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WEIGHTED HARDY-TYPE INEQUALITIES FOR MONOTONE
CONVEX FUNCTIONS WITH SOME APPLICATIONS

SAJID IQBAL, KRISTINA KRULI¢ HIMMELREICH AND JOSIP PECARIC

Abstract. In this paper, we establish some new refined weighted Hardy-type inequalities in-
volving monotone convex functions. We give the results for some special kernels of Riemann-
Liouville and Weyl’s operators as applications. Also we discuss some related dual cases. At
the end, we prove some refined G. H. Hardy-type inequalities for different kinds of fractional
integrals and fractional derivatives.

1. Introduction

The first work in the field of fractional calculus is the book by Oldham and Spanier
[15] published in 1974. One of the most recent works on the subject of fractional
calculus is the book of Podlubny [17] published in 1999, which deals principally with
fractional differential equations. These books draw the considerable attention of the
different mathematician in this field to explore the new ideas in fractional calculus.

Fractional calculus deals with the study of fractional order integral and derivative
operators over real or complex domains and their applications. Fractional calculus have
been of great importance during the last few decades. This follows from the intensive
development of the theory of fractional calculus, followed by the applications of its
methods in various sciences and engineering. For further details and literature about
the fractional calculus we refer [5], [6], [13] and the reference cited there in.

We start with the inequality of G. H. Hardy. Let [a,b], —e0 < a < b < o be a finite
interval on real axis R and 1 < p < oo, then

W55 fllp < K[ Alps N=fllp <KL (1.1)
holds, where
ko =0
Io+1)

1% f and I f of order o > 0 denote the Riemann-Liouville fractional integrals de-
fined by

1) = g [ SO0y, (>
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and

b
B = gy [ F000—0" (v <).

where T is the Gamma function, i.e. T'(ct) = [ ¢/ 1% 1dr.

G. H. Hardy proved the inequality (1.1) involving left-sided fractional integral in
one of his initial paper, see [10]. The calculation for the constant K is hidden inside the
proof.

In this paper, our particular interest is to give the Hardy-type inequality and prove
some new inequalities involving monotone convex function using different kinds of
fractional integrals and fractional derivative like fractional integral of a function with
respect to an increasing function, Riemann-Liouville fractional integrals, Caputo frac-
tional derivative, Erdelyi-Kdéber fractional integrals and Hadamard-type fractional in-
tegrals. Numerous mathematicians obtained new Hardy-type inequalities for different
fractional integrals and fractional derivatives. For details we refer to [7], [9], [1 1], [12],
[14], [16].

Let (Qp,Z1,4;) and (Q3,%,,p) be measure spaces with o -finite measures and
Ay, be an integral operator defined by

Af(x) /kxy Vi ), (12)

where k: Q) x Q; — R is measurable and non-negative kernel, f is measurable func-
tion on €2, and

0 i= [kxdib), re. (1.3)
2

Throughout the paper, we consider that K(x) > 0 a.e. on Q;.
The following theorem is given in [8].

THEOREM 1.1. Let 0 < p<g<oo,0r —0<q< p<0, (Q1,%, 1) and (2,2,
W) be measure spaces with G -finite measures, u be a weight function on Q1, k be a
non-negative measurable function on Q1 X £, K be defined on Q; by (1.3) and that

k(x,y)
K(x)

q
the function x — u(x) < ) " is integrable on Q for each fixed y € Q, and that v

is defined on Qj by

P

v(y) = / u(x)(k,(gj)))zdm(x) e

1

If @ is a non-negative convex function on the interval I CR and ¢ : 1 — R is any
Sunction, such that @ € d®(x) for all x € Intl, then the inequality
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[r0eUednG) |~ [u ) iau )
Q) Q
>4 Q/ PR ) Q/ Koy ndint)dm @) (14

holds for all measurable functions f:Qy — R, such that f(y) €1 forall y € Q,, where
Ay is defined by (1.2) and r: Q) x Q; — R is a non-negative function defined by

r(x,y) = [|@(f(y)) = P(Arf ()] = l@(Axf ()] f(y) = Arf ()] ]

REMARK 1.2. For p =gq, the Theorem 1.1 becomes [7, Theorem 2.1] and convex
function ® need not to be non-negative.

Throughout this paper, all measures are assumed to be positive, all functions are
assumed to be positive and measurable and expressions of the form 0- oo, = and % are
taken to be equal to zero. Moreover, by a weight u = u(x) we mean a non-negative
measurable function on the actual interval or more general set. B(-; -, -) denotes the

incomplete Beta functions, defined by

X

B(x;a,b):/z“*l(l—t)”*ldz, xe0,1], ab>0. (1.5)
0

As usual, B(a,b) = B(1;a,b) stands for the standard Beta function.

The paper is organized in the following pattern: After introduction, in Section 2,
we construct some inequalities of Hardy-type involving monotone convex with their
related dual cases. We give related results for special kernels of Riemman-Liouville
and Weyle’s operators. Also, we give the results by considering power and exponential
functions. In Section 3, we give some improvements of G. H. Hardy-type inequalities
for different kind of fractional integrals like fractional integral of a function with re-
spect to an increasing function, Riemann-Liouville fractional integrals, Hadamard-type
fractional integrals and Erdelyi-Koéber fractional integrals. In Section 4, we give the
improvement for Canavati-type fractional derivative and Caputo fractional derivative.

2. The main results

Here we provide the more general results related to Hardy-type inequalities for
monotone convex functions.

THEOREM 2.1. Let 0 < p < g < oo, or —oo < g < p <0 and let the assumptions
of Theorem 1.1 be satisfied. If ® is a non-negative monotone convex on the interval
ICR, f(y) > Auf(x) for ye Q' (' € Q) and ¢ : I — R is any function, such that
©(x) € dD(x) for all x € Int 1, then the inequality
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<k

( V(y)ﬂb(f(y))duz(y)) - [ut@? (Anfw)dp ()
Q)

Q

[ 400 0 (4 (w) [ san(r ()~ Axf ke ) [@70) ~ @A)

Q Q)

~loULf )|+ (F0) = Af () | dpadp )] @)

holds for all measurable functions f:Qy — R, such that f(y) € I, for all fixed y € Q,
where Af is defined by (1.2).

If © is a non-negative monotone concave, then the order of terms on the left-hand
side of (2.1) is reversed.

Proof. Consider the case, when @ is non-decreasing on the interval /. For a fixed
xeQp,let Q) ={yeQ,: f(y) >Arf(x)}. Then

[ K310 0) ~ @A () dpa )
Q

b [ KA () - @(F0))]dpa()

= [eneUo)dmm ~ [ K@ o)dumb)

Q) QD\Q)
~ (A () / Kxn)dia(y) + @A) [ kxy)dpa()
Q) 2\,
- / sn(£() = Af k() ) ~ DAL WId ). (22)
Similarly, we can write
/ KL 3) — Auf () dpa ()
= / sn(£ () = Anf (k(x.0) (F0) ~ Acf (0)dpa (). 3)

From (1.4), (2.2) and (2.3), we get (2.1).
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The case, when @ is non-increasing can be discussed in the similar way. [

For p = g, we get the following result which is in fact the new version of the [7,
Theorem 2.1] involving monotone convex function and the function @ not need to be
non-negative.

COROLLARY 2.2. Let Qp,Q), 1y, o, u,k,K and v be as in Theorem 1.1. If ® is
a monotone convex on the interval I CR, f(y) > Aif(x) for y € Q' (Qy' € Q) and
¢ : I — R is any function, such that ¢(x) € 0D (x) for all x € Int I, then the inequality

[rO@ ) )~ [ ) Auf ) dps ()

Q Q

. /Z&)) [sen(F0) = At (kG y) [D(F(3) ~ DA/ ()

Q Q

oS DI+ (F0) = Af )| dpa ) dpn (0] @4)

holds for all measurable functions f:Qy — R, such that f(y) €1, for all fixed y € Q;
where Arf is defined by (1.2).

If @ is a monotone concave, then the order of terms on the left-hand side of (2.4)
is reversed.

Although the (2.1), holds for non-negative monotone convex functions some choi-
ces of @ are of our particular interest. Here, we consider the power and exponential
functions. Let the function @ : R; — R be defined by ®(x) = xP. It is non-negative
and monotone function. Obviously, @(x) = ®'(x) = px*~!, x € Ry, so ® is convex
for p € R\ [0,1), concave for p € (0,1], and affine, that is, both convex and concave
for p=1.

COROLLARY 2.3. Let Q,Q0, Ui, Up,u,k,K and v be as in Theorem 1.1. Let
p €ER be suchthat p#£0, f:Q; — R be a non-negative measurable function (positive
for p <0), Arf be defined by (1.2) and

My f(x,y) = fP(y) = ALF(x) = |p| - [Af ()P (f () — Arf(x)) (2.5)

Jorxe Qp, yeQy. If p>=1 or p <O, then the inequality

q
14

(7/ v O)ainG) |~ [uwalf@du ()

Q
Q

u(x)
K(x)

> % (Arf ()" / sgn(f(y) — Arf (x))k(x,y)Mp i f (x,) dpa (y) d g (x)

Q

(2.6)
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holds. If p € (0,1) relation (2.6) holds with

q

P

[ w0t o - (7/ VOIS () ()

Q)
on its left hand-side.

For the monotone convex function @ : R, — R defined by ®(x) =¢*, x € Ry the
following result follows.

COROLLARY 2.4. Let Q1,8 1, U, u,k,K and v be defined as in Theorem 1.1
andlet p > 0. Let Gi.f(x) be defined by

Guf(5) 1= exp | g [ ) n f)ia() ). @)
Q

o)
Grf(x)
and f: Qy — R be a positive measurable function, f(y) > Gif(x) for y € Q' (Q' C
Q,). Then the following inequality holds:

Pyif(x,y) = fP(y) — GLf(x) — p|GE (x)|In (2.8)

49
P

(7/ O O)Ab) |~ a6 )

Q
Q

Proof. Apply (2.1) with @ : R — R, ®(x) = ¢*, and replace the function f with
plnf. Note that Gr.f =exp(Ar(Inf)). O

u(x)
K(x)

GLPA(x) [ sn((5) = Guf (Dk(x.)Pos S (x3) b2 3) dpa ()]~ 29)

>4
p &,

Here we give the results for one dimensional settings, with intervals in R and
Lebesgue measures. Also we give the related dual results.

THEOREM 2.5. Let 0 <b < e and k: (0,b) x (0,b) — R be a non-negative mea-
surable function, such that

X

K(x) =: / k(r,y)dy, x€ (0,b). (2.10)
0

e

ulx) [ k(x,y) ) P

Let u be a weight function such that the function x — == - < <) is integrable on
(y,b) for each fixed y € (0,b) and let the function w: (0,b) — R be defined by
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w(y) =y y/b (k,(f(j;))%u(x)% - @.11)

If @ is a non-negative monotone convex on the interval I CR and ¢ : I — R is that
©(x) € dD(x) forall x € Intl, then the following inequality

; s,
/ w<y>c1><f<y>>? - [uwek (g &
0 0

X

b
> 4] [ 20h (aer) [ sen(0) ~ AcF )k ) [0070) - @A )
0

0

~ (AN (0) ~ A4S 0)] dy%‘ 2.12)

holds for all measurable functions f : (0,b) — R, f(y) > Arf(x) for yel' (I' C
(0,b)), such that f(y) € I, for all fixed y € (0,b) where Af is defined by

Arf(x) /k x,y)f(y)dy, xe€(0,b). (2.13)

Proof. Denote Dy = {(x,y) € R2 : 0 <y < x < b} and set Q; = Qy = (0,b).
Replace du(x), dus(y), u(x) and k(x,y) by dx, dy, @ and k(x,y)xp, (x,y) re-
spectively in (2.1) to get (2.12). Moreover, w(y) =yv(y), y € (0,b). O

By considering the power and exponential functions, we can give the following
results.

COROLLARY 2.6. Let 0 < b < oo, u,k,K and w be defined in Theorem 2.5. Let
p R, p#0, f be anon-negative measurable function on (0,b), f(y) > Arf(x) for
yel' (I'C(0,b)), where Arf and M, be defined by (2.13) and (2.5) respectively.
If p>1 or p <0, then the following inequality holds:

q
P

b b

/W(Y) —/u(x) (Akf(x))q@

0 0
b x o

,% / fc (x)*" / sgn(f(y) — Aef)k(x, )M f (x, y>dy— (2.14)
0 0

If p € (0,1), then the order of terms on the left-hand side of relation (2.14) is reversed.
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COROLLARY 2.7. Let 0 < b < oo u,k,K and w be defined in Theorem 2.5 and
P, by (2.8). Let p>1 and f be positive measurable function on (0,b), f(y) >
Gif(x) foryel (I'C(0,b)). Then the following inequality holds:

b b
dy dx
/ w(y)ff (y)7 ~ / u(x)G? fo)=
0 0
b X
> ,g, O/ % Gy "f(x) 0/ sgn(f(y) —ka(X))k(X»y)Pp,kf(my)dy% : (2.15)
where Gif(x) is defined by
b
Gif(x) :=exp 0] /k(x,y) Inf(y)dus(y) |, xe(0,b). (2.16)
0

The above results can be applied to some important particular kernels. Here we
consider the result related to the Riemman-Liouville operator

X

Ryf(0) = L [ (=) s (). (2.17)

0

where y € R;. Obviously, for y=1, in (2.17), we have R; = H, which is classical
Hardy’s integral operator

X

1
Hf) = [ f0)dy. x€(0.5).
0
EXAMPLE 2.8. Suppose 0 <b <eo, yeR,, f(y) >Ryf foryel (I'C(0,b))
and D; is defined in the proof of Theorem 2.5. If u(x) = 1, we get v(y) = (Z> B4 (),
where B(y) = B (1 21+l ff) for T109 < 1, k(x,y) = L(x— )" s, (x.)
and Ryf asin (2.17), then (2.12) becomes

b pob
/ B5(y /qﬁ Ryf(x)
0 0
b x q
>0 / ~Ryf ()@ (Ryf ()7 ()" [@(70) ~ @Ry ()
0

~9(Rf(W)L0) ~ Ry ()] dy 5

)

where B(y) is incomplete Beta function defined in (1.5).
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Now we give the dual results to Theorem 2.5 with some corollaries.

THEOREM 2.9. Let 0 < b < oo and let k: (b,) X (b,o0) — R be a non-negative
measurable function and K (x) be defined by

= /k(x,y)dy, x € (b,eo). (2.19)

Let u be a weight function such that the function x — @ .

is integrable on
(b,y) foreach fixed y € (b,o) and let the function w: (b,o) — R be defined by

W) =y ](kﬁx’y))zu(x)@ . (2.20)
b

K(x) X

If ® is a non-negative monotone convex on the interval I CR and ¢ : I — R is that
0(x) € dO(x) for all x € Intl, then the following inequality

q

o) Juon i
b b
;1) b/ Z’; o (Akf(x)) / sgn(f(y) = A/ k(x.y) | () — DAL f (x))

~ QU (0)|-(F() = A (x)) |y %' (221)

holds for all measurable functions f : (b,e0) — R, such that f(y) € I, for all fixed
y € (b,), f(y)>Aif foryel” (I" C (b,)), where Aif is defined by

/k x,3)f(y)dy, x€&(b,oo). (2.22)

Proof. Denote Dy = {(x,y) € R% : b < x <y < oo} and set Qi = Qp = (b, ).
Replace duy(x), dun(y), u(x) and k(x,y) by dx, dy, @ and k(x,y)xp, (x,y). re-
spectively in (2.1) to get (2.21) . Also Moreover, w(y) =yv(y), y € (b,eo). O

COROLLARY 2.10. Let 0 < b K oo u,k,[? and w be defined in Theorem 2.9. Let
p > 1, f be a non-negative measurable function on (b,e), f(y) > Arf for y e l”
(I" C (b,0)), where A f be defined by (2.22). Then the following inequality holds:
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<k

oo oo

[ioro 2| = [ue (Asem)"

b b
I% b/[b;); Acf(x) q_pX/Sé’n(f(y) — Acf)k(x,y) [fp(y)_ (Af(x))P
— plAf ()P (F () —ka(x))] dy % ‘ (2.23)

COROLLARY 2.11. Let 0 < b K oo u,k,[? and w be defined in Theorem 2.9. Let
f be a positive measurable function on (b,*), f(y) > Gif foryel” (I" C (b,)).
Then the following inequality holds:

/ A e [ sen(£() = Gef (Dk(x.3) [£70) = G
b

X

PG )~ G )]y D 22

where Gif(x) is defined by

~ 1 7
Gif(x):=exp | = /k(x7y) Inf(y)dy | x€&(b,e). (2.25)
K(x) /
Now we give Hardy-type inequality for Weyl’s fractional integral operator.

Wyf (x) = /(y x)1” lfy(ﬁ dy, (2.26)

where y € R . Itis quite clear that W) = H for Y =1 we get the classical dual Hardy’s
operator.

EXAMPLE 2.12. Suppose 0 < b < oo, y€ Ry, f(y) > Wyf for yel” (I" C
(b,)) and D, is defined in the proof of Theorem 2.9. If u(x) = 1, we get v(y) =

(g) B (y), where B() :B(l b1y a-le l)q q) for =14 l)q <1, k(x y) = ;’fl (y—
x)" 1xp,(x,y), where Wyf asin (2.26), then (2.21) becomes
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(y [Bieis0)) ‘;—”) - h/ @F (W1 ()

oo oo

T

B [0f (W) [sen(r(0)=Wu) =07 [9(£(5) — (Wt ()
) !
Lo W] S . @2
Observe that B(y) is incomplete Beta function defined in (1.5).
REMARK 2.13. Set k(x,y) = yiz x,y € (b,) in (2.22), and denote
—x/f _g X € (beo),
andif u(x) = 1, then the inequality given in (2.21) becomes
. (,,/ (v — 6% ) @ (/) ) o (Arw)
>4 Z i (A1) / sgn(f(y) — Hf () [@(F0)) ~ DS (x))
~lo(EF 0 -] Fax. 29

3. G. H. Hardy-type inequalities for fractional integrals

We continue our analysis about improvements by taking the non-negative differ-
ence of the left-hand side and the right-hand side of the inequality given in (2.1) by
taking ®: Ry — Ry, O(x) =x',s > 1 as:

n(s) = ( [0 0ty >> — [ ) (Auf () dpr ()

Q

)C

/Kx A ) [ sen(£0) ~ Auf@)k(x.y) lf“‘(y) - (Aef )

Q

—slAf P () —Akf(X))] dua(y) di (%)) (3.1
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We continue with definitions and some properties of the fractional integrals of a
Sfunction f with respect to given function g. For details see e.g. [13, p. 99]:
Let (a,b), —oo < a < b < o be a finite or infinite interval of the real line R and
o > 0. Also let g be an increasing function on (a,b] and g’ be a continuous function
n (a,b). The left- and right-sided fractional integrals of a function f with respect to
another function g in [a,b] are given by

. 1 gOf ()
(N0 = 5 / g r>a

(e (x) —g(O))' =
and
o _ L dfwa
N0 =) |, s <<
respectively.

Here we give the general result for the fractional integrals of a function f with
respect to given function g and then we extract some special cases for the Riemman-
Liouville fractional integrals and Hadamard-type fractional integrals.

Our first result involve fractional integral of f with respect to another increasing
function g.

THEOREM 3.1. Let 0 < p<g<oo, 521, f20, 0 >1— 2, g be increasing
function on (a,b] such that g' be continuous on (a,b), f(y) > %Iﬁ of (x) for
yel (IC(a,b)). Then the following inequality holds true:

T (S) < Hl (S) —Bl(s) < Hl (S)7

where
aﬂ b z%
p / o—1+2
") = o nTe a/g<y><g<b>— 0D )y
b
(N(or+1) / §/((8(x) —8(a) 77 (18 o f () 7 dx—Bas),
T(a+1)) T(o+1 o
mi(y) = 20D sgn( I ¢ WD)
alg—p)(1— Y)
(809 —g(a) "7 D[ o [ Tlat1) :
by s [P0 ()
—s Moetl) o . __Te+l) X X
et (10 e ) ] e
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a+1)) /g +gf

Proof. Applying Theorem 2.1 with Q; = Q, = (a,b), du; (x) =dx, du(y) =dy,

S ) .
k(x,y) = { o) g—sono ¢ Sysx;

, x<y<b,
we get that K (x) = ol (1) — 8(@))* and A f(x) = g btz I¢ o f(x).
For particular weight function u(x) = g’(x)(g(x) — g(a))%, € (a,b), we get

v(y) = (0g (") (g(b) — g(3)" " *9) /(e = 1)L+ 1)7), then (2.1) takes the form

q b P
m(s>:(a_‘1‘;’%+l /g'<y><g<b> g0 P w)ay
o+ 1)) /g 2(@) 7 (12 £(x)) 7 dx— By(s).

Since %4(1—5) <0, g is increasing and Bj(s) > 0, we obtain that
p

This completes the proof. [l
If g(x) = x, then I ., f(x) reduces to I f(x) left-sided Riemann-Liouville frac-
tional integral and the following result follows.

COROLLARY 3.2. Let 0 < p<g<oo, a0 >1 —Iq—’, s=21, f>20, f(y) > E(fj)f)

1% f(x), for y €1 (I C (a,b)). Then the following inequality holds true:
my(s) < Ha(s) — Ba(s) < Ha(s),
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where
ai b »
r o—1+L o5
mls) = (a—1)Z+1 (a/(b—y) Taf (y)dy)
b
~(Ma+1)7 [r=a) ¥ (19 £(0) 7 dx—Ba(s),
s(g-1| bx s
as) = LT ] g (700 - DD 1)) (™5
(18005 et o) - (R )
T+ 1) 4 x‘” Ma+1) .
| (so- >)]dyd
and

b
~(N(a+1) Fq/Ijif de].

REMARK 3.3. If we take g(x) = logx, then 7 .. f(x) reduces to JZ f(x) left-
sided Hadamard-type fractional integral that is defined for oc > 0 by

(J:fif)(x) = ﬁ/x <log§)a1 f();)dy7 x>a

and we obtain the following inequality:

m3(s) < Hz(s) — B3(s) < H3(s),

T

b
OC—1+§ X Q
e ( / (logh —logy)* "5 71(5) S )

b
(e +1)7 /(1ogx—1oga)?<1*-"> (e F(x)7 ;x — Bs(s),
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B (r(a+1 To+1)
B3(S) - sgn( logx_loga)a‘lmr (x))
(logx—loga) A Ta+1) s
o s(%fl) X— a P s . o
< ) 8 e e [0~ (o)
Cla+1) sl Cle+1) dy dx
g ] (10 et ) | 5
and
a glas—1)+p
5 - > %9 (1—-s) or (IOgb B loga) r S Q
3(5) = (logh ~loga) renrerml VA

b
sq dx

— (rla+1)¥ [z e *

a

Now we present definitions and some properties of the Erdélyi-Kober type frac-
tional integrals. Some of these definitions and results were presented in Samko et al. in
[18].

Let (a,b), (0 <a < b < <o) beafinite or infinite interval of the half-axis R*. Also
let « >0, 6 >0,and n € R. The left-sided Erdélyi—-Kober type fractional integrals
of order o € R are defined by

Gx—c(a+n) X tcn+c_1f(t)dt
F(OC) /a (xc_tc)l—a ’

(13: oM f) (x) =

Now, we give the following result.

THEOREM3.4. Let 0 < p < g<e, s21, a>1-5 (>0, f(y) >

( (Fgg}p o i f(x) for y €1 (1 C (a,b)) and 2Fi(a,bic;z) denotes the hy-
1—- % 2F1 X T

pergeometric function. Then the following inequality holds true:

0 < my(s) < Ha(s) — Ba(s) < Ha(s),

where
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ooq(T(o+1)) I'o+1) o
Bu(s) = sgn — o I, . f(x)
/ / (1-(9)°) arw
)G mom o (00— )@ () BV (18 g £ ()Y
oot ACED |
X | V) — @ I o f(x)
(x -y )1 g <1_(§4_C)0'> 2F1(x) L
s—1
| D) g s
(1-(9)°) 2R
o) [ —C e Y P
(1-(9)°) 2R
and
— arcr b9 (% —a® Sl G
Hy(s) = (b° —a®)*r (179 CEDIES /zFl(y)f (v)dy
b
castio— 1 OC+1 ?q/zFl % - an( )) P dx]

a\o°o AN
2Fi(x) = 2F (—77,06;06-1-1;1—(;) )anszl()’)=2F1 (77,06;064-1;1—(;) )

Proof. Applying Theorem 2.1 with Q; = Q, = (a,b), du; (x) =dx, du(y) =dy,

1 ox—oletn) +o-1 .
k(ry) = | M@ o ora” 0 a<y<x
0, x<y<b,

we get that K (x) = gy (1— (g)")am( moso+1;1—(2)%) and Af(x) =

Deth  jo o f().
(1_(§)0') 2F1(x) a+,0’,1‘]f( )

For particular weight function u(x) = x°~! ((x° — a®)%,F (x ))%, € (a,b) we
get v(y) = (a0 7YoL R () (b° — %) 1+a>/(<<a_ 1) 41)7), then (2.1) be-
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comes
49
4

4 r_y b

aroi o—1 o oyo—1+L

) = G T [ 2R 0) e 30 P )y
b

(ot ) F [T (60 ) (1, i ) F e Bals).

a

Since %(1 —s) <0 and My(s) > 0, we get that

4 4 1,(6-1)%6 oyila—)+1 [ b '
_aror b P(b° —a®)? / 5
mi(s) < CENIER [ R
b
—a T (@ 1) F (67 -a0) T [ R (1 g () P
—B4(S)
— ﬁ4(s) —B4(S)
< Hyl(s)

This complete the proof. [J

REMARK 3.5. Similar result can be obtained for the right sided fractional inte-
gral of a function with respect to another increasing function, the right-sided Riemann-
Liouville fractional integral,the right-sided Hadamard-type fractional integral and also
for the right-sided Erdélyi-Kober type fractional integral, but here we omit the details.

4. G. H. Hardy-type inequalities for fractional derivatives

Here we give the improvements for different fractional derivatives.
We define Canavati-type fractional derivative (v -fractional derivative of f), for
details see [1] and [3]. We consider

CY([a,b) = {f € C*([a,b)) : 'V f™ € C'([a, b))},

v >0, n=[v], [] is the integral part,and v=v —n, 0 < v < 1.
For f € C)([a,b]), the Canavati- v fractional derivative of f is defined by

Dy f=DI ",
where D =d/dx.

~ LEMMA4.1. Let v>7y>0, n=[v], m=[y]. Let f € Cj([a,b]), be such that
fD(a)=0, i=mm+1,...n—1. Then
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(i)  fecl(a,b)
(i) (Dif)(x)=

for every x € [a,b].

X

s J =) T (DY) (1)

a

THEOREM4.2. Let 0 < p < g <o, s> 1, v—y>1-52 Dyif(y) >
()(Cv avay Dyf( ) foryel (I1C(a,b)) and let the assumptions in Lemma 4.1 be satis-

fied. Then for the non-negative functions D}, f and DXf the following inequality holds
true:

0 < ms(s) < Hs(s) — Bs(s) < Hs(s),
where

q

b P
1 (/(b —y) T (DZf(y))“'dy)

~—
<
|
=

S

—

©“

=
’vl»& ST

IR IRV

b

~(Mv—y+1)? / (=) F 017w P dx— B (),

a

Bs(s) = q(v-y)(C (v y+1)

oo (100 T D)

)T
x<x—a>7( S (DL () %‘”<x—y>v+l
T =)

s—1

_S I'(v—y+1) .
e o)

(ot~ T bz ] dvd

and

q

(v b gt g
Tole) — (h_ Nv-ni-s) [V V)" b—a » / , .
Hs(s) = (b—a) » V7 1Z71 ( (DY f(y)) dy)

a

b
~(rv-y+1)¥ [ (DZf(x»?—"’dx] .
a
Proof. Applying Theorem 2.1 with Q; = Q, = (a,b), du, (x) =dx, du(y) =dy,

(c—y)v ! :
k(x,y) = vy 4SYSXH
0, x<y<hb,
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we get that K(x) = F()Hli and Agf(x) = 0= Hl 7Dl f(x). Replace f by DY f. For

(v=r+1) (x—a)
(v=7)
particular weight function u(x) = (x — a) ”” € (a,b) we get v(y) = ((v—7)(b—
y)V—Y‘Hg)/(((v —y— 1) + 1)5) then (2.1) takes the form
4q
v-ni (] : p
___Wv=rr —y)Wr e (py
75(s) = R a/(b ) 1 (Dyf(y))'dy

~(Mv=y+1)¥ [w-a) =F 00 ¥ dv—Bs(s)

a

Since @(l —5) <0 and Bs(s) > 0, we obtain that

b P
[ @iy

a

B ) A
v—y—1i+1

b
v—y)
—(b—a) pvq(l—S)( I'(v—y+1) I_q/Dyf de—B5(s)

This complete the proof. [J

Next, we define Caputo fractional derivative, for details see [1, p. 449]. First, let
AC([a,b]) be space of all absolutely continuous function on [a,b]. By AC"([a,b]) we
denote the space of all functions g € C"~!([a,b]) with g~V € AC([a,b]).

Let y >0, n=[y]|, g € AC"([a,b]). The Caputo fractional derivative is given by

L[ _s"0)
Dl.g(t) = F(n_y)/(xfy)yy,nﬂdy

for all x € [a,b]. The above function exists almost everywhere for x € [a, b].
We continue with the following lemma that is given [4].

LEMMA 4.3. Let v>vy>0, n=[v]+1, m=[y|+1 and f € AC"([a,b]). Sup-
pose that one of the following conditions hold:

@) v,y€ Ny and f(0) =0 fori=m,...n—1.

(b) v €No,yZ Ny and f/(0) =0 fori=m,....,n—2.

() v¢ Ny, y€ Ny and fi(0)=0fori=m—1,...n—1.

(d) vEeNy,yeNg and f/(0) =0 fori=m—1,...n—2.
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Then

X

1 v—y—1lpv
DLt = 57— / (r=2)" 7Dl f(5)dy

forall a <x<b.

THEOREM 4.4. Let 0 < p < g <o, s>1, v—y>1-5 Dl f(y) >
(}(Cv a)yf ?Dy (x) for y € I C (a,b) and let the assumptions in Lemma 4.3 be satis-

fied. Then for the non-negative functions DY,f and D!.f the following inequality
holds true:

7o (s) < He(s) — Bo(s) < Hel(s),

where

<k

_v=pr
(v—y—1)

=

Te(s) =

~ el sk
_|_
-
—
oyl
|
<
~—
h
h
+
Q)
—~
S
Q<
=
<=
=
=
Q
<=

C(T(v—y+1)7 /(x—a)+1”) (DLuf(x)) ¥ dx— Be(s),

a

_av=y@v-r+ ) L=yt D) gy
Bals) = y sgn( )
)((x—a v 7)(‘1;!’)(1 V)( Za ()C))S(p 1) ()C y)v r—1
[0ty - (Lt )
o s—1 _
[T | (Pl - TR o, ())]dydx
and
(V)b (o — )i ’
Fo(s) — v-ngi-s | V=P)rib=a) 7 v o))
Ho(s) = (b—a)" ™" 7= DT71 a/(Dm ())dy
b

(v -y + 1) [Olafo)Fax| .
Proof. Similar to the proof of Theorem 4.2. [

Next we give results with respect to the generalized Riemann-Liouville fractional
derivative. Let us recall the definition, for details see [2].
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Let oo >0 and n = [o] + 1 where [] is the integral part and we define the gener-
alized Riemann-Liouville fractional derivative of f of order o by

o _ 1 i o o \n—a—1
0800 = s (32) [ o s)ay.
In addition, we stipulate

DUf:=f=1% [%:=D% if o>0.

If oo € N then D¥f = % , the ordinary o -order derivative.

The space I%(L(a,b)) is defined as the set of all functions f on [a,b] of the form
f=1I%¢p forsome ¢ € L(a,b), [18, Chapter 1, Definition 2.3]. According to Theorem
2.31in [18, p. 43], the latter characterization is equivalent to the condition

I'"%f € AC"[a,b], 4.1)

@’ o =0, j=0,1 1
ﬁa (a)_ i J=U,L...,n—1.
A function f € L(a,b) satisfying (4.1) is said to have an integrable fractional derivative
D2 f,[18, Chapter 1, Definition 2.4].
The following lemma is given in [2].

LEMMA 4.5. Let B> a >0, n=[B]+1, m=[a] + 1. Identity
1 X
o _ _ \B—o—1pnp
D) = ot [P DRy, velabl. @

is valid if one of the following conditions holds:
(i) felf (Lab)).
(i) 1I1°Pf € AC"[a,b] and DE ¥ f(a) =0 for k=1,...n.

(iiiy DP*feCla,b] for k=1,...,n, D’ f € ACla,b] and D~ f(a) =0 for k =
1

S I

(iv) f€AC"a,b], DEf € L(a,b), DOf € L(a,b), B—a ¢ N, DE*f(a) =0 for
k=1,...,n and D¥*f(a) =0 for k=1,...,m.

(v) fEACa,b], DEfeLiab), DOfeL(ab), B—a=1€N, DE*f(a)=0 for

k=1,...,1.
(vi) fEACa,b], DPf € L(a,b), DOf € L(a,b) and f(a)=f'(a)=---= f"2(a) =
0.

(vii) f € AC"[a,b], fo €L(a,b), DYf €L(a,b), B¢N and Dgilf is bounded in
a neighborhood of t = a.
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THEOREM 4.6. Let 0< p<gq<eo, s>1, B—a>1-L, Dgf(y)>%Dg‘f(x)

fory €I C (a,b) and let the assumptions in Lemma 4.5 be satisfied. Then for the non-
negative functions Dg f and D2 f the following inequality holds true:

m7(s) < H7(s) — B(s) < H7(s),

where
q b %
m(s) = % /(b—Y)ﬁ_a_Hg(fo(y))‘dy
P a
b
~(C(B— o+ 1)) / —a) " ) P = B ),
o _alB-o)T(B-a+t1) con(ph oy TB—at1)
Br(s) ; ‘ (Df )
o= L 0 e
T )
s—1
s ' RS | (phro) - P o) ] dyd
and
(B — )b (b aRme (0 ’
() — (B-)%(1—s) 4 4 s
fi(s) = (b—a) B T a/(foﬂy)) dy

b

~(T(B-a+1)? [(Dfr(x) 7 ax|.

a
Proof. Similar to the proof of Theorem 4.2. [J

REMARK 4.7. For the case p = g we can get the similar improvements of the
inequality given in (2.4) for different fractional integrals and fractional derivative.
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