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Abstract. Let Pk(z) (k = 1,2, . . . ,n) and G(z) be polynomials with complex in general coeffi-
cients. The paper deals with the higher order differential equation

v(n)(z)+P1(z)v(n−1)(z)+ . . .+Pn(z)v(z) = G(z).

We derive estimates for the sums of the zeros of solutions to this equation. These estimates give
us bounds for the function counting the zeros of solutions and information about the zero-free
domain. Some other applications are also discussed.

1. Introduction and statement of the main result

Let

Pk(z) =
νk

∑
j=0

ck jz
j (νk < ∞, k = 1, . . . ,n) and G(z) =

νG

∑
j=0

ψ jz
j (z ∈ C,νG < ∞)

be polynomials with complex, in general, coefficients. The paper deals with the zeros
of solutions to the equation

dnv
dzn +

n

∑
k=1

Pk(z)
dn−kv
dzn−k = G(z) (v = v(z)). (1.1)

For arbitrary initial conditions the Cauchy problem to (1.1) has solutions which
are entire functions, cf. [14, Proposition 8.1]. The literature devoted to the zeros of
the solutions of ordinary differential equations (ODEs) is very rich. Besides, the main
tool is the Nevanlinna theory. The excellent exposition of the Nevanlinna theory and its
applications to differential equations is given in the book [14]. In that book the results
of many mathematicians are reflected.

The recent results on complex zeros of solutions to ODEs can be found in the
papers [3, 6, 15, 16, 17, 18], and references given therein. In particular, the paper
[18] studies the convergence of the zeros of a non-trivial (entire) solution to the linear
differential equation

f ′′ +
{
Q1(z)eP1(z) +Q2(z)eP2(z) +Q3(z)eP3(z)

}
f = 0,
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where Pj are polynomials of degree n � 1 and Qj(�≡ 0) are entire functions of order
less than n ( j = 1,2,3) . The real zeros of solutions to equations with polynomial co-
efficients were investigated in the papers by Eremenko and Merenkov [5], and by C. Z.
Huang [13]. The remarkable results on the zeros of a wide class of ordinary differ-
ential equations with polynomial coefficients, whose solutions are classical orthogonal
polynomials, have been established by N. Anghel [1]. In addition, in the paper [2] N.
Anghel investigated the following question: when is an entire function of finite order,
the solution to a complex second order homogeneous linear differential equation with
polynomial coefficients ? He gives two (equivalent) answers to this question, one of
which involves certain Stieltjes-like relations for the zeros of solutions, the second one
requires the vanishing of all but finitely many suitable expressions constructed via the
relations of the sums of the zeros of the function derived in [7].

Certainly, we could not survey the whole subject here and refer the reader to the
listed publications.

It should be noted that in the above cited works mainly the asymptotic distributions
of zeros are investigated. At the same time, bounds for the zeros of solutions are very
important in various applications, but to the best of our knowledge, they have been
investigated considerably less than the asymptotic distributions. In the paper [8] the
author has established bounds for the sums of the zeros of solutions for the second
order homogeneous equations with polynomial coefficients. In the interesting paper
[4], some results from [8] have been extended to the equation u(m) = P(z)u , where P is
a polynomial and m > 2. In the papers [11] and [10] the main result from [8] have been
extended to the second order ODEs having singular points and to non-homogeneous
second order ODEs, respectively. In addition, in the paper [9] the author has derived a
bound for the products of the zeros of solutions to second order ODEs with polynomial
coefficients.

In this paper we generalize the main results from the papers [8] and [10] to equa-
tion (1.1). That generalization requires a considerably new approach. Our main tool is
a combined usage of the new solution estimates for the higher order differential equa-
tions and recent estimates for the roots of entire functions. Besides, we generalize the
well known [14, Theorem 8.3] on the order of solutions of non-homogeneous ODEs.

To formulate our main result note that any initial condition for (1.1) can be reduced
to the initial condition

v(0) = 1,v(k)(0) = 0 (k = 1, . . . ,n−1). (1.2)

For a continuous function f and a positive number r put f̂ (r) = sup|z|�r | f (z)| . Clearly,

rkP̂k(r) � pk(r) (k = 1, . . . ,n) and Ĝ(z) � g(r) , where

pk(r) :=
νk

∑
j=0

|ck, j|rk+ j and g(r) :=
νG

∑
j=0

|ψ j|r j.

Below we check that there are constants αk � (pk(1))1/k and βk � (pk(1))1/k , such
that

(pk(r))1/k � βk + αkr
ρ0 (r > 0; k = 1, . . . ,n),
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where ρ0 = 1+maxk=1,...,n(νk/k) . Put

a0 = max
k=1,...,n

2(n−1)/kαk, r̃ j :=
(

j
a0ρ0

)1/ρ0

and χ0 = 2(ea0ρ0)1/ρ0 .

We will show that

θ0 := b0

∞

∑
j=1

r̃n
j [g(r̃ j)+ pn(r̃ j)]

2 j < ∞, (1.3)

where

b0 =
1

n!2n−1

n

∑
k=1

exp [2(n−1)/kβk],

Enumerate the zeros zk(v) of the solution v(z) to problem (1.1), (1.2), with the mul-
tiplicities taken into account, in the non-decreasing order of their absolute values:
|zk(v)| � |zk+1(v)| (k = 1,2, . . .) . Now we are in a position to formulate the main
result of the paper.

THEOREM 1. The zeros zk(v) (k = 1,2, . . .) of the solution v(z) to problem (1.1),
(1.2) satisfy the inequalities

j

∑
k=1

1
|zk(v)| � χ0

[
θ0 +

j

∑
k=1

1

(k+1)1/ρ0

]
( j = 1,2, . . .). (1.4)

This theorem is proved in the next three sections.
Below we show that Theorem 1 gives us a bound for the function counting the

zeros of solutions and information about the zero-free domain. Some other applications
are also discussed.

2. Solution estimates

Consider the equation

dnu
dzn +

n

∑
k=1

Qk(z)
dn−ku
dzn−k = F(z) (u = u(z)), (2.1)

where Qk(z) (k = 1, . . . ,n) and F(z) are continuous functions.
A solution of (2.1) is an n -times continuously differentiable function u(z) defined

for all z ∈ C and satisfying (2.1), and the given initial conditions. Since the equation is
linear, the existence and uniqueness of solutions is well-known, cf. [14].

To estimate solutions of (2.1) we need the following

LEMMA 1. Let xk (k = 1, . . . ,m < ∞) be positive numbers. Then

(
m

∑
k=1

xk) j � 2(m−1)( j−1)
m

∑
k=1

x j
k ( j = 1,2, . . .).
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Proof. Let

f (x) =
(1+ x) j

1+ x j (x > 0).

Simple calculations show that f ′(1) = 0 and f (1) = 2 j−1 . So (1+ x) j � 2 j−1(1+ x j)
and

(x1 + x2) j � 2 j−1(x j
1 + x j

2).

Hence,

(x1 + x2 + x3) j � 2 j−1(x j
1 +(x2 + x3) j) � 2 j−1(x j

1 +2 j−1(x j
2 + x j

3) � 22 j(x j
1 + x j

2 + x j
3)..

If

(
m−1

∑
k=1

xk) j � 2(m−2)( j−1)
m−1

∑
k=1

x j
k,

then we have

(
m

∑
k=1

xk) j � 2(m−2)( j−1)[
m−2

∑
k=1

x j
k +(xm−1 + xm) j]

� 2( j−1)(m−2)(
m−2

∑
k=1

x j
k +2 j−1(x j

m−1 + x j
m)) � 2( j−1)(m−1)

m

∑
k=1

x j
k.

This induction proves the lemma. �
Put

γm(x) =
∞

∑
k=0

xk

(mk)!
(x � 0)

for an integer m � 1. Since

∞

∑
k=0

xk

(mk)!
�

∞

∑
k=0

( m
√

x)k

k!
,

we have
e

m√x � γm(x) (x � 0; m = 1,2, . . .). (2.2)

LEMMA 2. Let u(z) be a solution of equation (2.1) with the zero initial condition

u(k)(0) = 0 (k = 0, . . . ,n−1). (2.3)

Then

û(n)(r) � 1
2n−1 F̂(r)

n

∑
k=1

γk(2n−1Q̂k(r)rk) (r � 0).

Proof. Put w(z) = dnu(z)
dzn . Then

dn−ku(z)
dzn−k = (Jkw)(z),
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where

(Jw)(z) =
∫ z

0
w(s)ds and (Jkw)(z) =

1
(k−1)!

∫ z

0
(z− s)k−1w(s)ds.

From (2.1) we have

w(z)+
n

∑
k=1

Qk(z)(Jkw)(z) = F(z). (2.4)

For a fixed t ∈ [0,2π) and z = reit we get

sup
|z|�r

|(Jw)(z)| = sup
|z|�r

|
∫ reit

0
w(s)ds| �

∫ r

0
ŵ(r1)dr1 = (Jŵ)(r).

Similarly,

sup
|z|�r

|(Jkw)(z)| � 1
(k−1)!

∫ r

0
(r− r1)k−1ŵ(r1)dr1 = (Jkŵ)(r).

Hence, making use of (2.4), we get

ŵ(r) �
n

∑
k=1

Q̂k(r)(Jkŵ)(r)+ F̂(r).

Put

(V f )(r) =
n

∑
k=1

Q̂k(r)(Jk f )(r) (r > 0)

for a continuous function f . Clearly, V is a Volterra operator and

ŵ(r) � (Vŵ)(r)+ F̂(r). (2.5)

Let C+ be the cone of all continuous positive functions defined on [0,∞) . For operators
A and B defined in C+ we write A � 0 and A � B if (A f )(t) � 0 (t � 0, f ∈C+) and
A−B � 0 . Since V is a Volterra operator and V � 0 we have

(I−V)−1 =
∞

∑
j=0

V j � 0.

Now (2.5) implies

ŵ(r) � ((I−V)−1F̂)(r) =
∞

∑
j=0

(V jF̂)(r) (r > 0). (2.6)

We can write

V =
n

∑
k=1

Vk,
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where (Vk f )(r) = Q̂k(r)(Jk f )(r) ( f ∈C+) . Applying the inequality

(Jkŵ)(r) =
1

(k−1)!

∫ r

0
(r− s)k−1ŵ(s)ds � ŵ(r)

rk

(k)!
, (2.7)

we get

(V j
k ŵ)(r) � Q̂ j

k(r)(J
k jŵ)(r) � ŵ(r)Q̂ j

k(r)
rk j

(k j)!
.

By Lemma 1,

V j = (
n

∑
k=1

Vk) j � 2(n−1)( j−1)
n

∑
k=1

V j
k .

Consequently,

(I−V)−1 f (r) �
∞

∑
k=0

(V j f )(r) � f̂ (r)
n

∑
k=1

∞

∑
j=0

2(n−1)( j−1)Q̂ j
k(r)

rk j

(k j)!

=
1

2n−1 f̂ (r)
n

∑
k=1

γk(2n−1Q̂k(r)rk) ( f ∈C+).

Hence, due to (2.5),

ŵ(r) � 1
2n−1 F̂(r)

n

∑
k=1

γk(Q̂k(r)2n−1rk),

as claimed. �

Taking into account that u(z) = (Jnu(n))(z) , due to Lemma 2 and (2.7), we arrive
at

COROLLARY 1. Let u(z) be a solution of problem (2.1), (2.3). Then

û(r) � rn

n!2n−1 F̂(r)
n

∑
k=1

γk(2n−1Q̂k(r)rk) (r � 0).

Moreover, according to (2.2),

û(r) � rn

n!2n−1 F̂(r)
n

∑
k=1

exp [r(2n−1Q̂k(r))1/k] (r � 0).

3. Zeros of entire functions

Consider the entire function

h(z) =
∞

∑
k=0

akzk

(k!)α (0 < α � 1, z ∈ C, a0 = 1, ak ∈ C, k � 1). (3.1)
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Enumerate the zeros zk(h) of h with the multiplicities in non-decreasing order of
their absolute values: |zk(h)| � |zk+1(h)| (k = 1,2, . . .) and assume that

θ (h) := [
∞

∑
k=1

|ak|2]1/2 < ∞. (3.2)

We need Theorem 5.3.1 from [7].

THEOREM 2. Let h be defined by (3.1) and condition (3.2) hold. Then

j

∑
k=1

1
|zk(h)| � θ (h)+

j

∑
k=1

1
(k+1)α ( j = 1,2, . . .).

We are going to apply this theorem to an entire function f (z) satisfying the in-
equality

f̂ (r) � q(r)exp[Brρ ] (r = |z| > 0, B = const > 0; ρ � 1), (3.3)

where q(r) is a polynomial in r with nonnegative coefficients. To this end we prove
the following lemma.

LEMMA 3. Let an entire function f (z) satisfy inequality (3.3). Then the Taylor
coefficients f j ( j = 1,2, . . .) of f (z) satisfy the inequality

| f j| � q(r j)
(

eBρ
j

) j/ρ
( j = 1,2, . . .),

where

r j :=
(

j
Bρ

)1/ρ
.

Proof. By the well-known inequality for the coefficients of a power series, for any
r > 0 we have

| f j| � f̂ (r)
r j � q(r)eBrρ

r j . (3.4)

First, let q(r)≡ 1: | f̂ (r)|� exp[Brρ ] . Employing the usual method for finding extrema
it is easy to see that the function in the right-hand side of this inequality takes its smallest
value in the range r > 0 for r = r j , and therefore

| f j| �
exp[Brρ

j ]

r j
j

=
(

eBρ
j

) j/ρ
.

If q(r) is an arbitrary polynomial with nonnegative coefficients, then due to (3.4)

| f j| � q(r j)
exp[Brρ

j ]

r j
j

� q(r j)
(

eBρ
j

) j/ρ
,
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as claimed. �
Put χ := 2(eBρ)1/ρ . Then Lemma 3 yields

| f j| � q(r j)
χ j

2 j j j/ρ .

Now consider the function fχ(z) := f (z/χ) . Then

fχ(z) =
∞

∑
k=0

f̃ jz
j

with

| f̃ j| = | f j|/χ j � q(r j)
2 j j j/ρ � q(r j)

2 j( j!)1/ρ .

Hence, with d j = f̃ j( j!)1/ρ we can write

fχ(z) =
∞

∑
k=0

dkzk

(k!)1/ρ .

Since q(r) is a polynomial, simple calculations show that q(r) � const rdeg(q) (r � 1) .
Hence it follows that

θ ( f ,χ) := [
∞

∑
j=1

|d j|2]1/2 =
[ ∞

∑
j=1

(
( j!)1/ρ | f j|

χ j

)2]1/2
�

[ ∞

∑
j=1

(q(r j)
2 j

)2]1/2
< ∞. (3.5)

Making use of Theorem 2, we get

j

∑
k=1

1
|zk( fχ)| � θ ( f ,χ)+

j

∑
k=1

1

(k+1)1/ρ ( j = 1,2, . . .).

But zk( f ) = χzk( fχ ) . We thus arrive at

COROLLARY 2. Let an entire function f satisfy the inequality (3.3) and f (0) = 1 .
Then

j

∑
k=1

1
|zk( f )| � χ

[
θ ( f ,χ)+

j

∑
k=1

1

(k+1)1/ρ

]
( j = 1,2, . . .),

where θ ( f ,χ) is defined by (3.5) and χ = 2(eBρ)1/ρ .

4. Proof of Theorem 1

Substitute u(z) = v(z)− 1 into (2.1). Then problem (2.1), (2.3) takes the form
(1.1), (1.2) with Pk(z) = Qk(z),G(z) = F(z)−Pn(z) . Since rkP̂k(r) � pk(r) (r � 0) ,
Ĝ(r) � g(r) , Corollary 1 yields the inequality

v̂(r) � 1+
rn

n!2n−1 (g(r)+ pn(r))
n

∑
k=1

exp [(2n−1pk(r))1/k] (r � 0). (4.1)
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Clearly, pk(r) � pk(1) (r � 1) , and

pk(r) � pk(1)rk+νk (r > 1).

Thus
(pk(r))1/k � (pk(1))1/k(1+ rρ0) (r > 0).

Therefore, there are constants αk � (pk(1))1/k and βk � (pk(1))1/k , such that

(pk(r))1/k � βk + αkr
ρ0 (r > 0).

Hence,

1
n!2n−1

n

∑
k=1

exp [(2n−1pk(r))1/k] � 1
n!2n−1

n

∑
k=1

exp [2(n−1)/k(βk + αkr
ρ0)]

= b0e
a0r

ρ
0 (r > 0).

Recall that

b0 =
1

n!2n−1

n

∑
k=1

exp [2(n−1)/kβk], a0 = max
k=1,...,n

2(n−1)/kαk,

Now (4.1) yields

COROLLARY 3. Let v(z) be a solution of problem (1.1), (1.2). Then

v̂(r) � 1+b0e
a0r

ρ0 rn(g(r)+ pn(r)) (r � 0).

Proof of Theorem 1. Let us apply to v(z) Corollary 2 with B = a0 , r j = r̃ j =
( j

a0ρ0
)1/ρ0 , χ = χ0 = 2(ea0ρ0)1/ρ0 . Since the Taylor coefficients v j of v(z) equal to

zero for j = 1, . . . ,n−1, due to (3.5),

θ (v,χ0) :=
[ ∞

∑
j=n

( |v j|( j!)1/ρ0

χ j
0

)2]1/2
� b0

[ ∞

∑
j=n

r̃n
j (pn(r̃ j)+g(r̃ j))

2 j

]1/2
= θ0. (4.2)

Now Corollary 2 implies (1.4), as claimed. �

5. Applications of Theorem 1

Again v(z) is a solution of problem (1.1), (1.2). For ρ0 > 1, for the brevity put
ω = 1

ρ0
. Since |zk(v)| � |zk+1(v)| , Theorem 1 implies that

j
|z j(v)| � χ0

[
θ0 +

j

∑
k=1

1
(k+1)ω

]
( j = 1,2, . . .).

But
j

∑
k=1

(k+1)−ω �
∫ j+1

1

dx
xω =

(1+ j)1−ω −1
1−ω

(0 < ω < 1).
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Thus,
j

|z j(v)| � χ0

[
θ0 +

(1+ j)1−ω −1
1−ω

]
( j = 1,2, . . .).

and therefore,
|z j(v)| � ξ j(v) ( j = 1,2, . . .), (5.1)

5.1) where

ξ j(v) =
j

χ0[θ0 + (1+ j)1−ω−1
1−ω ]

.

If |z j(v)| � a (a > 0) , then v(z) has in Ω(a) := {z ∈ C : |z| < a} no more than
j−1 zeros. Denote by μ( f ,a) the number of the zeros of an entire function f inside
Ω(a) , i.e. μ( f ,a) is the counting function of the zeros of f . In particular, due to (5.1)
μ(v,a) = 0 for any positive

a < ξ1(v) =
1

χ0[θ0 + 21−ω−1
1−ω ]

.

We thus arrive at

COROLLARY 4. The counting function of the zeros of a solution v(z) of (1.1),
(1.2) satisfies the inequality μ(v,a) � j− 1 for any positive a � ξ j(v) ( j = 1,2, . . .) .
In particular, the disc {z ∈ C : |z| < ξ1(v)} is a zero-free domain of v(z) .

To consider additional applications of Theorem 1 recall the following well-known
result, cf. [12, p. 53].

LEMMA 4. Let φ(x) (−∞ � x � ∞) be a convex continuous function, such that

φ(−∞) = lim
x→−∞

φ(x) = 0,

and a j,b j ( j = 1,2, . . . , l � ∞) be two non-increasing sequences of real numbers, such
that

j

∑
k=1

ak �
j

∑
k=1

bk ( j = 1,2, . . . , l).

Then
j

∑
k=1

φ(ak) �
j

∑
k=1

φ(bk) ( j = 1,2, . . . , l).

Furthermore, put

ϑ1 = χ0

(
θ0 +

1
2ω

)
and ϑk =

χ0

(k+1)ω (k = 2,3, . . .).

Inequality (1.4) and Lemma 4 yield
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COROLLARY 5. Let φ(t) (0 � t < ∞) be a continuous convex function, such that
φ(0) = 0 . Then

j

∑
k=1

φ
( 1
|zk(v)|

)
�

j

∑
k=1

φ(ϑk) ( j = 1,2, . . .).

In particular, for any τ � 1 and j = 2,3, . . . , we have

j

∑
k=1

1
|zk(v)|τ �

j

∑
k=1

ϑ τ
k

and therefore, if τ > 1/ρ0 , then

∞

∑
k=1

1
|χ0zk(v)|τ � ϑ τ

1 + χτ
0

(
ζ (τω)−1− 1

2τω

)
< ∞,

where ζ (z) is the zeta Riemann function:

ζ (z) =
∞

∑
k=1

1
kz (Re z > 1).

Note also that from Corollary 3 it follows

COROLLARY 6. Let G(z) be an entire function of order ρ(G) � ∞ . Let v(z) be
a solution of problem (1.1), (1.2). Then order of v(z) is no more than max{ρ0,ρ(G)} .

This corollary generalizes the well-known [14, Theorem 8.3].
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