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Abstract. In this paper we study the existence of monotonic solutions of fractional nonlinear
quadratic integral equations in the space of Lebesgue integrable functions on [0,τ ] . The unique-
ness of the solution is also discussed. In addition an example is given to illustrate our abstract
results.

1. Introduction

In [19], the author studied the existence of a unique bounded continuous and non-
negative solution of the equation

x(t) = k

(
h(t)+

∫ t

0
A(t− s)x(s)ds

)
·
(

g(t)+
∫ t

0
B(t− s)x(s)ds

)
, (1.1)

and this equation arises in the spread of an infectious disease that does not induce
permanent immunity (see, for example [3, 20]). In [28], a new integral inequality was
used to study the boundedness, the asymptotic behavior and the growth of the solutions
of (1.1) and in [1, 29], some integral inequalities are used to study the boundedness and
the asymptotic behavior of continuous solutions of (1.1). The author in [27] studied the
existence and uniqueness of continuous solutions of the general integral equation

x(t) =
m

∏
i=1

(
gi(t)+

∫ t

a
Ki(t,s,x(s))ds

)
, t ∈ [a,b],

where Ki is Lipschitz for i = 1, · · · ,m and in [6], the authors used the measure of
noncompactness to discuss the solvability of the integral equations

x(t) = u(t,x(t))+
(

h(t)+
∫ t

0
k1(t,s) f1(s,x(s))ds

)
·
(

g(t)+
∫ t

0
k2(t,s) f2(s,x(s))ds

)
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in the Banach space of real functions being integrable on [0,1].
In this paper, we discuss the existence of monotonic solutions in the space L1[0,τ]

(the space of Lebesgue integrable functions on [0,τ]), for the fractional nonlinear
quadratic integral equations, namely

x(t) = [h1(t)+g(t) · (Tx)(t)] ·
[
h2(t)+

|x(t)| 1
p

Γ(α)

∫ t

0

f (s,x(s))
(t− s)1−α ds

]
, (1.2)

where T (x) is a general operator and p > 1. Note that (1.2) contains as particular cases
many integral and functional-integral equations which arise in real world problems in
mechanics, economics, and physics (see [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 25,
26]). To establish existence we apply the fixed point theorem due to Darbo associated
with the measure of weak noncompactness. Under suitable assumptions we study the
uniqueness of the solution of (1.2) as well. Finally, we present an example to illustrate
our abstract results.

2. Notation and auxiliary facts

Let R be the field of real numbers, R+ be the interval [0,∞) , J = [0,τ] be a fixed
interval and let Lp(J), 1 � p < ∞ be the space of Lebesgue integrable functions with the

norm ‖x‖Lp(J) = (
∫
J |x(s)|p ds)

1
p . We will write L1,Lp and Lq instead of L1(J),Lp(J)

and Lq(J) .
Let S = S(J) denote the set of measurable (in Lebesgue sense) functions on J and

let meas stand for the Lebesgue measure on J . Identifying the functions equal almost
everywhere the set S furnished with the metric

d(x,y) = inf
a>0

[a+meas({s : |x(s)− y(s)| � a})] ,

becomes a complete metric space. Moreover, the convergence in measure on J is equiv-
alent to the convergence with respect to the metric d (Proposition 2.14 in [30]). The
compactness in such a space is called ”compactness in measure”.

THEOREM 1. Let X be a bounded subset of L1 and suppose that there is a family
of measurable subsets (Ωc)0�c�1 of the interval J such that meas(Ωc) = c for every
c ∈ J and for x ∈ X

x(t1) � x(t2); t1 ∈ Ωc, t2 �∈ Ωc.

Then the set X is compact in measure in L1 .

Now we present the concept of measure of noncompactness. Assume that (E,‖·‖)
is an arbitrary Banach space with zero element θ . Denote by B(x,r) the closed ball
centered at x and with radius r . The symbol Br stands for the ball B(θ ,r) . Denote
by ME the family of all nonempty and bounded subsets of E and by NE (N W

E ) its
subfamily consisting of all relatively (weakly relatively) compact sets. The symbols X

and X
W

stand for the closure and the weak closure of a set X , respectively and the
symbol ConvX will denote the convex closed hull of a set X .
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DEFINITION 1. [4] A mapping μ : ME → R+ is said to be a regular measure of
noncompactness in E if it satisfies the following conditions:

(i) μ(X) = 0 ⇐⇒ X ∈ NE .

(ii) X ⊂ Y ⇒ μ(X) � μ(Y ) .

(iii) μ(X) = μ(ConvX) = μ(X) .

(iv) μ(λX) = |λ |μ(X), λ ∈ R .

(v) μ(X +Y) � μ(X)+ μ(Y) .

(vi) μ(X
⋃

Y ) = max{μ(X),μ(Y )} .

(vii) If Xn is a sequence of nonempty, bounded, closed subsets of E such that Xn+1 ⊂
Xn , n = 1,2,3, · · · , and limn→∞ μ(Xn)= 0, then the set X∞ =

⋂∞
n=1 Xn is nonempty.

An example of such a mapping is the following:

DEFINITION 2. [4] Let X be a nonempty and bounded subset of E . The Haus-
dorff measure of noncompactness χ(X) is defined as

χ(X) = inf{r > 0 : there exists a finite subset Y of E such that X ⊂ Y +Br}.
DEFINITION 3. [5] A mapping μ : ME → R+ is said to be a regular measure of

weak noncompactness in E if it satisfies conditions (ii)− (vi) of Definition 1 and the
following two conditions (being counterparts of (i) and (vii)) hold:

(i′) μ(X) = 0 ⇐⇒ X ∈ N W
E .

(vii′) If Xn is a sequence of nonempty, bounded, weakly closed subsets of E such that
Xn+1 ⊂ Xn, n = 1,2,3, · · · , and limn→∞ μ(Xn) = 0, then the set X∞ =

⋂∞
n=1 Xn

is nonempty.

Consider a nonempty and bounded subset X of the space L1 . For any ε > 0, let c
be a measure of equiintegrability of the set X (the so-called Sadovskii functional [2, p.
39]) i.e.

c(X) = lim
ε→0

{
sup
x∈X

{
sup

[∫
D
|x(t)| dt : D ⊂ J, meas(D) � ε

]}}
. (2.1)

It forms a regular measure of noncompactness if restricted to the family of subsets being
compact in measure (cf. [18]).

Next, we discuss some properties of operators acting on different function spaces.

DEFINITION 4. [2] Assume that a function f : J×R→R satisfies the Carathéodory
conditions i.e. it is measurable in t for any x ∈ R and continuous in x for almost all
t ∈ J . Then to every function x(t) being measurable on J we may assign the function

Ff (x)(t) = f (t,x(t)), t ∈ J.

The operator Ff is called the superposition (Nemytskii) operator generated by the func-
tion f .
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THEOREM 2. [2] Suppose f satisfies the Carathéodory conditions. The super-
position operator Ff generated by the function f maps continuously the space Lp into
Lq (p,q � 1) if and only if

| f (t,x)| � a(t)+b|x| p
q , (2.2)

for all t ∈ J and x ∈ R , where a ∈ Lq and b � 0 .

Let us recall some properties of operators preserving monotonicity properties of
functions.

LEMMA 1. [10] Suppose the function t → f (t,x) is a.e. nondecreasing on a finite
interval J for each x ∈ R and the function x → f (t,x) is a.e. nondecreasing on R for
any t ∈ J . Then the superposition operator Ff generated by f transforms functions
being a.e. nondecreasing on J into functions having the same property.

LEMMA 2. [21, Lemma 17.5] Assume that a function f : J ×R → R satisfies
Carathéodory conditions. The superposition operator Ff maps a sequence of functions
convergent in measure into a sequence of functions convergent in measure.

For the integral operator of the form (Ku)(t) =
∫
J

k(t,s)u(s) ds we have the fol-

lowing theorem due to Krzyż ([22, Theorem 6.2]):

THEOREM 3. The operator K preserve the monotonicity of functions if and only
if ∫ l

0
k(t1,s) ds �

∫ l

0
k(t2,s) ds

for t1 < t2 , t1, t2 ∈ J and for any l ∈ J .

DEFINITION 5. [23] Let f ∈ L1 , and α ∈ R+ . The Riemman-Liouville (R-L)
fractional integral of the function f of order α is defined as

Iα f (t) =
∫ t

0

(t− s)α−1

Γ(α)
f (s) ds, α > 0, t > 0,

where Γ(α) is the Euler’s gamma function.

We state here some results concerning the above mentioned operators, that are
relevant to our work (cf. [23, 24]).

PROPOSITION 1. For α ∈ R+ , we have

(a) The operator Iα maps Lp into itself continuously.

(b) Iα maps the nonnegative and a.e. nondecreasing functions into functions of the
same type.
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In our approach we will need the following fixed point theorem due to Darbo [4].

THEOREM 4. Let C be a nonempty, bounded, closed, and convex subset of E and
let H : C → C be a continuous transformation which is a contraction with respect to
the measure of noncompactness μ , i.e. there exists k ∈ [0,1) such that

μ(H(X)) � kμ(X),

for any nonempty subset X of C. Then H has at least one fixed point in the set C .

3. Main results

First, we rewrite equation (1.2) in the form

x = (Hx) = (Ax) · (Bx), (3.1)

where
(Ax)(t) = h1(t)+g(t) · (Tx)(t),

(Bx)(t) = h2(t)+ |x(t)| 1
p IαFf (x)(t),

(Tx) is a general operator, Ff is the superposition operator as in Definition 4 and Iα is
as in Definition 5.

Let 1
p + 1

q = 1, p > 1 and α > 1
p . We make the following assumptions:

(i) g,h1,h2 : J →R+ are a.e. nondecreasing functions, where g is bounded function
with M = supt∈J |g(t)| , h1 ∈ Lq and h2 ∈ Lp(J), J = [0,τ] .

(ii) The operator T : L1 → Lq is continuous and maps a.e. nondecreasing functions
into functions of the same type. Moreover, Tx � 0 a.e. for x ∈ L1 and there exist
a function a1 ∈ Lq and a nonnegative constant b1 such that

|(Tx)(t)| � a1(t)+b1|x(t)|
1
q a. e. t ∈ J, x ∈ L1(J). (3.2)

(iii) Assume that the function f : J×R → R, satisfies the Carathéodory conditions.
Moreover, f (t,x) � 0 for (t,x) ∈ J×R and f is assumed to be nondecreasing
with respect to both variable t and x separately. Moreover, there are a nonnega-
tive constant b2 and a nonnegative function a2 ∈ Lp such that

| f (t,x)| � a2(t)+b2|x|
1
p a. e. t ∈ J, x ∈ R. (3.3)

(iv) Assume there exists a number r > 0 with

Mb1γ
(
‖a2‖Lp +b2r

1
p

)
< 1
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and(‖h1‖Lq +M‖a1‖Lq

)‖h2‖Lp +Mb1‖h2‖Lpr
1
q +
(‖h1‖Lq +M‖a1‖Lq

)
γ‖a2‖Lpr

1
p

+γb2
(‖h1‖Lq +M‖a1‖Lq

) · r 2
p +Mγb1b2 · r1+ 1

p +Mb1γ‖a2‖Lp · r � r,

where γ = τ
α p−1

p

Γ(α)

(
p−1

α p−1

)1− 1
p

.

REMARK 1. Assumption (iv) takes the form C + Dr
1
q + Er

1
p + Gr

2
p + Ir

1
p +1 +

Kr � r . For example for r = 1 we would need C+D+E +G+ I+K � 1.

REMARK 2. Assume x ∈ L1 and z ∈ Lp . Then we have

∥∥∥∥|x(t)| 1
p Iαz(t)

∥∥∥∥
Lp

� τ
α p−1

p

Γ(α)

(
p−1

α p−1

)1− 1
p

‖z‖Lp‖x‖
1
p
L1

.

Indeed, we have∥∥∥∥|x(t)| 1
p Iαz(t)

∥∥∥∥
Lp

=
∥∥∥∥|x(t)| 1

p

∫ t

0

(t− s)α−1

Γ(α)
z(s) ds

∥∥∥∥
Lp

�
∥∥∥∥ |x(t)|

1
p

Γ(α)

(∫ t

0
(t− s)q(α−1) ds

) 1
q

‖z‖Lp

∥∥∥∥
Lp

=
∥∥∥∥ |x(t)|

1
p

Γ(α)

(
tq(α−1)+1

q(α −1)+1

) 1
q

‖z‖Lp

∥∥∥∥
Lp

=
∥∥∥∥ |x(t)|

1
p

Γ(α)
t

α p−1
p

(
p−1

α p−1

)1− 1
p

‖z‖Lp

∥∥∥∥
Lp

� τ
α p−1

p

Γ(α)

(
p−1

α p−1

)1− 1
p

‖z‖Lp

∥∥∥∥|x| 1
p

∥∥∥∥
Lp

� τ
α p−1

p

Γ(α)

(
p−1

α p−1

)1− 1
p

‖z‖Lp‖x‖
1
p
L1

,

where we used q = p
p−1 . Similarly if D ⊂ J , we have

∥∥∥∥|x(t)| 1
p Iαz(t)

∥∥∥∥
Lp(D)

� τ
α p−1

p

Γ(α)

(
p−1

α p−1

)1− 1
p

‖z‖Lp‖x‖
1
p

L1(D).

THEOREM 5. Let assumptions (i)− (iv) be satisfied. Then (1.2) has at least one
integrable solution a.e. nondecreasing on J .
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Proof. From assumptions (iii) and Theorem 2 we have that Ff maps L1 into Lp

continuously and from Proposition 1 and Remark 2, we have that the operator B maps
L1 into Lp continuously. From assumptions (i) and (ii) , we deduce that the operator
A maps L1 into Lq and is continuous. Finally, the Hölder inequality implies that the
operator H maps L1 into itself continuously.

Using equation (3.1) and Remark 2 with assumptions (i)−(iii) , we have for x∈L1

that

‖Hx‖L1

� ‖(Ax) · (Bx)‖L1

� ‖Ax‖Lq ‖Bx‖Lp

� ‖h1 +g · (Tx)‖Lq

∥∥∥h2 + |x| 1
p IαFf (x)

∥∥∥
Lp

�
(
‖h1‖Lq +M‖a1 +b1|x|

1
q ‖Lq

)

×
(
‖h2‖Lp +

∥∥∥∥|x(t)| 1
p

∫ t

0

(t− s)α−1

Γ(α)
f (s,x(s))ds

∥∥∥∥
Lp

)

�
(
‖h1‖Lq +M‖a1‖Lq +Mb1

(∫ τ

0
|(x(t)) 1

q |qdt

) 1
q
)

×
(
‖h2‖Lp +

τ
α p−1

p

Γ(α)

(
p−1

α p−1

)1− 1
p

‖ f (·,x(·))‖Lp‖x‖
1
p
L1

)

�
(
‖h1‖Lq +M‖a1‖Lq +Mb1

(∫ τ

0
|x(t)|dt

) 1
q
)

×
(
‖h2‖Lp + γ‖x‖

1
p
L1

∥∥∥∥ a2 +b2|x|
1
p

∥∥∥∥
Lp

)

�
(
‖h1‖Lq +M‖a1‖Lq +Mb1‖x‖

1
q
L1

)(
‖h2‖Lp + γ‖x‖

1
p
L1

[
‖a2‖Lp +b2‖x‖

1
p
L1

])
.

Thus H : L1 → L1 . Let r be as in assumption (iv) and let x ∈ Br, where Br = {m ∈
L1 : ‖m‖L1 � r} . Then

‖Hx‖L1 �
(
‖h1‖Lq +M‖a1‖Lq +Mb1 · r

1
q

)(
‖h2‖Lp + γ · r 1

p

[
‖a2‖Lp +b2 · r

1
p

])
� r.

Thus H : Br → Br (and is continuous).
Further, let Qr is a subset of Br which has the functions a.e. nondecreasing on

J . A standard argument (see for example [24]) guarantees that this set is nonempty,
bounded (by r ), convex and closed in L1 . In view of Theorem 1 the set Qr is compact
in measure.

Now, we will show that H preserves the monotonicity of functions. Take x ∈ Qr .
Then x(t) is a.e. nondecreasing on J and consequently f is also of the same type
from assumption (iii) . In addition, Iα is a.e. nondecreasing on J from Proposition
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1. Moreover, (Tx)(t),(Ax)(t) and (Bx)(t) are also of the same type. Thus we can
deduce that (Hx) = (Ax)(Bx) is also a.e. nondecreasing on J . Then H : Qr → Qr and
is continuous.

Now we assume that X is a nonempty subset of Qr and the constant ε > 0 is
arbitrary, but fixed. Then for an arbitrary x ∈ X and for a set D ⊂ J with measD � ε
we obtain

‖Hx‖L1(D) =
∫

D
|(Hx)(t)|dt � ‖(Ax) · (Bx)‖L1(D)

� ‖(Ax)‖Lq(D) · ‖(Bx)‖Lp(D)

� ‖h1 +g · (Tx)‖Lq(D) ·
∥∥∥h2 + |x| 1

p IαFf (x)
∥∥∥

Lp(D)

�
(
‖h1‖Lq(D) +M‖a1 +b1|x|

1
q ‖Lq(D)

)

×
(
‖h2‖Lp(D) +

∥∥∥∥|x(t)| 1
p

∫ t

0

(t− s)α−1

Γ(α)
f (s,x(s))ds

∥∥∥∥
Lp(D)

)

�
(
‖h1‖Lq(D) +M‖a1‖Lq(D) +b1M

(∫
D
|x(t)|dt

) 1
q
)

×
(
‖h2‖Lp(D) +

τ
α p−1

p

Γ(α)

(
p−1

α p−1

)1− 1
p

‖ f (·,x(·))‖Lp‖x‖
1
p

L1(D)

)

�
(
‖h1‖Lq(D) +M‖a1‖Lq(D) +b1M‖x‖

1
q

L1(D)

)

×
(
‖h2‖Lp(D) + γ

(
‖a2‖Lp +b2‖x‖

1
p
L1

)
‖x‖

1
p

L1(D)

)

�
(
‖h1‖Lq(D) +M‖a1‖Lq(D) +b1M‖x‖

1
q

L1(D)

)

×
(
‖h2‖Lp(D) + γ

(
‖a2‖Lp +b2r

1
p

)
‖x‖

1
p

L1(D)

)
.

Since h1,a1 ∈ Lq and h2 ∈ Lp , we have the equalities

lim
ε→0

{sup
x∈X

{sup[ ‖h1‖Lq(D) +M‖a1‖Lq(D) : D ⊂ J, meas(D) � ε]}} = 0

and
lim
ε→0

{sup
x∈X

{sup[ ‖h2‖Lp(D) : D ⊂ J, meas(D) � ε]}} = 0.

From formula (2.1), we get

c(H(X)) � Mb1γ
(
‖a2‖Lp +b2r

1
p

)
· c(X).

Recall that Mb1γ
(
‖a2‖Lp + b2r

1
p

)
< 1 and the inequality obtained above together



Differ. Equ. Appl. 13, No. 1 (2021), 1–13. 9

with the properties of the operator H on the set Qr (see also the description before
Definition 4) allow us to apply Theorem 4 which completes the proof. �

Next, we discuss the uniqueness of solutions.

THEOREM 6. Let the assumptions of Theorem 5 be satisfied with replacing (3.2)
and (3.3) by the following assumptions

(v)

|T (x)(0)| � a1(t), |T (x)−T(y)| � b1|x− y| 1
q

and
| f (t,0)| � a2(t), | f (t,x)− f (t,y)| � b2|x− y| 1

p .

(vi) If for any constant W � 0 , we have

W � Mb1‖h2‖LpW
1
q +b2γr

1
p ‖h1‖LqW

1
p + γ‖h1‖Lq

(‖a2‖Lp +b2r
1
p
)
W

1
p

+Mb2γr
1
p
(‖a1‖Lq +b1r

1
q
)
W

1
p

+Mγ
(‖a1‖Lq +b1r

1
q
)(‖a2‖Lp +b2‖y‖

1
p
L1

)
W

1
p

+Mb1γr
1
p
(‖a2‖Lp +b2r

1
p
)
W

1
q , then W = 0.

Then (1.2) has a unique solution in Qr where r is given in assumption (iv).

Proof. From assumption (v) , we have

|| f (t,x)|− | f (t,0)|| � | f (t,x)− f (t,0)| � b2|x|
1
p

⇒ | f (t,x)| � | f (t,0)|+b2|x|
1
p � a2(t)+b2|x|

1
p .

Similarly, we have |(Tx)| � a1(t)+ b1|x|
1
q . Then all assumptions of Theorem 5 are

satisfied, and therefore (1.2) has at least one solution x ∈ Qr .
Now, let x and y be two solutions of (1.2) in Qr . Then

|x(t)− y(t)|

=
∣∣∣∣[h1(t)+g(t) · (Tx)(t)]

(
h2(t)+ |x(t)| 1

p

∫ t

0

(t − s)α−1

Γ(α)
f (s,x(s))ds

)

− [h1(t)+g(t) · (Ty)(t)]
(

h2(t)+ |y(t)| 1
p

∫ t

0

(t− s)α−1

Γ(α)
f (s,y(s))ds

)∣∣∣∣
� |g(t)| · |h2(t)| · |(Tx)(t)− (Ty)(t)|

+|h1(t)||x(t)|
1
p

∫ t

0

(t− s)α−1

Γ(α)
| f (s,x(s)) − f (s,y(s))|ds

+|h1(t)|
∣∣∣∣|x(t)| 1

p −|y(t)| 1
p

∣∣∣∣
∫ t

0

(t − s)α−1

Γ(α)
| f (s,y(s))|ds
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+|g(t)||(Tx)(t)||x(t)| 1
p

∫ t

0

(t− s)α−1

Γ(α)
| f (s,x(s)) − f (s,y(s))|ds

+|g(t)||(Tx)(t)|
∣∣∣∣|x(t)| 1

p −|y(t)| 1
p

∣∣∣∣
∫ t

0

(t− s)α−1

Γ(α)
| f (s,y(s))|ds

+|g(t)|
∣∣∣∣(Tx)(t) − (Ty)(t)

∣∣∣∣|y(t)| 1
p

∫ t

0

(t − s)α−1

Γ(α)
| f (s,y(s))|ds

� M · |h2(t)| ·b1|x(t)− y(t)| 1
q + |h1(t)||x(t)|

1
p

∫ t

0

(t − s)α−1

Γ(α)
b2|x(s) − y(s)| 1

p ds

+|h1(t)|
∣∣x(t)− y(t)

∣∣ 1p ∫ t

0

(t − s)α−1

Γ(α)
(
a2(s)+b2|y(s)|

1
p
)
ds

+M
(
a1(t)+b1|x(t)|

1
q
)|x(t)| 1

p

∫ t

0

(t − s)α−1

Γ(α)
b2|x(s) − y(s)| 1

p ds

+M
(
a1(t)+b1|x(t)|

1
q
)∣∣x(t)− y(t)

∣∣ 1p ∫ t

0

(t − s)α−1

Γ(α)
(
a2(s)+b2|y(s)|

1
p
)
ds

+Mb1
∣∣x(t) − y(t)

∣∣ 1q |y(t)| 1
p

∫ t

0

(t − s)α−1

Γ(α)
(
a2(s)+b2|y(s)|

1
p
)
ds,

since

∣∣∣∣|x| 1
p −|y| 1

p

∣∣∣∣� |x− y| 1
p . Therefore,

‖x− y‖L1

� Mb1‖h2‖Lp

∥∥|x− y| 1
q
∥∥

Lq
+b2‖h1‖Lq

∥∥∥∥|x(t)| 1
p

∫ t

0

(t − s)α−1

Γ(α)
|x(s)− y(s)| 1

p ds

∥∥∥∥
Lp

+‖h1‖Lq

∥∥∥∥∣∣x(t)− y(t)
∣∣ 1p ∫ t

0

(t− s)α−1

Γ(α)
(
a2(s)+b2|y(s)|

1
p
)
ds

∥∥∥∥
Lp

+Mb2
∥∥a1 +b1|x|

1
q
∥∥

Lq

∥∥∥∥|x(t)| 1
p

∫ t

0

(t− s)α−1

Γ(α)
|x(s) − y(s)| 1

p ds

∥∥∥∥
Lp

+M
∥∥a1 +b1|x|

1
q
∥∥

Lq

∥∥∥∥∣∣x(t)− y(t)
∣∣ 1p ∫ t

0

(t − s)α−1

Γ(α)
(
a2(s)+b2|y(s)|

1
p
)
ds

∥∥∥∥
Lp

+Mb1
∥∥|x(t) − y(t)| 1

q ‖Lq

∥∥∥∥|y(t)| 1
p

∫ t

0

(t− s)α−1

Γ(α)
(
a2(s)+b2|y(s)|

1
p
)
ds

∥∥∥∥
Lp

� Mb1‖h2‖Lp

∥∥x− y
∥∥ 1

q
L1

+b2‖h1‖Lq

τ
α p−1

p

Γ(α)

(
p−1

α p−1

)1− 1
p ∥∥|x− y| 1

p
∥∥

Lp
‖x‖

1
p
L1

+‖h1‖Lq

τ
α p−1

p

Γ(α)

(
p−1

α p−1

)1− 1
p

‖a2 +b2|y|
1
p ‖Lp‖x− y‖

1
p
L1

+Mb2
(‖a1‖Lq +b1‖x‖

1
q
L1

)τ
α p−1

p

Γ(α)

(
p−1

α p−1

)1− 1
p ∥∥|x − y| 1

p
∥∥

Lp
‖x‖

1
p
L1
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+M
(‖a1‖Lq +b1‖x‖

1
q
L1

)τ
α p−1

p

Γ(α)

(
p−1

α p−1

)1− 1
p

‖a2 +b2|y|
1
p ‖Lp‖x− y‖

1
p
L1

+Mb1
∥∥x − y‖

1
q
L1

τ
α p−1

p

Γ(α)

(
p−1

α p−1

)1− 1
p

‖a2 +b2|y|
1
p ‖Lp‖y‖

1
p
L1

� Mb1‖h2‖Lp

∥∥x− y
∥∥ 1

q
L1

+b2γr
1
p ‖h1‖Lq

∥∥x− y‖
1
p
L1

+γ‖h1‖Lq

(‖a2‖Lp +b2‖y‖
1
p
L1

)‖x− y‖
1
p
L1

+Mb2γr
1
p
(‖a1‖Lq +b1r

1
q
)∥∥x − y‖

1
p
L1

+Mγ
(‖a1‖Lq +b1r

1
q
)(‖a2‖Lp +b2‖y‖

1
p
L1

)‖x− y‖
1
p
L1

+Mb1γr
1
p
(‖a2‖Lp +b2‖y‖

1
p
L1

)∥∥x − y‖
1
q
L1

� Mb1‖h2‖Lp

∥∥x− y
∥∥ 1

q
L1

+b2γr
1
p ‖h1‖Lq

∥∥x− y‖
1
p
L1

+γ‖h1‖Lq

(‖a2‖Lp +b2r
1
p
)‖x− y‖

1
p
L1

+Mb2γr
1
p
(‖a1‖Lq +b1r

1
q
)∥∥x − y‖

1
p
L1

+Mγ
(‖a1‖Lq +b1r

1
q
)(‖a2‖Lp +b2r

1
p
)‖x− y‖

1
p
L1

+Mb1γr
1
p
(‖a2‖Lp +b2r

1
p
)∥∥x − y‖

1
q
L1

.

From the above inequality and assumption (vi), we deduce that x = y (a.e), which
completes the proof. �

EXAMPLE 1. For t ∈ [0,1] , consider the following integral equation

x(t) =
[
t10 + t5

(
t3 +

1
200

|x(t)| 1
2

)]⎡⎢⎢⎣√te2t2 +
|x(t)| 1

2

Γ( 2
3 )

∫ t

0

√
ln
(
1+ |x(t)|2

)
3
√

t− s
ds

⎤
⎥⎥⎦ . (3.4)

Let p = q = 2. Then one can easily check that:

1. h1(t) = t10 ∈ L2[0,1] and ‖h1‖L2[0,1] = 1√
21

.

2. h2(t) =
√

te2t2 ∈ L2[0,1] and ‖h2‖L2[0,1] =
√

2
4

√
e4−1.

3. g(t) = t5 and M = sup0�t�1 t5 = 1.

4. |(Tx)(t)| � t3 + 1
200 |x|

1
2 , then a1(t) = t3,b1 = 1

200 .

5. f (t,x) =
√

ln
(
1+(x(s))2

)
and | f (t,x)| � |x| 1

2 , then a2(t) = 0,b2 = 1.

6. Let r = 1 and note that

Mb1γ
(
‖a2‖L2 +b2r

1
p

)
=

√
3

200Γ( 2
3)

< 1
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and (
||h1||L2 +M‖a1‖L2 +Mb1

)(
||h2||L2 +b2γ

)

=
(

1√
21

+
1√
7

+
1

200

)(√
2

4

√
e4−1+

√
3

Γ( 2
3)

)
� 1.

Therefore, assumption (iv) holds.

Hence, using Theorem 5, we deduce that (3.4) has at least one integrable solution
a.e. nondecreasing in [0,1] .

Acknowledgements. The authors extend their appreciation to the editor and the
referees for their valuable remarks and comments.
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