 , holds.
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By (3.4) from here it follows that the solution z0(t) of Eq. (1.1) with z0(t0)= z∗(t0)− 1
u0

is regular. Then by (3.10) we have:

μz0(t1;t) =
μz∗(t1;t)

1+ λ∗(t1)μz∗(t1;t)
, t1,t � t0,

where λ∗(t1) ≡ z0(t1)− z∗(t1) �= 0. From here and from the condition of the corollary
we have that the integral νz0(t1) is convergent and νz0(t1) = 1

λ∗(t1) �= 0, t1 � t0 . So

for z0(t) all conditions of Theorem 6 are fulfilled. Therefore for all normal solutions
z(t) and for all t � t0 the integrals νz(t) are convergent and νz(t) �= 0, t � t0 and for
arbitrary solutions z0(t) , z1(t) , z2(t) of Eq. (1.1) and for z∗(t) the relations (3.15)–
(3.18) are satisfied. The corollary is proved. �

In the sequel we will assume that for some regular solution z0(t) of Eq. (1.1) the
integral νz0(t0) converges and νz0(t) �= 0, t � t0. By (3.16) for normal solutions z1(t) ,
z2(t) and an extremal solution z∗(t) of Eq. (1.1) the following equality holds

z∗(t)− z2(t)
z∗(t)− z1(t)

=
νz2(t)
νz1(t)

, t � t0. (3.26)

Tending in this equality t to +∞ and taking into account (3.18) we will get

lim
t→+∞

νz2(t)
νz1(t)

= 1. (3.27)

By (3.15) we have

z∗(t)− z2(t)
z∗(t)− z1(t)

= νz1(t)[z1(t)− z2(t)], t � t0. (3.28)

By (3.18) the following equality takes place

lim
t→+∞

z∗(t)− z2(t)
z∗(t)− z1(t)

= 1.

Then

lim
t→+∞

z1(t)− z2(t)
z∗(t)− z1(t)

= lim
t→+∞

z1 − z∗(t)+ z∗(t)− z2(t)
z∗(t)− z1(t)

= −1+ lim
t→+∞

z∗(t)− z2(t)
z∗(t)− z1(t)

= 0.

From here and from (3.28) it follows

lim
t→+∞

νz1(t)[z1(t)− z2(t)] = 0.

From (3.27) it follows that in the last equality the function νz1(t) can be replaced by
νz0(t) , where z0(t) is an arbitrary normal solution of Eq. (1.1). Therefore if for some
normal solution z0(t) of Eq. (1.1) the inequality |νz0(t)| � ε > 0, t � t0 holds, then
all normal solutions of Eq. (1.1) are asymptotically close, i. e. for arbitrary normal
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solutions z1(t) and z2(t) of Eq. (1.1) the following equality takes place lim
t→+∞

[z1(t)−
z2(t)] = 0. By (3.6) and (3.8) for normal solutions z1(t) and z2(t) of Eq. (1.1) the
following equality is valid

[z1(t)− z2(t)]′

z1(t)− z2(t)
= −ν ′

z1,z2(t)
νz1,z2(t)

, t � t0.

Integrating this equality from t0 to t we will get

ln

[
z1(t)− z2(t)

z1(t0)− z2(t0)

]
= − ln

[
νz1,z2(t)
νz1,z2(t0)

]
, t � t0.

From here we have
z1(t)− z2(t)

z1(t0)− z2(t0)
· νz1,z2(t)

νz1,z2(t0)
= 1, t � t0. (3.29)

Since z1(t) and z2(t) are normal, by (3.11) from the assertion B) of Theorem 6 it
follows that inf

t�t0
|1+ λ1,2μz2(t0;t)| > 0. Therefore νz1,z2(t) → ∞ for t → ∞ if and only

if e−1
z2 (t0; t) → ∞ for t → +∞ . By virtue of (3.29) from here we come to the following

criterion of asymptotic closeness of normal solutions of Eq. (1.1).

THEOREM 7. All solutions of Eq. (1.1) are asymptotically close if and only if the
relation

Re

+∞∫
t0

[2a(τ)z0(τ)+b(τ)]dτ = +∞.

holds for some normal solution z0(t) of Eq. (1.1).

EXAMPLE 3.2. Assume that a(t) ≡ a0 �= 0, b(t) ≡ b0 , c(t) ≡ c0 , t � t0 ,

Re
√

b2
0−4a0c0 > 0. Then z± ≡ −b0±

√
b2
0−4a0c0

2a0
are regular solutions of Eq. (1.1).

One can readily see that the integral νz+(t0) is convergent, νz+(t) �= 0, t � t0 , and the
integral νz−(t0) is divergent. Then by Theorem 6, z+ is a normal solution and z− is
the unique extremal solution of Eq. (1.1). Note that z′+ ≡ 0, ν ′

z+(t) ≡ 0. Then using
the relations (3.7) and (3.8) we obtain the well-known Viete formulae

a0(z− + z+) = −b0;

a0z−z+ = c0.

Since 2a0z+ +b0 =
√

b2
0−4a0c0 , and Re

√
b2

0−4a0c0 > 0, we have Re
∫ +∞
t0

[2a0z+ +
b0]dτ = +∞ . Therefore by Theorem 7, all normal solutions of Eq. (1.1) are asymptot-
ically close under the above assumptions.
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4. The asymptotic behavior of solutions of the system of two first order linear
ordinary differential equations

Let a jk(t) ( j,k = 1,2) be complex-valued continuous functions on [t0;+∞) . Con-
sider the system {

φ ′(t) = a11(t)φ(t)+a12(t)ψ(t);

ψ ′(t) = a21(t)φ(t)+a22(t)ψ(t),
(4.1)

t � t0 . Let t1 � t0 .

DEFINITION 4. A solution (φ(t),ψ(t)) of the system (4.1) is said to be t1 -regular,
if φ(t) �= 0, t � t1 .

REMARK 3. From Remark 2 and (4.1)–(4.3) is seen that if the system (4.1) has a
t1 -regular solution (φ0(t),ψ0(t)) , then it has at least one t1 -regular solution, linearly
independent of (φ0(t),ψ0(t)) .

Each T -regular solution of the system (4.1) for any T � t0 we will just call regular.

DEFINITION 5. The system (4.1) is said to be regular if it has at least one regular
solution.

DEFINITION 6. The system (4.1) is said to be strongly regular, if its each nontriv-
ial solution is regular.

The substitution ψ(t) = z(t)φ(t) , t � t0, in (4.1) leads to the system{
φ ′(t) = [a11(t)+a12(t)z(t)]φ(t);

(z′(t)+a12(t)z2(t)+B(t)z(t)−a21(t))φ(t) = 0,

where B(t) ≡ a11(t)−a22(t) , t � t0 . Therefore if z0(t) is a t1 -regular solution of the
Riccati equation

z′(t)+a12(t)z2(t)+B(t)z(t)−a21(t) = 0, t � t0. (4.2)

then the functions

φ0(t) ≡ λ0 exp

{ t∫
t1

[a11(τ)+a12(τ)z0(τ)]dτ
}

, λ0 �= 0, ψ0(t) ≡ z0(t)φ0(t), (4.3)

t � t0 , form the solution (φ0(t),ψ0(t)) for the system (4.1) on [t1;+∞) .

DEFINITION 7. The regular system (4.1) is called irreconcilable if for its arbitrary
two linearly independent regular solutions (φ j(t),ψ j(t)) , j = 1,2, the functions φ1(t)

φ2(t)

and φ2(t)
φ1(t)

are unbounded on [T ;+∞) , where T � t0 such that φ j(t) �= 0, t � T , j = 1,2.
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DEFINITION 8. The regular system (4.1) is called normal if for its arbitrary two
linearly independent regular solutions (φ j(t),ψ j(t)) , j = 1,2, the functions φ1(t)

φ2(t)
and

φ2(t)
φ1(t)

are bounded on [T ;+∞) , where T � t0 such that φ j(t) �= 0, t � T , j = 1,2.

DEFINITION 9. The regular system (4.1) is called extremal if it has a regular so-
lution (φ∗(t),ψ∗(t)) such that for all regular solutions (φ(t),ψ(t)) of the system (4.1)
linearly independent of (φ∗(t),ψ∗(t)) , the equality lim

t→+∞
φ∗(t)/φ(t) = 0 is fulfilled.

The unique (up to arbitrary multiplier) solution (φ∗(t),ψ∗(t)) , defined above, we
will call the minimal solution of the system (4.1).

DEFINITION 10. The regular system (4.1) is called super extremal if it is neither
normal, nor extremal, nor irreconcilable.

By (4.1)–(4.3) from (3.12) and from Theorem 5 it follows that the system (4.1)
is normal if and only if Eq. (4.2) is regular and has no t1 -extremal solution for all
t1 � t0 , and from (3.12)–(3.14) it follows that the system (4.1) is irreconcilable if and
only if Eq. (4.2) is regular and all its t1 -regular solutions are t1 -extremal for all t1 � t0 ,
the system (4.1) is extremal if and only if it has unique t1 -extremal solution for some
t1 � t0 . therefore the system (4.1) is super extremal if and only if Eq. (4.2) has at
least two different extremal solutions and at least one normal solution On the basis of
Example 3.1 from here we conclude that there exist normal, irreconcilable, extremal
and super extremal systems and only these kinds of the system (4.1).

REMARK 4. Each extremal system (4.1) is strongly regular. Indeed, let (φ∗(t),
ψ∗(t)) be the minimal solution of the system (4.1). According to Remark 3 the system
(4.1) has a regular solution (φ1(t),ψ1(t)) , linearly independent of (φ∗(t),ψ∗(t)) . Let
(φ(t),ψ(t)) be arbitrary nontrivial solution of the system (4.1) linearly independent of
(φ∗(t),ψ∗(t)) . Then

φ(t) = φ1(t)
[
c1 + c2

φ∗(t)
φ1(t)

]
, t � t1, (4.4)

for some t1 � t0 , where c1 and c2 are some constants and c1 �= 0. Since the system
(4.1) is extremal we have

lim
t→+∞

φ∗(t)
φ1(t)

= 0.

From here and from (4.7) it follows that (φ(t),ψ(t)) is regular. therefore the system
(4.1) is strongly regular.

REMARK 5. If a jk(t) , j,k = 1,2, are real valued and the system (4.1) is oscilla-
tory (definition of oscillatory system (4.1) see in [9]) then Eq (4.2) has no real valued
t1 -regular solution for all t1 � t0 . But by virtue of Lemma 2.1 of work [9] it follows
that all solutions z(t) of Eq. (4.2) with Imz(t0) �= 0 are regular. Therefore all solutions
of Eq. (4.2) are normal. By (4.1)–(4.3) from here and from Theorem 5 it follows that
each oscillatory system (4.1) with real valued coefficients is normal.
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REMARK 6. If a12(t) , B(t) and a21(t) are real valued then from Lemma 2.1 of
work [9] and from the results of work [4] it follows that the system (4.1) is or else
normal or else extremal or else super extremal, in particular the system (4.1) with real
valued a jk(t) , j,k = 1,2, always is or else normal or else extremal or else super ex-
tremal.

For arbitrary continuous on [t0;+∞) function u(t) denote:

Ju(t1; t) ≡
{ t∫

t1

u(τ)dτ
}

, ν̃u(t) ≡
+∞∫
t

a12(τ)exp

{
−

τ∫
t

[2a12(s)u(s)+B(s)]ds

}
dτ,

t1 , t � t0 .

THEOREM 8. Let the system (4.1) has a t1 -regular solution (φ0(t),ψ0(t)) for

some t1 � t0 such that the integral
+∞∫
t1

a12(τ)JS(t1;τ)
φ2
0 (τ)

dτ be convergent (conditionally),

where S(t) ≡ a11(t)+ a22(t) , t � t0, and for all t � t1 ,
+∞∫
t

a12(τ)JS(t1;τ)
φ2
0 (τ)

dτ �= 0 . Then

the system (4.1) is extremal and:

a) for its minimal solution (φ∗(t),ψ∗(t)) the equality
+∞∫
t1

a12(τ)JS(t1;τ)
φ2∗ (τ)dτ = ∞; holds;

b) for each nontrivial solution (φ(t),ψ(t)) of the system (4.1), linearly inde-

pendent of (φ∗(t),ψ∗(t)) , the integral
+∞∫
T

a12(τ)JS(τ)
φ2(τ)dτ converges (conditionally), where

T = T (φ ;ψ) � t0 such that φ(t) �= 0 , t � T ; if in addition
+∞∫
t1

|a12(τ)JS(τ)|dτ = +∞,

then
limsup
t→+∞

|φ(t)| = +∞; (4.5)

c) for arbitrary solutions (φ j(t);ψ j(t)) , j = 1,2, of the system (4.1),linearly in-
dependent of (φ∗(t);ψ∗(t)) , there exists a finite limit

lim
t→+∞

φ1(t)
φ2(t)

(�= 0). (4.6)

Proof. Denote: z0(t)≡ ψ0(t)
φ0(t)

, t � t1 . By (4.3) we have ν̃z0(t1)=
+∞∫
t1

a12(τ)JS(t1;τ)
φ2
0 (τ)

dτ .

From here and from conditions of the theorem it follows that the integral ν̃z0(t1) is con-
vergent. Then on the strength of Theorem 6 Eq. (4.2) has the unique t1 -extremal
solution z∗(t) . By virtue of (4.3) the functions

φ∗(t) ≡ exp

{ t∫
t1

[a11(τ)+a12(τ)z∗(τ)]dτ
}

, ψ∗(t) ≡ z∗(t)φ0(t), t � t1,
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form the t1 -regular solution (φ∗(t),ψ∗(t)) of the system (4.1) on [t1;+∞) , which can
be continued on [t0;+∞) as a solution of the system (4.1). Then by virtue of (3.13) from

the equality ν̃z∗(t1) =
+∞∫
t1

a12(τ)JS(t1;τ)
φ2∗ (τ)

dτ and from the conditions of the theorem it fol-

lows that (φ0(t),ψ0(t)) and (φ∗(t),ψ∗(t)) are linearly independent. Therefore for ar-
bitrary solution (φ(t),ψ(t)) of the system (4.1), linearly independent of (φ∗(t),ψ∗(t))
the equality

φ(t) = φ0(t)
[
c0 + c∗

φ∗(t)
φ0(t)

]
, t � t1, (4.7)

holds, where c0 and c∗ are some constants and c0 �= 0. Due to Theorem 6 from the

equality ν̃z0(t1) =
+∞∫
t1

a12(τ)JS(t1;τ)
φ2
0 (τ)

dτ and from the conditions of the theorem it follows

that z0(t) is a t1 -normal solution of Eq. (4.2). Then according to (3.14) from the
equality

φ∗(t)
φ0(t)

=
1

φ0(t)
exp

{ t∫
t1

a12(τ)
[
z0(τ)− z∗(τ)

]
dτ

}
, t � t1,

it follows that

lim
t→+∞

φ∗(t)
φ0(t)

= 0, (4.8)

From here and from (4.7) it follows that φ(t) �= 0, t � t2 , for some t2 � t1 . Taking into
account (4.7) and (4.8) from here we will get:

lim
t→+∞

φ∗(t)
φ(t)

= lim
t→+∞

φ∗(t)
φ0(t)

1[
c0 + c∗ lim

t→+∞
φ∗(t)
φ0(t)

] = 0.

From here it follows the uniqueness (up to arbitrary constant multiplier) of the solution
(φ∗(t),ψ∗(t)) . Therefore the system (4.1) is extremal. The assertion a) immediately

follows from the equality ν̃z∗(t1) =
+∞∫
t1

a12(τ)JS(t1;τ)
φ2∗ (τ)

dτ . The assertion b) follows from

Theorem 6 and from the equality ν̃z(T ) =
+∞∫
T

a12(τ)JS(T ;τ)
φ2(τ) dτ , where z(t) ≡ ψ(t)

φ(t) is a

T -normal solution of Eq. (4.2), and the equality (4.5) immediately follows from the

convergence of the integral
+∞∫
T

a12(τ)JS(T ;τ)
φ2(τ) dτ and from the equality

+∞∫
t0

|a12(τ)JS(T ;τ)|dτ = J−S(t0;T )
+∞∫
t0

|a12(τ)JS(t0;τ)|dτ = +∞.

Let us prove c). Let z j(t)≡ ψ j(t)
φ j(t)

, t � T , j = 1,2, where T � t0 such that φ j(t) �= 0, t �
T , j = 1,2. . Since (φ j(t),ψ j(t)) ( j = 1,2) are linearly independent of (φ∗(t),ψ∗(t)) ,
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by (4.3) and Theorem 6 the functions z j(t) ( j = 1,2) are T -normal solutions of Eq.
(4.2), and

φ1(t)
φ2(t)

=
φ1(T )
φ2(T )

exp

{ t∫
T

a12(τ)
[
z1(τ)− z2(τ)

]
dτ

}
, t � T.

By (3.15) from here it follows (4.6). The theorem is proved. �

REMARK 7. A criterion for existence of a t1 -regular solution to system (4.1) in
the case of real a jk(t) ( j,k = 1,2) is given in [9] (see [9, Theorem 4.2]).

COROLLARY 2. If the system (4.1) has a t1 -regular solution (φ∗(t),ψ∗(t)) for

some t1 � t0 such that
+∞∫
t1

a12(τ)JS(t1;τ)
φ2∗ (τ)dτ = ∞, then the assertions of Theorem 8 are valid.

Proof. Denote z∗(t)≡ ψ∗(t)
φ∗(t) , t � t1 . Then ν̃z∗(t1) =

+∞∫
t1

a12(τ)JS(t1;τ)
φ2∗ (τ)dτ = ∞ . By virtue

of Corollary 1 from here it follows that Eq. (4.2) has a t1 -normal solution z0(t) such
that ν̃z0(t1) converges and ν̃z0(t) �= 0 for all t�t0 . Then for the solution (φ0(t),ψ0(t))
of the system (4.1), where

φ0(t) ≡ exp

{ t∫
t1

[a11(τ)+a12(τ)z0(τ)]dτ
}

, ψ0(t) ≡ z0(t)φ0(t), t � t0,

the integrals Iφ0(t) ≡
+∞∫
t

a12(τ)JS(t;τ)
φ2
0 (τ)dτ = ν̃z0(t) are convergent and do not vanish for all

t � t1 . Thus all conditions of Theorem 8 are fulfilled. The corollary is proved. �

EXAMPLE 4.1. Consider the system{
φ ′(t) = a(t)ψ(t);

ψ ′(t) = −a(t)φ(t), t � t0,
(4.9)

where a(t) is a continuous function on [t0;+∞) . One can readily check that one of the
solutions of this system is (φ(t),ψ(t)) , where

φ(t) ≡ sin

( t∫
t0

a(τ)dτ
)

, ψ(t) ≡ cos

( t∫
t0

a(τ)dτ
)

, t � t0.

Suppose a(t) = ia0(t) , a0(t) � 0, t � t0 , and
+∞∫
t0

a0(τ)dτ = +∞. Then it is not difficult

to verify that (φ(t),ψ(t)) is a t1 -regular solution to the system (4.9) for any t1 > t0 ,
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the integrals Iφ (t)≡
+∞∫
t

a(τ)
φ2(τ)dτ are convergent and Iφ (t) �= 0, t � t1 . Therefore for the

system (4.9) the conditions of Theorem 8 are fulfilled. Suppose sin
( t∫

t0
a(τ)dτ

)
�= 0,

t � t1 > t0 ,
∣∣∣Im t∫

t0
a(τ)dτ

∣∣∣ � M = const , t � t1 , and
+∞∫
t0

a(τ)dτ = ∞ . Then (φ(t),ψ(t))

is a t1 -regular solution to the system (4.9) and since |φ(t)| � M1 , t � t1 for some

M1 = const we have
+∞∫
t1

a(τ)
φ2(τ)dτ = ∞. Therefore all conditions of Corollary 2 for the

system (4.9) are satisfied.

REMARK 8. Taking into account the remark 1 we conclude that Corollary 2 is a
generalization and a supplement of the assertions (i) and (ii) of Theorem 6.4 from the
book [17] (see [17], p. 355), as well as a generalization and a supplement of Theo-
rem 3.1 from [18].

EXAMPLE 4.2. One can readily check that the function z0(t) ≡ sin t + icost , t �
t0, is a regular solution to the equation

z′(t)+ [sint− icost]z2(t)+ iz(t)− sint− icost = 0, t � t0,

So it is not difficult to verify that for a12(t) = sin t − icost , a21(t) = σ(t) = sin t +
+icost , t � t0 , B(t) ≡ i the conditions of Corollary 2 are fulfilled.

EXAMPLE 4.3. Let a21(t) ≡ 0. Then z0(t) ≡ 0 is a regular solution of Eq. (4.1)

and by (4.3) the functions φ∗(t) ≡ exp

{
t∫

t0
a11(τ)dτ

}
, ψ∗(t) ≡ 0 form the regular so-

lution (φ∗(t),ψ∗(t)) of the system (4.1). Therefore by Corollary 2 if

+∞∫
t0

a12(τ)exp

{ t∫
t0

B(τ)dτ
}

= ∞,

then the system (4.1) is extremal and the assertions of Theorem 8 are valid.

Let a12(t) �= 0, t � t0 and let A12(t) and B(t)− a′12(t)
a12(t)

be continuously differen-
tiable. Then we can rewrite Eq. (4.2) in the form

[a12(t)z(t)]′ +[a12(t)z(t)]2 +
{

B(t)− a′12(t)
a12(t)

}
[a12(t)z(t)]−a12(t)a21(t) = 0, t � t0.

(4.10)
Set:

v(t) ≡ a12(t)z(t)+
1
2

{
B(t)− a′12(t)

a12(t)

}
, t � t0. (4.11)

Then from (4.10) we will come to the following Riccati equation with respect to v(t)

v′(t)+ v2(t)+Q(t) = 0, t � t0, (4.12)
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where Q(t) ≡− 1
2

{
B(t)− a′12(t)

a12(t)

}′ − 1
4

{
B(t)− a′12(t)

a12(t)

}2 −a12(t)a21(t) , t � t0 .

Consider the equation
φ ′′(t)+Q(t)φ(t) = 0, (4.13)

COROLLARY 3. Let ImQ(t) ≡ 0 . Then the following assertions are valid:
1) if Eq. (4.13) is oscillatory then the system (4.1) is normal;
2) if Eq. (4.13) is non oscillatory then the system (4.1) is extremal and the asser-

tions of Theorem 8 are valid

Proof. If Eq. (4.13) is oscillatory then Eq. (4.12) has no real regular solution
and its all complex solutions are regular (see for example [9]). Therefore all regular
solutions of Eq. (4.12) are normal. By (4.11) from here it follows that the all regular
solutions of Eq. (4.2) are normal. Therefore the system (4.1) is normal. Let Eq. (4.13)
be non oscillatory. Then Eq. (4.12) has unique real valued extremal solution (see [8,
Lemma 2.1]). Therefore Eq. (4.12) has unique extremal solution (since all complex
solutions of Eq. (4.12) are normal). By (4.11) from here it follows that Eq. (4.2) has
unique extremal solution. Hence the system (4.1) is extremal and all the conditions of
Theorem 8 are fulfilled. The corollary is proved. �

Denote: a12,1(t) ≡ Rea12(t) , a12,2(t) ≡ Ima12(t) , B2(t) ≡ ImB(t) , a21,1(t) ≡
Rea21(t) , a21,2(t) ≡ Ima21(t),

dk(t) ≡ B2(t)−4(−1)ka12,k(t)a21,k(t), k = 1,2m t � t0.

μu(t) ≡
t∫

t0

a12(τ)exp

{
−

τ∫
t0

[
2a12(ξ )u(ξ )+B(ξ )]dξ

}
, t � t0,

where u(t) is an arbitrary continuous function on [t0;+∞) .

THEOREM 9. Let a12,k(t)� 0, and let dk(t)� 0, if a12,k(t) �= 0 and (−1)ka21,k(t)
� 0 if a12,k(t) = 0 , k = 1,2 , t � t0; moreover suppose that if a12,1(t)a12,2(t) = 0 , then
B2(t) = 0 . Then for all solutions (φ j(t),ψ j(t)) , j = 1,2, of the system (4.1) with

Re
ψ j(t0)
φ j(t0)

> 0 , Im
ψ j(t0)
φ j(t0)

< 0 , j = 1,2, the functions φ1(t)
φ2(t)

, Iφ1(t) ≡
t∫

t0

a12(τ)JS(t0;τ)
φ2
1 (τ)

dτ ,

t � t0, are bounded. The system (4.1) is or else normal or else extremal.

Proof. Due to (4.3) and Theorem 1 from the conditions of theorem it follows that

the functions z j(t) ≡ ψ j(t)
φ j(t)

, t � t0 , j = 1,2, are t0 -normal solutions of Eq. (4.2). Then

by (4.3) we have:

φ1(t)
φ2(t)

=
φ1(t0)
φ2(t0)

exp

{ t∫
t0

a12(τ)
[
z1(τ)− z2(τ)

]
dτ

}
, t � t0.
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On the strength of Theorem 5 from here it follows that the function φ1(t)
φ2(t)

is bounded.

By virtue of Theorem 3 from t0 -normality of z1(t) it follows the boundedness of the
function μz1(t) . By (4.3) we have μz1(t) = Iφ1(t) , t � t0 . Therefore the function Iφ1(t)
is bounded. Let z1(t0) �= z2(t0) . Then from the boundedness of φ1(t)

φ2(t)
it follows that the

system (4.1) is or else normal or else extremal. The theorem is proved. �
Denote:

R±
k (t) ≡

{
(−1)k+1B2(t)±

√
dk(t), if a12,k(t) �= 0;

0, if a12,k(t) = 0,
t � t0, k = 1,2.

Using Theorem 2 in place of Theorem 1 by analogy of Theorem 9 can be proved

THEOREM 10. Let a12,k(t)� 0, and let dk(t)� 0 if a12,k(t) �= 0 and (−1)ka21,k(t)
� 0 if a12,k(t) = 0 , k = 1,2 , t � t0 moreover assume that if a12,1(t)a12,2(t) = 0 then
B2(t) = 0 . In addition assume that either R+

1 (t) � 0 and R−
2 (t) � ε or R−

1 (t) � ε
and R+

2 (t) � 0 , t � t0 fir some ε > 0 . Then for all solutions (φ j(t),ψ j(t)) , j = 1,2,

of the system (4.1) with Re
ψ j(t0)
φ j(t0)

> 0 , Im
ψ j(t0)
φ j(t0)

< 0 , j = 1,2, the functions φ1(t)
φ2(t)

and

Iφ1(t) ≡
t∫

t0

a12(τ)JS(t0;τ)
φ2
1 (τ)

dτ , t � t0, are bounded. The system (4.1) is or else normal or

else extremal.

THEOREM 11. Let the conditions of Theorem 9 (Theorem 10), are fulfilled and let

+∞∫
t0

∣∣∣∣a12(τ)exp

{
−

τ∫
t0

B(ξ )dξ
}∣∣∣∣dτ < +∞. (4.13)

Then for each solution (φ(t),ψ(t)) of the system (4.1) with Re ψ(t0)
φ(t0)

� 0 , Im ψ(t0)
φ(t0) � 0 ,

(Re ψ(t0)
φ(t0) > 0 , Im ψ(t0)

φ(t0) < 0 ) the inequality

+∞∫
t0

∣∣∣∣a12(τ)JS(t0;τ)
φ2(τ)

∣∣∣∣dτ < +∞ (4.14)

holds, and for arbitrary solutions (φ j(t),ψ j(t)) , j = 1,2, of the system (4.1) with

Re ψ(t0)
φ(t0) � 0 , Im ψ(t0)

φ(t0)
� 0 , (Re ψ(t0)

φ(t0) > 0 , Im ψ(t0)
φ(t0)

< 0 ) there exists finite limit lim
t→+∞

φ1(t)
φ2(t)

(�= 0) . The system (4.1) is or else normal or else extremal. In the last case the assertions
A) and B) of Theorem 8 are valid for some t1 � t0 .

Proof. Let (φ(t),ψ(t)) be a solution of the system (4.1) with Re ψ(t0)
φ(t0)

� 0, Im ψ(t0)
φ(t0)

� 0, (Re ψ(t0)
φ(t0)

> 0, Im ψ(t0)
φ(t0)

< 0), and let z(t) be a solution of Eq. (4.2) with z(t0) =
ψ(t0)
φ(t0)

. Then according to Theorem 9 (Theorem 10) z(t) is a t0 -regular solution of
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Eq. (4.2), and Rez(t) � 0, Imz(t) � 0 (Re z(t) > 0, Imz(t) < 0) t � t0 . Therefore,

Re
t∫

t0
a12(τ)z(τ)dτ � 0, t � t0. Then taking into account (4.3) we will have:

+∞∫
t0

∣∣∣∣a12(τ)JS(t0;τ)
φ2(τ)

∣∣∣∣dτ =
+∞∫
t0

∣∣∣∣a12(τ)exp

{
−

τ∫
t0

[
2a12(ξ )z(ξ )+B(ξ )

]
dξ

}∣∣∣∣dτ

�
+∞∫
t0

∣∣∣∣a12(τ)exp

{
−

τ∫
t0

B(ξ )dξ
}∣∣∣∣dτ.

From here and from (4.13) it follows (4.14). From the last inequality it follows that
ν̃z(t) converges for all t � t0 . Two cases are possible:

1) ν̃z(t) �= 0, t � T , for some T � t0 ;
2) ν̃z(t) has arbitrary large zeroes.

In the case 1) we have ν̃z(t) =
+∞∫
t

a12(τ)JS(t0;τ)
φ2(τ) dτ �= 0, t � T. Then by virtue of

Theorem 8 the system (4.1) is extremal and the assertions of Theorem 8 hold for some
t1 � t0 . In the case 2) due to Theorem 8 Eq. (4.2) has no t1 -extremal solution for
arbitrary t1 � t0 . Then by (4.3) for arbitrary two regular solutions of the system (4.1)
we have

φ1(t)
φ2(t)

=
φ1(t1)
φ2(t1)

exp

{ t∫
t1

a12(τ)[z1(τ)− z2(τ)]dτ
}

, φ j(t) �= 0, t � t1,

for some t1 � t0 , where z j(t) , j = 1,2, are two t1 -normal solutions of Eq. (4.2). From

here and from Theorem 5 it follows that φ1(t1)
φ2(t1) is bounded on [t1;+∞) . Therefore the

system (4.1) is normal. The theorem is proved. �
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