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WEIGHTED ESTIMATES AND LARGE TIME BEHAVIOR OF SMALL
AMPLITUDE SOLUTIONS TO THE SEMILINEAR HEAT EQUATION

RYUNOSUKE KUSABA™ AND TOHRU OZAWA

(Communicated by P. Souplet)

Abstract. We present a new method to obtain weighted L' -estimates of global solutions to the
Cauchy problem for the semilinear heat equation with a simple power of super-critical Fujita
exponent. Our approach is based on direct and explicit computations of commutation relations
between the heat semigroup and monomial weights in R”, while it is independent of the standard
parabolic arguments which rely on the comparison principle or some compactness arguments.
We also give explicit asymptotic profiles with parabolic self-similarity of the global solutions.

1. Introduction

We study the large time behavior of global solutions to the Cauchy problem for
the semilinear heat equations of the form

atl't_Al't:f(l't>7 (trx) € (O7+°°> x R", (P)
M(O) = (p7 X e Rn7

where u: [0,4e) x R" — R is an unknown function, A is the Laplacianin R", ¢: R" —

R isagivendataat t =0, and f: R — R is a nonlinear term such that there exist con-

stants K > 0 and p € (1,4-o0) that ensure the estimate

FE) = fmI < K(EP"+[nP~)[E —n| (1.1)

forall £, € R and that f(0) = 0. Typical examples are given by homogeneous func-
tions of order p such as

F(&) =+&P, £[&P, £[EP71E.

The behavior of solutions to (P) has been studied by many mathematicians since
the pioneering work by Fujita [4] and it is revealed that the behavior changes depending
on the exponent p in the nonlinear term, the size of the initial data ¢, and so on. In
particular, the exponent pg(n) := 1 +2/n, called the Fujita exponent, gives a threshold
that characterizes the large time behavior of solutions to (P). In the case of super-critical
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Fujita exponent, namely, p > pg(n), it is known that solutions to (P) with small initial
data behave like the solution to the linear heat equation: (P) with f =0 (cf. [0, 16]).
In this paper, we consider the large time behavior of global solutions to (P) for small
initial data in L'(R") with algebraic weights in the case where p > pg(n).

To state our main results precisely, we introduce some notation. Let ('4;¢ > 0)
be the heat semigroup given by

P — Gy @, t>0,
o, t=0
for ¢ € LY(R") with g € [1,+o<], where G;: R” — R is the Gauss kernel given by
_n |X|2 n
G;(x) = (4mt) 2 exp ) xeR",

* is the convolution in R”, and L9(R") is the standard Lebesgue space with the norm
denoted by ||-||,. We also need the weighted L' -space defined by

L,(R") = {¢ € L'(R"); x%¢ € L'(R") for all o € Z, with |er| < m},

where x*¢@ means the function R" > x — x*¢(x) € R.
We start with the most basic result on the existence and uniqueness of global solu-
tions to (P) in the function space X defined by

X = (CL)([0,400):L' (R)) 1 (COL)((0, +o0): L7 (R")).

PROPOSITION 1.1. Let p > pgr(n). Then, there exists & > 0 such that for any
@ € (L'NL™)(R") with ||@]|1 +||@]|« < &, (P) has a unique global solution u € X,
which satisfies

sup sup(1+1)2070 u(r)]l4 < +oo. (1.2)
€[l +oo] 120
Although the above proposition is more or less well-known, we give the proof in
Appendix A to make this paper self-contained (see also [11, Theorem 1.2] and [24,
Theorem 20.15]). We remark that any additional conditions for the initial data such as
nonnegativity or exponential decay at the far field are not supposed.
Based on Proposition 1.1, we show that L! -space with algebraic weights is invari-
ant under the semilinear heat flow associated with (P).

THEOREM 1.2. Let p > pr(n) and let m € Z. Let ¢ € (L}, NL*)(R") satisfy
ol + [|@lle < & and let u € X be the global solution to (P) given in Proposition
1.1. Then, u € C([0,+e); L} (R")), and moreover there exists C,, > 0 such that the
estimate

LGOI gcm(lﬂ%) (1.3)

|a|=m

holds for all t > 0.
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The next theorem describes the large time behavior of the global solution to (P)
given in Proposition 1.1.

THEOREM 1.3. Let p > pr(n). Let @ € (L' N\L*)(R") satisfy || @1+ @]|- < &
and let u € X be the global solution to (P) given in Proposition 1.1. Then, for any
N € Z~q and q € [1,4-o0], there exists Cy 4 > 0 such that the estimates

Cn gt N° if 0<No<lI,

n 1

B0 () — un(@)ll, < { Cugt Mog(1+1)  if No—=1, (1.4)
Crngt ™! if No>1

hold for all t > 2N=1 where

ci=2(p—1)—1>0,

2

em(pl for N=1,

un(t) = t
w() e’A(pN—F/ A f(uy_y(s))ds  for N2,

0

~+oo
0+ Sf(u(s))ds for N=1,
PN = 0

: -
o+ /0 (Flu(s)) = Fluy 1 (s))ds  for N>2.

Alternatively, the sequence (un;N € Z=o) in X is introduced recursively by uy =
0 and

{8,uN—AuN:f(uN1), (1,x) € (0, +o0) x R, 05

I/LN(O) = QN, xeR"?

for N > 1. In addition, it follows from Proposition 1.1 that

n 1
sup sup(1+0)3 (178 (1), < oo
q€[l,+eo] 120

for any N € Z~( (see Lemma 4.2 in Section 4). Hence, Theorem 1.3 means that the
large time behavior of the global solution to (P) is approximated by that of the solution
to the Cauchy problem for the linear heat equation (1.5). In particular, the larger N €
Zy is, the faster the remainder vanishes up to t~!. We also emphasize that we do not
need weighted L -spaces in Theorem 1.3. The sequences (@n;N € Z~q) and (un;N €
Z~) are constructed as follows. For N = 1, we define u#; and ¢; by inference from
the well-studied fact that

tim % (1-5) u(z)—(/ «m(y)dy)G, ~0,
t—+oo Rn q

lim t%(lﬁ) e’A(p1—</ (pl(y)dy)G; =0
t—+oo Rn

q
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hold for any g € [1,+oo] under suitable assumptions (see [6, 16, 17, 23, 8, 24, 7, 9]
and Proposition 2.3 in Section 2). For N > 2, we set @y to make the difference u(r) —
uy—1(¢) in the decomposition of the difference u(r) — uy(¢), where uy is constructed
by the iteration.

The following theorem provides us with explicit self-similar profiles of the global
solution to (P) given in Proposition 1.1 with explicit remainder estimates.

THEOREM 1.4. Let m € {0,1} and let p > 1+ (3+m)/n. Let ¢ € (L}, ;N
L=)(R") satisfy ||@|l1 + ||@]le < & and let u € X be the global solution to (P) given in
Proposition 1.1. Then, for any q € [1,+o2|, there exists C; > 0 such that the estimates

=

n 1
17(17) |lu(t) —co0Gillg < Cyt ™

t%(l_é)

for m=0, (1.6)

u(t) —co6 Gy — = ;6 (x;G1)|| <Cpt™' for m=1 (L.7)

q

~.
I Ms
o

1
2

hold for all t > 1, where

co = / e1(y)dy,  cj= / yie1(y)dy,
Rll Rn
+oc
Q=9+ ) f(u(s))ds

and & is the dilation acting on functions ¥ on R" as
Gy)(x) =t Sy 2x), xeR"

REMARK 1.1. Theorems 1.2, 1.3 and 1.4 hold for global solutions to (P) in X
satisfying (1.2) without the smallness assumption for the initial data. However, it is
known that solutions to (P) do not necessarily satisfy (1.2). In fact, [16] showed that
if f(§)= &P with p > pr(n) and the initial data is nonnegative and sufficiently large,
then the solution to (P) does not satisfy (1.2) and even it can be blow up in finite time.

There is a large literature on asymptotic expansions of global solutions to semi-
linear heat equations. For example, the 0-th order asymptotic expansion like (1.6) was
obtained by [6, 16, 17, 23, 8, 24] with various methods, and higher order asymptotic
expansions were given by [7, 9, 10, 12, 13]. Therefore, the above main results seem to
be well-known except for Theorem 1.3, but the novelties of this paper lie in the method
of the proofs. In [7], the authors introduced L!-decay estimates of the heat semigroup
to derive a classification of global solutions to (P) in terms of decay rate in ¢ of their L'-
norm with a regularity assumption for the nonlinear term. This method was improved
by [9] to obtain higher order asymptotic expansions in the case where p > pg(n) at
the expense of the parabolic self-similarity of asymptotic profiles and generalized by
[10, 12, 13] to apply other semilinear parabolic equations. This method is also valid to
obtain asymptotic expansions of global solutions to semilinear damped wave equations
[15, 14]. Therefore, the method introduced and improved by [7, 9] is powerful, while it
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seems to be the only method to obtain not only higher order asymptotic expansions but
also the first order asymptotic expansion such as (1.7).

In this paper, we show Theorem 1.4 by using the linear approximation given in
Theorem 1.3 and asymptotic expansions of the heat semigroup with Hermite polyno-
mials (see Proposition 2.4 in Section 2). We emphasize that the asymptotic profiles
in Theorem 1.4 have the parabolic self-similarity in the sense that each term has the
form of a constant multiple of dilated functions on R" (with decay factor in 7). Com-
paring Theorem 1.4 and the asymptotic expansions of the heat semigroup, we see that
the global solution has the same asymptotic profiles as for the heat semigroup with the
initial data @; if m € {0,1}. We also see that the solution asymptotically approaches
to the same profiles as for the heat semigroup with the initial data ¢; evenif m € Z>q
with m > 2. However, it is not suitable to consider them as higher order asymptotic ex-
pansions of the global solution in terms of the decay rates of the remainders (for details,
see Remark 4.1 in Section 4).

Furthermore, we need weighted L'-estimates of the global solution to (P) as in
Theorem 1.2 to ensure the finiteness of constants cg,cy,...,c,. As far as we know,
there are two methods to derive the weighted estimates. One is to attribute the weighted
estimates to those of the heat semigroup by using the comparison principle. The other is
to approximate the global solution by solutions to linear heat equations via an iteration
argument with the Ascoli-Arzela theorem (see [7, Lemma 3.1] and [1 1, Theorem 1.2],
respectively). We note that the comparison principle which we use in the first method is
proved by a computation of the energy for a positive or negative part of the difference
of solutions to heat equations (see [24, Proposition 52.10]). Therefore, to obtain the
weighted estimates by using the above methods, we have to verify the regularity or
uniqueness of global solutions to (P) at the same time. By the way, the global solution
given in Proposition 1.1 is constructed by a contraction argument for the following
integral equation associated with (P):

u(t) = e+ /0 - f(u(s))ds. 1))

Hence, it is a natural question from the view point of a priori estimates to consider what
properties the solution constructed by the contraction argument has in the framework
of the integral equation without reconstruction (approximation) of the global solution.
We show Theorem 1.2 by direct and explicit calculations with the aid of commutation
relations and their estimates between the heat semigroup and monomial weights in R”
given by Theorems 2.5 and 2.6 in Section 2. Since we do not use the standard parabolic
arguments which rely on the comparison principle or some compactness arguments, our
method enables us to discuss independently the well-posedness and a priori estimates
for (P). Therefore, our method is available to not only parabolic equations but also
some models with dispersion which cannot be applied the comparison principle to; for
example, the following complex Ginzburg-Landau type equation:

du— (A +io)Au+ (k+iB)|ul? 'u—yu=0,

where u: [0,+o0) x R” — C is an unknown function and o, 3,7,k € R, L >0, g €
[1,+eo] are given parameters (cf. [21, 22]). Furthermore, our method using commu-
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tation relations helps us to understand nonlinear parabolic equations with fundamental
techniques in calculus. From these observation, our approach would have an advantage
over the previous studies. The results on new higher order asymptotic expansions for
the complex Ginzburg-Landau type equation which includes (P) in a special case will
be discussed in the forthcoming paper.

This paper is organized as follows. In Section 2, we introduce basic estimates
and asymptotic expansions in the linear case. In Section 3, we prove Theorem 1.2. In
Section 4, we prove Theorems 1.3 and 1.4.

2. Heat semigroup

In this section, we introduce basic estimates and asymptotic expansions of the
heat semigroup. See [5, 24] for the standard notion and notation of the subject. To
begin with, we prepare some notation. Let Z~( be the set of positive integers and let
Lz = ZL=0U{0}. For ov = (0u,...,00) € Z2, and x = (x1,...,x,) € R", we define

d

n n n
ol = a;, al=][]e;!, x*:= Hx?‘j, 9% H&a’, d;= Ee
j=1 j=1 j=1 J

For o = (oy4,...,04), B=(B1,..-,Bu) € 75, o < B means that o; < ; holds for
any j € {1,...,n}. Furthermore, we write

(5) - P 13 siapn P

0, otherwise.

The heat semigroup is represented as
(€29)(¥) = (G 9)(v) = [ Gilx=y)p(s)dy

forany (,x) € (0,+0) x R". We define the dilation & which leaves L' -norm invariant
by

(Bo)x) =1 3p(2x), P ELL(R"), xR
for each 7 > 0. Then, the family of the dilations (&;7 > 0) has the following properties:
(1) 6;6s = & forany 7,5 > 0.
@) 160l, =2 0=0) o], forany 1 >0, g € [1,+o0] and ¢ € LI(R").
Moreover, by using the dilation &, we can rewrite G, and the derivatives of e’A(p as
= &G,
9940 = (9%G))+ 9 = (0%(8,G1) s 9 =1~ 7 (8(09G1)) + 9

forany 1 >0 and o € Z5,. Then, we have the following well-known estimates.
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LEMMA 2.1. Let 1 < g < p < +eo andlet o € 2. Then, the estimate

9% gll, <25~ 5 %Gy Lol
holds for any t >0 and ¢ € LY(R"), where r € [1,+o0] with 1/p+1=1/r+1/q.

LEMMA 2.2. Let 1 < q < p < +oo. Then, there exists Cp4 > 0 such that the
estimate

1301, < Cog 1+ G 5) (o], + 1 01l,)

holds for any t >0 and ¢ € (LINLP)(R"). In particular, if ¢ € (L' NL*)(R"), then

130l < Coi (14078 0-5) (1ol + 1 0])
foranyt > 0.

Since we can prove these lemmas by simple calculations with Young’s inequality,
we omit the proofs.

Next, we consider asymptotic expansions of the heat semigroup. We define the
translation 7, by h € R" as

(T0)(x) = @(x—h), @ €L (R"), xeR".

PROPOSITION 2.3. Let ¢ € L1(R") and let q € [1,+<0|. Then, the estimate

n(p_1 I 1
#0080 i Gilly < 52 3 Gl ol
j=1
holds for any t > 0, where
co= [ o(y)dy.

Rr

Proof. For any ¢t > 0, we have
(¢ — co8,G1) ()
= [ (G=3) = Giw)plr)dy

=/, (/01 %Gt(x— ey)d0><p(y)dy
- z L 133561 (x— 6)9(»)d6dy

_ 712/,,/ — 6;)Gy (x— 6)y,;¢(y)dOdy
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1 1
L[ 6 = 00) 61 - 6m)iptaody

%z—%i L [ G G eyetaoas

Jj=1

Therefore, we obtain

1y !
lep—adGilly <5t Y [ [ 70,8060l lysp0)id0dy

j=1

1 1 &
—5 iy [ / 18,(x,G1)llgly ;0 (v) a6y

1

Jj=
30y L IxiGullalsjo)a
j=1
_ L-s(9)- * Xl Gillol- O

REMARK 2.1. For some readers, the above proof seems to be redundant. How-
ever, we write it to see that it is a special case of the proof of Proposition 2.4 below.

We remark that the key point in the proof of Proposition 2.3 is to calculate the
difference G;(x —y) — G;(x) explicitly. Therefore, by applying Taylor’s theorem, we
obtain higher order asymptotic expansions of the heat semigroup. Now, we define the
Hermite polynomial of order £ by

d \*
Hy(x) = (—1)ke® (—) e, xeR 2.1)
dx
for each k € Z>¢. The following representation of Hj is well-known:
[k/2] (_ )jk] ,
Hx) =Yy ——2—_ 2x k=2j (2.2)

where [k/2] = max{j € Z~¢; j < k/2}. Moreover, we define the multi-variable Her-
mite polynomial of order oc by Hy, = Hy, ® - -- ® Hg, , namely,

— [T Hoy (xj) = (—~D)leb % b = (. ) R (23)
=1

foreach o = (o, -+, 0) € Z% (see also [19, 20]). Then, it follows from (2.2) that

n (/2] ( )[3,-06,

X) = —————(2x; o —2;
1)l8i
- 2 B' —_— 2%') (2x)% 2B, 2.4)

2B<a
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Using the multi-variable Hermite polynomial H,, , we can rewrite the derivatives of G|
as

%G (x) = (4n)38°‘exp<—’)—2€‘2>
= (4m)" 22"l [8yae7|y|2}

y=3
= (4n>32“'<—1>“'exp(—|§\2) (-1t Pope ]
= (-2)71%G, (x)H, (g) 2.5)

Therefore, by setting

ha(x>:=Ha(’—2“) 2,32< B((a)wz;,) P xeRry (2.6)

we have
9°G, = (=2) 1%, G, (2.7)
9%G, = 9%(8,G)) =1~ 3 6,(9°G1) = (—-2) 15 §(heG)).  (2.8)

Under the above preparations, we state higher order asymptotic expansions of the heat
semigroup.

PROPOSITION 2.4. Let m € Zzo, ¢ € L}, (R") and q € [1,+|. Then, the
estimate

A0

o — 22 75 a8 (heGy)

|| =k q
(1), mEl
<2 Y LGy sl
lot|=m+1 7"
holds for any t > 0, where

[ yo0)d
Co = —

@ = R"y Ply)dy

REMARK 2.2. When m = 1, the asymptotic profile of the heat semigroup is rep-
resented as

n
Y2473 Y cadi(haGr) = cod G+ 5 LS e 666y,
k=0 lot|=k j=1

where (ej;j=1,...,n) is the standard basis of R".
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Proof of Proposition 2.4. By Taylor’s theorem, we obtain

Gle-n)= 3 —(-3)"@°G)W

jaf<m

m—+1
+
o!

|O¢\:m+l

n k
e Z 2_1‘; 2 Z
k=0 |=k

—(m _m+l m+1 ! m
b2ty T = 0)"y (1, (8 (haG) ()46,
[ot|=m+1 :

[ =07 (0°G - 6y)ae

i' haGl))( )

whence follows

(em(p _ :20 2745 Y ey (haGl>> (x)

|| =k
_ ) — < -k —k 1 4 .
- [ (6% 3 g @i )) o>
—n—(m )_mTH m+1 ! _p\m OV
—2 e 5 B [ 10 @ 0uG) ey e)asas

Therefore, for any 7 > 0, we have

2o—3 255 Y 48 (heG))
k=0

=k

q

—(m _m+l m+1 m
<oty L[ / (1= )" 170y (& (haG1)) y* 0(»)|d0dy

|O¢\*m+l

(m Cmtl m-+1 m
- (m1) -2 / ,1 / (18 (haG1) o[y @(v)|d6dy
o= m+1

_n(p_l)_m+l
SRS IR S / Ih6Gi gy (y)ldy

|O¢\ m+l

_n(q_1l)_m+l
—p i3 (-5)-5 g —'||haG1Hqu“(pH1. O
lot|=m+1 7"

REMARK 2.3. There are many methods to obtain the asymptotic expansions of
the heat semigroup [2, 3, 1, 5, 25]. On the m-th order asymptotic expansion of the heat
semigroup with ¢ € L} (R"), see Appendix B.

As we state in the introduction, we need the following commutation relations be-
tween the heat semigroup and monomial weights in R” to show Theorem 1.2.
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THEOREM 2.5. Let m € Z~o, ¢ € L (R") and o € 7% with |ot| = m. Then,
x%e®p € L'(R") and the identity

2%t — 19 =R (1)@ (2.9)
holds in L'(R") for any t > 0, where
-2 ﬁv (=200 Pexle + > Cp Pt (2.10)
ﬁ+7 o B+y<e, |B+yi<|a|-2
p#0 1B+ 1< el

for some C fﬁy € R independent of t, x and ¢@.

Theorem 2.5 yields the commutator estimates of the heat semigroup and the mono-
mial weights.

THEOREM 2.6. Let m € Z~q. Then, there exists Cp, > 0 such that the estimate

Y Ixeto— e oy <Cu{rd "ol + (1465 )lolh} @1

|or|=m
holds for any ¢ € L (R") and t > 0.

By a simple calculation with the integral representation of the heat semigroup, we
have

Y Ixeolly < G (Il ol +% ol 2.12)

o =m

for any ¢@ € L} (R") and ¢ > 0 (cf. [7, Lemma 2.1]). Therefore, by using (2.11)
instead of (2.12), we can control the heat semigroup with the weights of order m by not
||x[" || but |||x|"'e]|;. This is crucial point to obtain weighted estimates of global
solutions to (P) without the aid of the comparison principle and the iteration argument
with some compactness arguments.

Here and hereafter, let (e i=1,... ,n) denote the standard basis of R”. That is,
forany j e {1,...,n}, e; € R" is a unit vector whose components are 0 except the
Jj-th coordinate.

Proof of Theorem 2.5. We regard Theorem 2.5 as the assertion with respect to
me Z>0:
(A)m Let ¢ € L), (R") and let o € Z2; with |ot| = m. Then, x*¢'“¢ € L'(R") and
(2.9) holds for any ¢ > 0.

We show that (A),, is true for all m € Z~ by induction on m. First, we consider the
case where m = 1. Let ¢ € L{(R"), >0 and o € Z%, with || = 1. Then, there
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exists j € {1,...,n} such that & = e;. Moreover, since @, x;¢ € L'(R"), we have
die @, e“x;p € L'(R") and

(2,0~ 210,¢%9)(0) = [ Gilx=y)yj0()dy=20; | Gilx=3)p(s)dy
—/ Gi(x—y)yjp(y d)""/ —¥i)Gi(x—y)p(y)dy

=X /Rn Gi(x=y)p(y)dy

= xj(¢ ) (x).
Thus, we obtain x;e'* ¢ € L' (R") and

xje'p —exjp = —210;e'"
whence follows (A) 1.

Next, we assume that (A),, holds for some m € Z~(. Let ¢ € Lm+1(R ), >0
and of € 2 with |@'| =m+ 1. Then, there exist o € Z2 with || =m and j €

{1,...,n} such that &’ = o +e;. Moreover, from the fact that x*¢@, x;x*¢ € L' (R")
and (A), we see that x;e'*x%¢ € L' (R") and

tA o tA o

xjetx%Q = exjx%p — 219 “x% p = e Ax” "o — 2t9;e"x% @ (2.13)
j j

Now, we show xR (1)@ € L' (R"). For this purpose, it suffices to prove that xi,ﬁﬁ X7
€ L'(R") for any B,y € Z%, with B+y < c and |y <m—1. Let y € Z2 with
|yl <m—1. Then, from the fact that x"¢, x;x"¢@ € L'(R") and (A), it follows that
xje®x7¢p € L'(R") and

eBxTp = Pxjxp — 219 xV p = x4 @ — 219" X7 @. (2.14)
Furthermore, since the right hand side on the above identity belongs to W!(R"), for
any B € 7, with |B| < m, we have 9P (x;e“x7¢) € L' (R") and

9P (xjex7 @) = 9P (2xT T4 @ — 219;¢ X7 )
= P AxTHei g —219B T¢Iy .
On the other hand, by a simple calculation, we obtain
xjoPe Vo4 BioP o if Bi>1,

(2.15)
xjoPexT o if Bj=

9P (xje™x7 ) = {

where f3; is the j-th component of . In any case, we conclude that x;0Pe®x¥¢ €
L'(R"), whence follows x;Rq(#)¢ € L!(R"). Therefore, from the fact that x X%,

XjRo(t)p € L' (R"), (A),,, and (2.13), it follows that x* ¢'A¢ € L' (R") and
x“/em(p _ xjxaem(p
= x;e"“x% P+ x;Ra(t)
=y (p—2t8je X @+ xRy (1) 0.
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Finally, to complete the proof, we show that the terms —2¢d;e*x*

the above identity are represented as

¢ and x;Ry(f)@ in

o'l
Ry(t)o= Y ﬁ"a/'( 219)P e x7
B+y=d
B0
+ 2 Cﬁkwtﬂ&ﬁ/emx’/(p.

B+y <o, [B+YIs|o'[ =2
’ e

Itis clear that the term —2¢9;e'*x® ¢ is a part of the first sum in R,/ (1)@ with (B',7) =
(ej, ). Let B,y e ZL, with B+y=oaand B #0. If B; > 1, then it follows from
(2.14) and (2.15) that

xj(—209)PeBx7 g
— (_2,,9)13( &x7 ) _B.(_zt)\ﬁlaﬁ—efemxnp
= (—209)P (x4 — 219" x7 @) — B;(—2)IPleIPlgP i A xY g
= (—200)PexT e+ (—209)PHeie T — Bi(—2) PlilPlgP i xTg.  (2.16)

Similarly, if B; = 0, then we have

xj(—~200)Pe X = (—219)P (x;ex7 )
= (—209)Pe X1 e @+ (—219)PHeie A x . (2.17)

The terms (—2109)Bex¥*¢i ¢ and (—219)P+¢iex7¢ in (2.16) or (2.17) are parts of the
first sum in Ry (1)@ with (B',7) = (B,y+¢j), (B +ej,7), respectively. In addition,
since

!
“29e 0+ Y o (—29)Be B g+ (—2d)P i)

B+y=a !
B#0

Z —29)Pe At Y

Bv 7 ( (—2t9)PHeie X7
Jﬁr B+y=a

o! o! /
_ % B ALY A 2 B’ A Y
p 2 T e OO B G O

0#4B'<a Y<o

=, 3 ((5) () zoree

B/#0

N

//
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> (g:) (—219)P' X7 @

B'y=a!
B'#0
o'l
Z ﬁ/;y/'( 2t8)ﬁ etAx)/(p7
/3 +7=a

B'#0
all components of the first sum in R/ (¢)@ have appeared. On the other hand, by taking
(0,B,y)=(IB],B —ej,y) with e; < B, we have
e +yY=B—¢j+y=a—ej=0a' —2¢; <,
o B'+YI=IB—ej+vI=la|-1=]|a| -2
o B+1=IB—¢jl+1=|B[=",
o< \06’|+|[23’|—|7/| & IBl< (\06\+1)+(2|ﬁ\—1)—|7/| _ \MHfI—IYI _ 18],

This implies that the term —[3,-(—2)”3‘t'ﬁ@ﬁ’efemx?’qo in (2.16) is a part of the second
sum in Ry (1)@ with (¢/,B',7') = (|B],B —ej,7). Therefore, we conclude that the
components of the first sum in x;R(¢)¢ are represented as parts of R,/ (7)¢. Next, we
take 3,y € Z2 and { € Z> satisfying

Bry<o, [Bri<lol-2, |Bl+1<e< EEC

If [3] 1, then it follows from (2.14) and (2.15) that

xjt' P BxTp = 1'0P (x;exT) — Bir' 9P i X7
='9P(Pxr i — 2t0;¢"*x" ) — ﬁjt/"&ﬁ*“femxy(p
= lgPeBx1tei g — 2 1P eI BxTp — BrloP i X1,  (2.18)

In the same way, if Bj =0, then we have

xit'dPex = 119P (x ;X7 )

=1l9B e Bxrteip — 211 9B+ MY . (2.19)

Taking (¢,B',Y) = (¢,B,7+e;), we have

oty =B+ytej<oate=a,

o B+Y|=[B+rtel=[B+rI+1<]o|-1=]o|-2
o B +1=1Bl+1< =2,

!/ A _ _
PP e 1B () _ e+ 1Bl

Hence, the term 7/9P ¢"®xY*¢i @ in (2.18) or (2.19) is a part of the second sum in R, (1)@
with (¢/,B',Y) = (¢,B,y+e;). Next, taking (¢',B",7) = ({+1,B +e¢j,y), we obtain
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o f+yY=B+ejty<oate=a,
o | +Y|=I1B+ei+Y=IB+Y+1<]|a|-1=|o]-2,
o B/l +1=|Btej|+1=(B|+1)+1<l+1=2,

N Ll il 4] (el +D+(BI+ D) —Ir | _ lo+IBl=In
2 2 2

AR

This implies that the term —2:/T19P+¢i ¢"2xY @ in (2.18) or (2.19) is a part of the second
sumin Ry (1) with (¢/,B',7) = ((+1,B+e;,y). Finally, taking (¢,B',y) = (¢, —
ej,y) with e; < B, we have

e +yY=B—e+y<o—ej=0—2¢; <,

® |ﬂ/+7/‘:|ﬂ—€j+’)/|=|ﬂ+’)/|—1§ la| =3=|o/|-4< || -2,
o |B/l+1=|B—ej|+1=|B|<tl—-1<t=1,

o o< B~ (lof+ D)+ (B =1 — vl _ | +[Bl-1vl
~ 2 .

& 1<
2 2

Thus, the term —;t°dP~¢ie"*x¥¢ in (2.18) is a part of the second sum in Ry ()¢ with
(¢',B'.,Y) = (¢, —ej,y), whence follows that each component of the second sum in
xjRq (1)@ is represented as a component of the second sum in R (1)@ . This completes
the proof. [

Proof of Theorem 2.6. By virtue of Theorem 2.5, it is sufficient to estimate
Ry (7)¢ forany 1 > 0. For the case where m = 1, it follows from Lemma 2.1 that

n

Y IRa()ollr = Y| -29;¢ ]|

laf=1 =t
L&
<212 Y ||19;Gill1l|lls
j=1
1
=2t2||VGy|1]|¢]:-

Next, we consider the case where m > 2. Here and hereafter, different positive con-
stants independent of 7 are denoted by the same letter C. By Lemma 2.1, for any
o € 22 with || = m, we have

IRe(t)pllh <C Y, dPloPe gl +C > 9P et g
B+y=a B+y<a, |B+y|<m—2
ﬁ;é() ‘ﬁlJrlg/jgmH/;\*M
1BI _ 1Bl
<C Y 2ol +C > 2ol
IBl+|yI=m |Bl+]yI<m—2

[BI>1 |ﬁ‘+1<g<w
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whence follows

2 [Ra(®)ol
|ot|=m
181 ’ m—2 €_£ ,
<C Y e+ C Yy Y > e e
\ﬁlﬁ\llzm J=OIBI+N=1 ||+ 1<e< B
Now, let B,y € Z2, with [B|+[y| =m and |B| > 1. Then,
—1 —1
Bl-t, b, gt
—1 m—1 m—1 m—1
Therefore, Holder’s inequality implies
18l 18I
12 | ol <o 2 ||1x Mol
1Bl=1 \
<t ol I ol
1 m—1 ‘m 1 1
= (" ) ™ gl
1 m—1 _
<o (i qoul)
m 1 m—
=12 |l + 22| |x" ol
Similarly, we take j,£ € Z>o and 3,y € Z2, satisfying
: . +1p|—
o<j<m—2 Bltl=j plr1<e< "B
Then,
m+|ﬁ\—f—1+ Yo gemtBliot_ I
m—1 m—1 m—1 m—1
Bl+1<20—|B[=1<m+[Bl=(IY[+IB]) —1=m+|B| -
Hence, we obtain
v,ﬁ ,ﬁ
E el <o Hlxlly‘<PH1
m+\£\—1— m—1 i1
<r® ™ ol

L m=DEe—IB-1) mtlBlj-t | I
,z(t EEEa ||<pul) [

m—1)(20—

< (5 gl + 1" gl

1 m 1 _
() ol +eE 1 gl

N

(2.20)

2.21)

(2.22)



Differ. Equ. Appl. 15, No. 3 (2023), 235-268. 251

Here, we have used the inequalities

2 B0 <

(m—1)(20—|B|-1) 1, 0<r<1,
t 2 t>1,

which follow from the following relation of exponents:

C Bt _ g1
m+IB—i—1 S mT [l =1

Finally, combining (2.20), (2.21), and (2.22), we arrive at the desired estimate. [J

REMARK 2.4. From the proofs of Theorems 2.5 and 2.6, we see that if m € Z~
and @ € L),(R"), then for any o € Z2, with || =m, j e {l,...,n} and 1 >0,
XjRe(t)@ is represented as a part of Ry.c;(t)¢ and the estimate

> X Rl < Cuer {2 ol + (2 +¢"5 ) ol |
J=1]

o|=m
holds for some C,,1; > 0 independent of # and ¢.

The following lemma will be used in the proof of Theorem 1.2 to calculate weighted
estimates with approximation.

LEMMA 2.7. Let w € W>=(R") and let ¢ € L'(R"). Then, the estimate
1
e — 2wl < (J[awllot + [V [VGi1i? ) ol 223)
holds for any t > 0.

Proof. From the identity

<%

>~

wem(p _ etAW(P _ (e(ti‘Y)AweSA(p)dS

(t=5)A (—A(wem(p) + wAeSAqo) ds

<

I
S— 5— 5—
[

=94 (—Awe™ @ —2Vw - Ve o) ds
and Lemma 2.1, we have
t
|we'p — ewol|; < / He(’*“')A (—Awe* o —2Vw- Ve o) || \ds
0

1
< HG1||1/ |—Awe™ @ — 2Vw - Ve ol 1ds
0
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t t
< llawll [ e ollds +2] Vil [/ Ve pluds

t 1 1
< lawll-Gill gl [ ds+2 Vi VGililigl [ s~ ds

1
= (AWt + [V <IVGi 122 ) ]l T3

3. Proof of Theorem 1.2

We show Theorem 1.2 by induction on m € Z~q. First of all, we introduce ap-
proximate functions of the monomial weights. For j € {1,...,n} and € € (0,1], we
define a function w; ¢ : R" — R by

—elx?
y

wje(x) =xje x=(x1,...,X%,) € R".

Then, we can see that w; . € W>=(IR") and

Vwje(x) = e EnP? (—2exjx+ej),

Awje(x) = e (4e2x x> — 2(n + 2)ex;)),

whence follows

IVwjell < 25uppe ™ +1<2, (3.1)
p=0
1

<de? suppZe P+2(n+2)£2 suppZe P (nt4)ez. (3.2)
p=0 p=0

Now, we show the case where m = 1. Let ¢ € (LjNL™)(R"), 1 >0 and o € Z2,
with |a| = 1. Then, there exists j € {1,...,n} such that & = e;. Here and hereafter,
let C denote a positive constant independent of ¢ and & which may change from line
to line. Multiplying (I) by w; ¢ yields

wieu(t) = w0+ [ wiee s (us)ds
=ewiep+ (w,;gem(p - etAWLg(P) + /Ot 9y, o f(u(s))ds
+ /Ot <wj,ge(”‘_5)Af(u(s)) — e(t_S)Angf(u(s))) ds.
By (1.1), (3.1), (3.2), Proposition 1.1, and Lemma 2.7, we have
Iwjew®)1 < [[e4wie@lli+ [[w)ee o — e“wje ol

—|—/||e B0, e f(u(s))|] s
[ e 87 ws) e o) s
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1
< i@l + (1Awellat + [ 9w5elll VG112 )l
1
€ [ )12 g ents) s
! 1
€ [ (18wl =)+ Vel VG 110 =) ) o) s
L L
<lkoli+C(ede+12) ol
4 n
+c/ (1+s)*z<1’*1>Hw,,gu(s)ulds
} } ~4(r-1)
+C €2(r—ys) t—s)2>(1+s) 2 ds
0+An@%ww®mw,

where

elt) = ol +Ceb+2)plli+C [ (£H0—9)+(—5)4) (15740 Vs,
n(t):=c(1+r)~2r-1,

Therefore, from the Gronwall lemma and & < &, we derive

wjeu(t)l1 < +/ E:(s) )exp(/stn(r)dr)ds
N+ /0 gl(s)n(s)exp< /Stn(r)dm')ds. (3.3)

In particular, since the right hand side on the last inequality in (3.3) is finite and in-
dependent of €, it follows from Fatou’s lemma that x;u(z) € L'(R"), which in turn
implies x;f(u(r)) € L' (R"). Moreover, by (I) and Theorem 2.5, we obtain

t
xju(t):xjem(p—i—/ xje "8 f(u(s))ds
0
t t
:e’ij(p—Zta,'e’A(p—l-/ e(’f“‘)ijf(u(s))ds—Z/ (t —5)9;e ™2 f (u(s))ds,
0 0

whence follows x;ju € C([0,+c0); L' (R")). On the other hand, taking & \, 0 in (3.3)

yields
)l < &)+ [ Gome)exs( [ near)as

where

t n
&)= [s@li+Crt ol +C [ =)t (1+9) 10 Vs
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Since p > pr(n), the integral appearing in the definition of &y(r) is estimated as

t n t n
/(z—s)%(1+s)‘7(l’—1)ds<z%/(1+s)‘7<1’—1>ds<cﬁ.
0
Therefore, we have

[simoen( [ noe)
<Cexp</0+ n(t )/0 <1+52>n( )ds

< Cexp C/Oer(l ) 1>dr>< +1}) /Ot(l +5) 8- Dgy
<c(1+:),
whence follows
u@)lh < € (1464,
Next, we assume that Theorem 1.2 holds for some m € Z~. Let ¢ € (L}, N
L*)(R"), t >0 and o' € 2%, with [o/| = m+ 1. Then, there exist o € Z, with

|o =m and j € {l,...,n} such that &’ = ot +¢;. From the induction hypothesis and
Remark 2.4, it follows that

IxiRa ()l < C{e2 "ol + (12 +¢"%" )l | (3.4)
IxiRa(t =) u(s))lls < C{ (=) 1" F(u(s)
(=92 + 09" ) If @)} 33

for any s € (0,7), where C does not depend on s. Multiplying (I) by w;¢x* and
applying Theorem 2.5, we have

wiexu(t) = wiexe -+ [ wyexelt M f(u(s))ds
=¢ Aw, X%+ ( gemxa(p —¢ Awm;x (p) +wjeRa(t)o
4 [ (e 83 ) = 0 () ) s
[ o)+ [ wjeRalt = )5 (ul)ds

By a computation similar to that in the case where m = 1 with (1.1), (3.1), (3.2), (3.4),
(3.5), Proposition 1.1, and Lemma 2.7, we can derive

~ 1
Iy u(t) s < @)+ [ n(©)wsexu(s)]ds
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where
58( )= (1+t2 telttt 21)

+C/ % (t—3) t—s)%>(1—|—s)7%(p71)<1—|—s%>ds

+q£(pﬂp+@_gz)u+@%<4u&

Therefore, from the Gronwall lemma and Eg < El , we have

lwjex®u(t)|l < —|—/ Ee(s) )exp(/y%(r)dr)ds
3 g+14 a(ﬂn(gexp<lqn(ﬂdr)d& (3.6)

In particular, since the right hand side on the last inequality in (3.6) is finite and inde-
pendent of €, it follows from Fatou’s lemma that x* u(t) = x;x%u(t) € L' (R"), which
in turn implies x* f(u(t)) € L' (R"). Furthermore, by (I) and Theorem 2.5, we obtain

!

€ ulr) =2 g [ 5 Ip(uls))ds
= 4 Ry + [ I f(uls))ds + [ Regle—)r(s))ds,

whence follows x® u € C([0,+c0); L (R")). On the other hand, taking & \, 0 in (3.6)

yields
!
X% u()]|; < +/ Eo(s) )exp(/ ﬂ(T)d’F)dS,

where

m t n m
&) ::C(l +12 +t%') +C/O (1—s)2(1 +s)‘f<1’—1>(1 +s7>ds

1 m n
+q/«pﬂﬁ+a—@%ﬁu+@7@*u&
0
Since p > pg(n), the integrals appearing in the definition of go(t) are estimated as
t 1 n m 1 m 4 n
/ (r—s)2(1 +s)_7(1’_1)<1 +s7>ds <12 <1 +ﬁ> / (1 +s)_7(1’—1)ds
0 0
C(t
(r

C(t%-l—t 2

m+1

+172
m

(S

m+

+(t—s)2

+1

L)

Nl—
[SE

Nl—

AX@-@

<
)(1 +5)" 3 (P-Dgs <
<

>’
/[(1 +5)72(r Dy
0
).
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Therefore, we have

[ G ( [ nea)as
<Cexp< O+Nn(r)dr) /Ot(l—l—s% +smT“>n(s)ds
< Cexp(C/()+w(l+T)§(”l)dT) (1+z% +1°

141

<C<l+t%+tn7>7

whence follows

+1

Hx“’u(r)\\lsc(lﬂ%ﬂ%) <c(1+t ; ).

This completes the induction argument. []

4. Proofs of Theorems 1.3 and 1.4
We first prove Theorem 1.3 in the case where N = 1.

PROPOSITION 4.1. Under the same assumptions as in Theorem 1.3, for any q €
[1,4-c0], there exists C; > 0 such that the estimates

Cyt° if 0<o<l,
BUD @) -, < L og(l+e)  if o=1,
Cyt ™! if o>1
hold for all t > 1, where
G::g(p—l)—l>0,
~+oo

Q=0+ | Sluls)ds
Proof. Let q € [1,+o0] and let ¢ > 1. We divide the difference u(t) — ¢"*¢; into
three parts by using (I):
u(t) —é Ao
t/ t oo
_/ elt=5)A )f(u(s))ds+ e('f_S)Af(u(s))ds—etA Su(s))ds

1/2 /2

t/ .
= /O ’ /0 %(ev—smf(u(s)))dedH /t/ze(t—s)Af(u(s))ds_etA * Flu(s))ds

_/1/2/ISAe(f’Se)Af(u(s))des+ t "IN f(u(s))ds — +mf(u(s))ds
0 0 /2 1/2
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We note that since p > pp(n) < ¢ > 0, we have

np n 1
————1l=0 1—— 0.
P imor(i-)

Therefore, from (1.1), Proposition 1.1, and Lemma 2.1, we obtain

!
UL (u(s))ds <C/ ([u(s)]|5,ds

/2
<c/ s 3030 rg
1)2
<Ct o 1 (1- 5)
~+oo
o [ rtutoas| < [ uto)pds
/2 q

<C s_n(1 )pds

In the same way, we have

H/t/z /lsAe(t_se)Af(u(s))des
0 0 q
<c/tﬂ/ls(z—se)*%(“é)*lHu(s)ugdeds

/2 .
QC/ / (t—s56)" )_l(l—i-s)_?(p_l)deds

n /2
<l 5)*1/ (1+5)"%ds.
0

The integral appearing on the right hand side of the last inequality is estimated as

1 771 (3\'°
—\1+5 <S—| = ;0 L,
1—0( +2> 1—0(2) o=
t/2 s P
/0 (I+5)"%ds < log<l+§><log(l+t)7 o=1,
1
:, o>1.

As a consequence, we can deduce that

Ct=°, 0<o<l,

08 () — i), < { (! 1 Mog(140) <t Mog(141), =1,

c<f"+z—1) <cr !, c>1. O
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Before we prove Theorem 1.3 in the case where N > 2, we prepare the following
lemma:

LEMMA 4.2. Under the same assumptions as in Theorem 1.3, for any N € Z~
and q € [1,4-c0], there exists Ay 4 > 0 such that the estimate

n 1
v ()llg < Awg(1 4672 073)
holds for all t > 0.

Proof. We prove the assertion by induction on N € Z~(. For the case where
N =1, it follows from (1.1), Proposition 1.1, and Lemma 2.2 that

o0
oA /0 Sf(u(s))ds

<ct+07 3D (olli + o))
n 1 oo
#0708 [T )z o)+ ) |- s

n n oo n
<+ 0 gl + ol +c1+07#078) [ 480Ny
0

1% @1lq < [l olly+

<c(+0 4074

forany g € [1,4o0] and # > 0.

Next, we assume that Lemma 4.2 holds for some N € Z~( and show that it is also
true when we replace N by N + 1. To do this, it suffices to consider the cases where
g =1 and g = +oo. In fact, if we can prove these cases, Holder’s inequality implies

1 -1
ans1(0)llg < Nlunrr (ON lluns1 ()]

1 -1 ,g(l,i)
<(ANn+11) T (Ant1.) (1+12) q

forany g € (1,40) and 7 > 0. Now, let 7 > 0. We note that

s (1) = & (<p+ [t - N<s>>>ds) + [ (s

— o= [ flun(s))ds + [ ptans)as,
0 0

By (1.1) and Lemmas 2.1 and 2.2, we have
+oo t
A /O Flun(s))ds|| + /0 1) fun (s))] s
1

+oo 1
< c+c/O HuN(s>H§ds+c/0 lun(s) | 2ds

lunc1(t)[[1 < €@l + ||

oo .
<c+c/ (1+5) 30 Vas< C
0
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1 (8) |0 < [l 1+

o0
eA/O Slun(s))ds

oo

N (/Of/2+ t/’2> He(t—S)f(uN(s))des

e+ E+C+0E [ (e (los(s)h + lun()]-)ds

/2 "

€ [ =) a2 (v 5) 1+ w5 )
!

+C [ u(s)lzds
t/2

n

n oo n
<C(1+t)_7+C(l+t)_7/ (145)- 30D gy
0
/2 ; ; ; u»
+C/ (1+t—s)77(1+s)*§(P*1)ds+C// (1+5)" 2 ds
0 1)2
n n oo n
<C(1+1)2 +C(1+t)‘7/ (1+5)"2(P=Ngs
0

1 n
+C(1 +t)77/ (1+5)"2(P"Ngs
0
<C(1+1)72.

This completes the proof. [l

Proof of Theorem 1.3. We regard Theorem 1.3 as the assertion with respect to
N S Z>0 .

(B)xy Forany g € [1,+-o0], there exists Cn.q > 0 such that the estimate

n(1_1
300 () = un ()l < Cw gl (e)
holds for all 7 > 2V~! where

1No, 0<No <1,

Onv@) =14t 'log(14+1), No=1,
y No > 1.
We show that (B)y is true for any N € Z~( by induction on N. We have already

proved the case where N =1 in Proposition 4.1. We assume that (B) 5 holds for some
N € Zg. Let g € [1, 4] and let ¢ > 2V . We divide the difference u(t) —uy(¢) into
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three parts by using (I):

t/
) i) = [ " (98— ) (£(uls)) — flun(s)))ds
+ [ I (fuls)) — Flu(s)ds

t/2

o /t T (Fuls)) — Flun(s))ds

/2
:_/t/z/ISAe(t_SG)A(f(u(S))_f(MN(S)))dOds
0 0
+ [ eI (u(s)) — flun(s)))ds

t/2

~+oo
=t [ () = fl(s)as.

From (1.1), (B)x, Proposition 1.1, and Lemma 4.2, it follows that

[ e uls)) — Fla(s))ds
t/2

q

S C/[;fz(llu(s)lléi,1 + [Jun ()27 [[u(s) — un(s) | ods

1 n
<c [ (4973005800 gy (s)as
t/2

n 1
<Ct_7(l_$)/ s n(s)ds,

t/2

~+oo
¢ [, (o) = flun(s))ds

q
< T+ iy 2 )~ ) s
< Cf%(l*é) /+ms7176§1v(s)ds.

t/2

In the same way, we obtain

t/2 rl
L [ st () = S ())a0s

q

< [ [ ste 50 H 078 (o)1 + )12 as) — ()] s

" 1 oN-1 1/2
<crilizg) ( I+ /2N1>S(IIM(S)||£1+IIMN(S)’.;1)u(S)—uN(S)ldS
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cars-i(
0
1

< Ct_%(l_

oN-1

(1+5s) s(L+5)

*% ds+/

(s " S Lu(5ds ).

Now, let 0 < € < 1. Then, by simple calculations, we have

t
/ 57179y (s)ds <
t/2

N

N

~+oo
/ 5170y (s)ds
/2

Combining these estimates yields

t%(l_é) u(t) — un1(2)]lg

th(NJrl)O'
C(t +1
C(t—(NH)
C( -

N

This completes the proof.

(o) <

MNog(1+41) ) t~log(1+1),

+z—1) cr

R AL 1) Ct~

Q

r,

O

Proof of Theorem 1.4. Let q € [1,4o0]. We note that

3
p >,1_+ _;tlﬁ
n

2

1
= -Zp —1)+%<—1

261

g“’”@(s)ds)

cWHo 0 <No <1,
Criovte. No =1,
ctr1-o, No > 1,
1+ s~ WD g 0<No <1,
2N—1
t/
1+C “levtegy No =1,
2N—1
1/2
+ s 1795, No > 1,

0<(N+1)o <1,
(N+1o=1,

No <1< (N+1)o
No =1,
No > 1.

0<(N+1)o<1,
(N+1)o=1,
No<l<(N+1)o
No =1,

No > 1.
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By (1.1), Proposition 1.1, and Theorem 1.2, we have
o o e o
el < [l + [ I r(u(s)) ads
<ol [ o)1z us)lds
n loc
< Ix%oll, +c/ (1 +s)—z<1’—1>+7‘ds< c
0

for all o € Z2 with |et| < m+1, whence follows @ € L, (R"). Therefore, it
follows from Proposition 2.4 that

t%(l_%)

2o =Y 2755 Y 46 (heGy)
k=0

|| =k q
(1), _mEL 1
<2 N — e Gl (4.1)
lot|=m+1 7"
holds for any ¢ > 0, where
1 o
Coi=or [, Y o1 (v)dy

On the other hand, by Theorem 1.3 with N = 1, there exists Cy 4 > 0 such that

1
n(1_1 C 1_7, m:07
40 )H ()—e’A¢1||q<{ b (4.2)

1qt l, m=1

hold for any 7 > 1. Here, we remark that

1
n m+1 -,
o Z(p ) 5

Combining (4.1) and (4.2), we can deduce the desired result. [l

REMARK 4.1. In the same way as in the proof of Theorem 1.4, we see that if
me Zzy, p>1+3+m)/n and ¢ € (L), NL”)(R"), then for any g € [1,+oo],
there exists C; > 0 such that the estimates

m Cpt?
k , m
ut) = Y2745 Y cadi(haGy) <{ ‘
~1
k=0 |or|=k q th ’ m

. 1 o
a:aéﬂwww

-~
ST
—
—
|
|—
~—

Vol
=

hold for all £ > 1, where
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+oc
Q=9+ | f(u(s))ds.

When m > 2, it is not suitable to consider the above estimates as higher order asymp-
totic expansions of the global solution since some terms in the asymptotic profiles decay
faster than the remainders as t — +oo. See also Corollary B.2 in Appendix B.

A. Proof of Proposition 1.1

Let & >0 and let ¢ € (L' NL™)(R") with ||@||; + ||@||- < &. First, we prove
the existence of global solutions to (P). For each M > 0, we define

Xy = {MEX; HuHx QM},

Jullx = sup(llao)lls + (1 +0)2 )]l

1=

d(u,v) = |lu—vlx.

Then, we can see that (Xp,d) is a complete metric space. In addition, we define a
mapping ®: Xy — X by

(@) (1) = e + /0 =92 £y (s))ds.

We show that @ is a contraction on Xy by choosing M > 0 and & > O sufficiently
small. If we can prove this assertion, by applying the Banach fixed point theorem, we
obtain a global solution u € Xj; to (P) as a fixed point of ®. Furthermore, Holder’s
inequality implies

1 1—1 _n 1_1
l(t)llg < @) @)l < M1 +6)73(=3)
forany g € [1,4oo] and # > 0.

We first show that ®(X,,) C Xy, for appropriate M >0 and & > 0. Let u € Xy
and let 7 > 0. Then, by (1.1) and Lemmas 2.1 and 2.2, we have

J(@)0) 1 < ¢+ [ et~ tuts) ds
<llglh+C [ o)z as)las

1 n
<eo+Cluly [ (14540 Vas
0
< g+CM?P,

/2 t
@@l < ol ( [+ [ )l rtuion). s

t/2

n J
<cl+0 (gl +lglla) +€ | uts)lzds

t/2 .
+C/O (12 =5)72 u() 17 (Jus) ]l + [1us) ) ds
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np

<1+ %e +C\\u\\§/t (1+5) %ds

t

/2
t/2 n n

+cHuH§;/O (11— ) 3 (1+5) 30Dy

t n
<C(1+1) g +CMP(141)"3 // (145) 30 Dgy
t/2

+CMP(141)% /(:/2(1 +5)7 2P~ Dys
<SC(1+1) 2 +CMP(1+1)72.
Combining these estimates yields
| @ul|x <C'ey+C'MP.
Therefore, by taking M > 0 and & > O to satisfy

1 M
Y < —
cM ST 80\20,

we obtain ||®u||x < M, whence follows ®u € X);. In the same way, we can derive
1
|@u — @vl|x <2CMP = viix < 5 llu—vx
for any u,v € Xj;, which implies that the mapping ®: X3, — Xj, is a contraction.
Finally, we show the uniqueness of global solutions to (P). Let u,v € X be global
solutions to (P) and set
M= |t 20 o) + V]| 220, i) -
Then, u and v satisfy the following integral equations, respectively:
1
u(t) = o+ [ e (us))ds,
0
!
v(r) =€ —|—/ UL (u(s))ds.
0

Furthermore, by (1.1) and Lemma 2.1, we have
t
[lu(z) =v(@)|x <C/O (a2 ()12 ) laels) = v(s)lhds
!
< CM’p_l/ l|lu(s) —v(s)|1ds
0

for any ¢ > 0. Applying the Gronwall lemma, we obtain

[lu(z) =v(6)][1 =0,

whence follows u =v.
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B. Convergence to the asymptotic expansions

We are not able to apply Proposition 2.4 for ¢ € L} (R") to obtain the m-th order
asymptotic expansion with a bound of the remainder with decay rate in . For ¢ €
L}(R™), we show that the remainder vanishes with higher order than —(n/2)(1 —1/q)
as t — oo,

PROPOSITION B.1. Let m € Z>g, ¢ € L) (R") and q € [1,+]. Then,

lim t%(l_%) o — S kb
0—227"%"7 Y ¢46(heG)

:0’
e =0 o=k q
where
1 o
=— dy.
Coi=or [, Y @)y

REMARK B.1. Proposition 1.1 in [18] follows from Proposition B.1 with m =0
and n = g = 2. The authors in [18] showed the result with the aid of the Fourier
transform. More generally, for any ¢ € L!(R") and g € [1,+oo], Proposition B.1 with
m = 0 implies

lim 0-7) €2 llq = [col | Gillq

n 1 n
coldm) F =0 g H 1< g < tos,
ol (4) 2 g= oo,

where
co = o (y)dy.
Rll

Proof of Proposition B.1. To begin with, C.(R") denotes the set of continuous
real-valued functions on R” with compact support. Since ¢ € L'(R") and C.(R") is
dense in L'(R"), there exists a sequence (@;;j € Zg) in C.(R") such that ||¢@; —
@1 — 0 as j — +eo. In particular, @; € L}, | (R") for any j € Z-¢. Here, we set

1
Cjo = M/Rnya%(wdy

for each j € Z~o and o € Z%, with || < m. Then, by Lemma 2.1 and Proposition
2.4, we have

,%(1*5) o — 3 2k—5
0= 272 c8(heG)
k=0 |ot|=k

q

k
2_kt_7 Z Cj7(x6t(haG1)
k=0 |or|=k

n(1_1 _r _k
300 32k S 16— cal |6, (06G)
k=0 |or|=k

<8070 ¢4 — )+ (73) ot

m

q
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(1), —mEl 1

< IGullglle — @jlly +27 e —|IhaGillg]lx*@;ll1
o!
lof|=m+1 "

+1Gillqllej —¢lh

m Lk 1
#2270 3 (il + a?el) [haGill
k=1 lo|=k ="~

for any ¢ > 0, whence follows

limsupt%(lfflf)
oo

29— 27575 Y 08 (heGy)
k=0

|o|=k q

<2(|Gillllo; = oll1-

Furthermore, since ||@; — @||; — 0 as j — +oo, we can deduce that

fim 404
t=too

=0. O
q

2o—Y 251 Y 08 (heG)
k=0

|o|=k

By using Proposition B.1 instead of Proposition 2.4 in the proof of Theorem 1.4,
we have the following corollary:

COROLLARY B.2. Let m € Z=o and let p > 1+ (2+m)/n. Let ¢ € (L},N
L=)(R") satisfy ||@|l1 + ||@]le < & and let u € X be the global solution to (P) given in
Proposition 1.1. Then,

fim ¢4 (%)

ua k
Jim u(t) =Y. 27572 Y 48 (hoGy)|| =0
k=0 |ot|=k q
holds for any q € [1,+e], where
1 o
ai=—r | Yoy,
~+oo
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