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SHIFTED CHEBYSHEV SPECTRAL-COLLOCATION
METHOD FOR SOLVING OPTIMAL CONTROL OF
FRACTIONAL MULTI-STRAIN TUBERCULOSIS MODEL
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(Communicated by M. Kirane)

Abstract. In this paper, optimal control for a novel fractional multi-strain Tuberculosis model
is presented. The proposed model is governed by a system of fractional differential equations,
where the fractional derivative is defined in the Caputo sense. Modified parameters are intro-
duced to account for the fractional order. Four controls variables are proposed to minimize the
cost of interventions. Necessary and sufficient conditions that guarantee the existence and the
uniqueness of the solution of the resulting systems are given. The optimality system is approxi-
mated by shifted Chebyshev polynomials which transformed the system of differential equations
to a nonlinear system of algebraic equations with unknown coefficients. The convergence analy-
sis and an upper bound of the error of the derived formula are given. Newton’s iteration method is
used to solve this system of nonlinear algebraic equations. The value of the objective functional
which is obtained by the proposed method are compared with those obtained by the generalized
Euler method. It is found that, Shifted Chebyshev spectral-collocation method is better than the
generalized Euler method.

1. Introduction

It is well known that, the mathematical models are a quite important and efficient
tool to describe and investigate several problems in natural sciences disciplines such
as biology, physics, weather science and many other fields ([3], [12], [15], [16], [19],
[43], [46], [44], [45]). Numerical simulations are sometimes the only way to solve
these mathematical models or to derive the desired information out of it. The accuracy
of these numerical solutions is a major factor to consider while deciding on which
numerical method is to be used in solving a mathematical model.

Recently, the theory of fractional optimal control problems has been under de-
velopment. Necessary optimality conditions have been developed for (FOCPs). For
instance, in ([4]-[7]) necessary conditions of optimization for fractional optimal con-
trol problems FOCPs in the sense of Riemann-Liouville derivative have been achieved
and solved the problem numerically using finite difference methods. In [28], the au-
thors presented a numerical method for solving FOCPs in the Caputo sense is based
on Chebyshev polynomials approximation and finite difference method. In [9] Baleanu
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et al., used central difference scheme for solving FOCPs. In [10] Biswas and Sen pre-
sented a numerical technique for the solution of fractional optimal control problems
defined both in terms of Riemann-Liouville and Caputo fractional derivatives. Agrawal
et al. in [8] formulated FOCPs in multi-dimensions of the state and control variables.
They used Riemann-Liouville fractional derivative with Griinwald-Letinkov approxi-
mation to get their numerical scheme. In [47], Tricaud and Chen discussed FOCPs
and their solutions by means of rational approximation. Lotfi et al. in [29], consid-
ered FOCPs in terms of Caputo operators and solve it using the Legendre orthonormal
polynomial basis. Jafari and Trajadodi in [30] have studied FOCPs using Bernstein
polynomials.

The past three decades have seen rapid development in the fractional calculus
(fractional differential equations) field ([21], [27], [37]). The applications of frac-
tional calculus are becoming increasingly important in science and biology, ([43]-[44]),
control theory of dynamical systems [42], magnetic plasma [22], physics [40] and the
process can be successfully modeled by fractional differential equations (FDEs) ([38],
[39]). For certain applications the use of fractional derivatives is justified since they
provide a better model than integer order derivative models do since they provide a
powerful instrument for incorporation of memory and hereditary properties of the sys-
tems as opposed to the integer order models, where such effects are neglected or diffi-
cult to incorporate. The memory effect is due to the fact that fractional derivatives are
non-local as opposed to the local behavior of integer derivatives ([1], [23]-[25]).

Spectral methods have developed rapidly over the past four decades by a huge
number of studies see for details, ([13], [17], [31], [32]). The principal advantage of
spectral methods lies in their ability to achieve accurate results with substantially fewer
degrees of freedom. In recent years, Chebyshev polynomials [11] which are families
of orthogonal polynomials on the interval [a,b] have become increasingly important in
numerical analysis, from both theoretical and practical points of view. We refer here to
the excellent book [31], for the reader who is interested in Chebyshev polynomials of
all kinds.

Tuberculosis (TB) can be considered as one of the most important infectious dis-
eases, it is the second largest cause of mortality by infectious diseases and is a challeng-
ing disease to control [26]. It is caused by various strains of Mycobacteria. Specifically,
Mycobacterium tuberculosis. TB primarily affects the lungs, but it can also affect or-
gans in the central nervous system, lymphatic system, and circulatory system among
others.

Several papers considered modeling TB such as ([3], [14], [15], [34], [36], [48]).
We consider in this work a multi-strain TB model of fractional order derivatives as
extension the model of TB which given in [2]. This model includes several factors
of spreading TB such as the fast infection, the exogenous reinfection and secondary
infection along with the resistance factor [42]. The model incorporates three strains,
drug sensitive emerging, multi-drug resistant (MDR) and extensively drug-resistant
(XDR). Sweilam and AL-Mekhlafi introduced some numerical studies of this model in
([42]-[45D.

The aim of this paper is to study optimal control of fractional multi-strain TB
model with modified parameters, this modified parameters are introduced to account
for the fractional order [1]. Four controls represent the effort that prevents the failure
of treatment in active TB infectious individuals. Shifted Chebyshev spectral method, is
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used to solve such optimality system. The state and control variables are expanded in
shifted Chebyshev series with unknown coefficients, the resultant system of algebraic
equations is solved using Newton iteration method. Two numerical methods are used to
study the optimal control problem (OCP). The methods are the shifted Chebyshev spec-
tral method (SCSM) and the generalized Euler method (GEM). Comparative studies are
implemented.

This paper is organized as follows: In Section 2, a multi-strain TB model with
control is given. In Section 3, formulation of the optimal control problem and the nec-
essary optimality conditions for the multi-strain TB model are derived. In Section 4,
Numerical methods for solving the optimal control problem are given, also, we derive
an approximate formula for derivatives using Chebyshev series expansion, In section
5, we study the error analysis of the introduced approximate formula, moreover the
numerical implementation of the proposed technique is given in section 6. The conclu-
sions are given in section 7.

2. Multi-strain TB model with controls

In the following, the fraction multi-strain TB model is presented. The population
of interest is divided into eight compartments depending on their epidemiological stages
as follows: susceptible (S); latently infected with drug sensitive TB (L;); latently
infected with MDR TB (L,,); latently infected with XDR TB (L,); sensitive drug TB
infectious (I;); MDR TB infectious (I,); XDR TB infectious (I); recovered R. All
interpretation and meaning of this variables see Table 1. One of the main assumptions
of this model is that, the total population, N; with N = S(¢) + Ly(t) + Ly (¢) + Ly (¢) +
L(t) 4+ L (t) + LI,(t) + R(z), is constant in time. In other words, we assume b* = (dN)?,
where, b% is birth rate and d% is natural death rate also, we assume there is no disease-
induced death rate, i.e., & = 8% = 8% =0. Four control functions u;(-), uz(-), uz(-)
and u4(-), and four real positive constants €, &, €3, and &, will be added to the
model. The control u; governs the latent individuals Lg that is put under treatment.
The controls uy, uz and uy represents the effort in preventing the failure of treatment
in active TB infectious individuals I, I, I, respectively, e.g., supervising the patients,
helping them to take the TB medications regularly and to complete the TB treatment.
The parameters & € (0,1), i = 1,2,3,4, measure the effectiveness of the controls
uy, k=1,2,3,4, respectively, i.e., these parameters measure the efficacy of treatment
interventions for active and persistent latent TB individuals. The new parameters of the
model are described in Table 2, this modified parameters are introduced to account for
the fractional order [1]. The new system is described by fractional order derivatives as
follows:

SI ST SI
Dgszba_das_ﬁsaﬁs_ﬁmawm_ﬁxawx7 (l)
SI; RI, LI LI, LI,
DEL, =ABE + OIAL B YT, — 0B — B — oSBT
— (d*+ €2 + 1 + e1uy (t))Ls, 2
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ST, LI,

DtaL _ln(f n(f N +0 ala a_+ya1 smﬂn(fln(f N (I_Pl )tlsL
o Ly o po mlx
+81M1(Z‘)L_\~ + (1 _P2 )IZSI +82u2( ))I amm m = Oy Py
—(d*+ &%) Ly, 3)
SI, RI, LI,
D;XLX :lxaﬂxa W + ngffﬁf W + %?(IX + ageﬂxalxa mxﬁaz’a
LI,
+ (1= PE)iSu I+ &2 (0)) 1 — B =1 — (d“ +&f)Le, )
o LsIs SI o RI;
DI, =0 +(1-21% 9‘(—5 o’ ) e’
S N ( S )ﬁS N + s N +
—(d“+5;"+t§;+y;"+82uz( Nis, ()
L I SI le L.\'Im
Dal _amm m N (l_z’mm)[3 (N +0 N +agn N >+81?1(Lm
—(d“+5a+l§‘m+fsus()+7°‘) m; (6)
SI, RI o Lskx mly
DYl =0 o Ll +(1-AF ( o ) €L,
GBI (1 2L BE (S o+ ol +
- (d“+6§‘ +t§§c+y,?‘+£4u4(t))lx, (7
RI
DR =P"t{\Ls + Pty ]+ P5't5, L + t3. L + 4ua (t) Ly aﬁs ~ 3[3,37”'
— ol By WX —d”R. (8)
Table 1: All variables in the system (1)—(8) and their definition.
Variable Definition
S(t) The susceptible population, individuals who have never encountered
TB.
The individuals infected with the drug sensitive TB strain but who are
Ly(1) in a latent stage, i - e, who are neither showing symptoms nor infecting
others.
Ly (1) Individuals latently infected with MDR-TB.
L(1) Individuals latently infected with XDR-TB.
1(1) Individuals infected with the drug-sensitive TB strain who are infectious
s to others (and most likely, showing symptoms as well).
Ln(1) Those individuals who are infectious with the MDR-TB strain.
L(t) Individuals who infectious with the XDR-TB strain.
R(1) Those individuals for whom treatment was successful.
N() The total population .
N=S+Li+L,+L+L+1L,+L+R.

Also all parameters and their interpretation as follows:
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Table 2: All adapted parameters in the system (1)—(8) and their interpretation.

Parameter | Interpretation
b* birth/recruitment rate
d” per capita natural death rate
Disease dynamics
BY transmission coefficient for strain r
A proportion of newly infected individuals developing LT BI with
strain r
Y proportion of newly infected individuals progressing to active
" TB with strain r due to fast infection
er per capita rate of endogenous reactivation of L,
o, 0% proportion of exogenous reinfection of L,; due to contact with I,
¥ per capita rate of natural recovery to the latent stage L,
oY per capita rate of death due to7 B of strain r
Treatment related
1 per capita rate of treatment for L
0 per capita rate of treatment for /.. Note that #,, is the rate of
2r successful treatment of I, r € {x,m, s}
1—-o” efficiency of treatment in preventing infection with strain r
Py probability of treatment success for Ly
| po proportion of treat.ed Ly mqved tg L,, due to incomplete treat-
1 ment or lack of strict compliance in the use of drugs
Py probability of treatment success for I
| po proportion of treated Is. move.:d to L,, due to incomplete treatment
2 or lack of strict compliance in the use of drugs
Py probability of treatment success for I,
|- po proportion of treated I, moved to Lydue to incomplete treatment

or lack of strict compliance in the use of drugs

Table 3: All parameters in the system (1)—(8).

parameter value
b (N*d)a(ﬁ)a
d” (1/73.45)0‘($)°‘
B =B =B 14 ()"
AX =22 =" 0.50‘(@)“
e =g =¥ 0.0002% (7z)”
of o.osa(ﬁ)a
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W=yr =y 0.00002%(5z:)*
1 2%
1€ (s,m,x) | 18 =2% tgn:zgc:(ﬁ)a
¥ 0.25a(ye+n)a
P 0.88% (2 )”
5 0

2.1. The basic reproduction number

The basic reproduction number (R ) represents the expected average number of
new TB infections produced by a single TB active infected individual when in contact

with a completely susceptible population [50].
To derive a formula for Ry using the next generation method, we follow the

method of [50] and order the infected variables as

3= (L.\'aLmaLx;Is;Im,Ix)/
The vector representing new infections into the infected classes F is given by

o R oSk oy oo RL
2’sﬁs WY—’—Gsx’sﬁsWY

AP+ oA B S
b | AFBER +ofAZBY

(1= AS)BE(Sh + 02 50)

(1= A)B (5 + o)

(1-A9)BE (S + 07 %)

The vector V representing other flows within and out of the infected classes 3 is given

by

o goLsle

o Ro Lely o RO Lgly — o
sxFx N

Ols Py N Olsn P N
+YOL — (d* +eF +1{%) Ly,
Vb O B A B (L= PO L+ (1= PR,

a po Lyl o Ro Ll o o
_ammﬁm r;lvm - amxﬁx rlr\llx - (d +8m )Lm7
ooy o Lsl o poy oLl
+Y)?CIX+asxﬁx 2’x ]YVY +amx oy 2’x %X
)

(1= PE)igh b — BB — (A + €L,
OB e 8L — (A% 87+ 15+ 1),
al %) + &%y, — (d*+ 6%+ y¥ +t§:n)lm’

aO{ ﬁa
mmbim sm- N
ol BEEE + (1= ANBE + ol B + ot B ) + L

—(@*+ 67 + 5 + 13,

Linhy
vt
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The matrix of new infections F and the matrix of transfers between compartments
V are the Jacobian matrices obtained by differentiating F and V with respect to the
infected variables 3 and evaluating at the disease free equilibrium. They take the form:

_[(0A Vo CD
“\0B)’ T \ER)’

where,
A&BY 0 0
A= 0 A2B 0 ,
0 0 A&BY
(1-A%)B& 0 0
B = 0 (1=247)Bx 0 ,
0 0 (1-47)B
(d*+e&+1f) 0 0
C= (=14+PP)y  (d*+€3) 0 ;
0 0 (d*+€f)
-y 0 0
D= (=14 Py )es -y 0 ,
0 (_1 +P3a)tgm _YJ?
(d*+ 8%+ vy +15) 0 0
b= 0 (d*+ 8% +yy+13,) 0 ,
0 0 (d*+0F+yr+15)
- 0 0
E = 0 —g% 0 |,
0 0 —e&“

X

Then the basic reproduction number Ry for the system (1)—(8) is the spectral radius of
the next generation matrix and is given by

Ry = p(FV~') = max(Ros, Rom: Rox) 9)

where,

B (e + (1 = A7) (d” + 7))

O e U8+ 5+ ) )
oo Baer+ (1-A0ad)

" (e ) (15, + 8 +d%) +do

o BHer 4 (1-20a)

"7 (6% +d) (1% + 8% +d%) +doyE
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3. Formulation of the optimal control problem

Let us consider the state system (1)—~(8), in R® with the set of admissible control
functions:

Q= {(wr(-),u2("),u3(-),ua()) € (L7(0, 7)) |0 Saur (), w2 (), 3 (), ua (1) < 1,92 € [0, T}

The objective functional is given by [42] as follows:

T
J(ug) = /0 NS, Ly Lo, L Iy, I L, R g 1), (10)

where k=1,2,3,4, and

T
T ()i (Dsia)) = [ U0+ Inle) + 1)+ Ll0) + 3 Bucke) + 3B

+ %Bgu%(t) + %Bwﬁ(t)}du (11)
where the constants By, By, Bz and B4 are a measure of the relative cost of the inter-
ventions associated with the controls u;, uy, u3 and uy, respectively.

The main point in fraction optimal contol problems is to find the optimal controls
uy (1), where k = 1,2,3,4, which minimizes the objective function (11), subject to the
following state system:

ZDIOCSZél(SvLS7Lm7LX7IS7Im7Ix»R7ulﬁt)» (12)
ZD,O‘LS:52(S,Ls,Lm,Lx,I_hIm,Ix,R,uk,t), (13)
ZDtaLm:53(S7LS7LWI’LX’I.\"IWHIX7R’ukat)7 (14)
ZD;XLX:54(S7LS7Lm7LX7IS7Im7IX7R7uk7t)7 (15)

ZD[OCIS:55(SaLsaLWI7LX7IS7Im7IX7R7uk7t)7 (16)
ZDtaIm:56(S7LS7LWHLXaISaII’VhIJﬁRaukat)7 (17)

ZDtaIX:57(S7LS7LmaLXaI.\'aIWhI)ﬁRaukat)7 (18)

ZDtaR:ég(saLsaLWHLX7IS7Im7IX7R7u/ﬁt)a (19)

and satisfying the inital conditions:

S(O) = SO» LS(O) = L.\'O7 Lm (0) = LmOa LX(O) = Lx07
Is(o) = I, Im(o) = 1m0, Ix(o) = Ly, R(O) = Ry.

The following expression defines a modified objective function:
. T
J:/ [H(S7LS7LWI’anI.YaImaI)HR?uk?t)
0
8

- Aiéi(*&LS7LmaLx71S71m71xaR7u/ﬁt)]dta (20)
i=1
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where H(S,Ls, L, Ly, Ls, Ly, L, R, ug,t) is the following Hamiltonian

H(S7L.\'aLWHL)C;IS;Im;IX?R?uk72’l‘?t) = n(S7LS7LmaLXaI.\'aImaIX7Rauk7t)
8

+ 2'iéi(SaL_SaLmaanlsvlrrhI)CaR7M/ﬁt)' (21)

i=1
From (20) and (21), we can derive ([7]-[8]):

L
Dgi =S, iD= S, @2)
o= i 2,
iD= S iD= O,
0= 3—2, (23)
e A3
0D/ L = g—Z» 0D{" Ly = 5—27 (24)
N I
SDYI, = 3—5, SDYR = 3—;;,
and it is also required that:
Ai(b) =0, where i=1,2,3,...,8. (25)

Egs. (23) and (25) describe the necessary conditions in terms of a Hamiltonian for the
optimal control problem defined above.

THEOREM 3.1. If uj(-),u5(-), u5(-), and uj(-) are optimal controls with corre-
sponding staste S*(-), Li(-), L (-), Li(-), IJ(:), L}(-), L:(-), and R*(-) then there
exist adjoint variables Ay, Ay, A3, Af, A&, AS, A), and Ag satisfy the following:

(i) adjoint equations:

JH

= a0 (B B+ B v a) 0 X
O VR O et O P HO L B WA

N N N
_Ag(t)(l_a'm)ﬁm %I;(Z))a (26)

S (0~ 25 1)
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(—1+ Aﬁ;)(ﬁs&a&lj (@) | Buosln(t) | Blosl; (t)>

N N N
FASO €8 fs+ei(1) — 23 () P
o+ enn ()~ PR () — A ) P B
OB ) - a0 e - a9 P )
AP () 0), a7

= (10 (g™ 4 g el 4 gy gg)

200 a0 (g, e 1)
200 - Ao e D). e8)

— (330 (BB e ) (ope e 20

N

27 0pe S a50) (ope B e pe S

—Agagﬁg%@ ~ 1) +7L§‘(t)<<d°‘ + 80+ 1+ eus(1) + )

a0 e agmpe R PO )

=25 (1) tSik o2 (1)~ PS5)+ 25 (1) (o “ﬁ“ﬁ—f’ f15)). G0)

(D250 (e B a0 (g S

N mrEm N
R* t Aa aaa aaa
agoupy R | Fubutn ) Bithin; ) 1)

= g ()15, — Mg (1) a3 () + Mg (1) P5 13,

=3¢ (B (- e + g - 2 pe

a1 20ps B (a4 5+ e (1) +4)

— % (0) (P15, — o mlfv))) G31)
= (14T asespe B 4 45 0ag )

_AZ(Z)(AQ foad aRx)+Aaﬁa () )L;x o aLi;é)
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A’xa " ﬁx ( ) 'yg - agmﬂf%)

i) aﬁ Y _aoygagels
w0 (aspe B (- ampeS 1 1 -amprass
F( - 2B + (1 - AL BT a2

R
A8 e ) A (1) (f+eni—oPBI ) ). (D)

s = - (as0peater Y aswpgagoy sl
0oz iz - ampror i)
200 - ANBos Y (1 - A¢prorEl)
FA30) (0B o 4 oepe +a”)), (33)

(ii) with transversality conditions A (T) =0, i=1,...,8.
(iii) optimality conditions:
H(S™(2), Ly (1), Ly (1), L (2), 15 (2), 1, (1), I (2), R (1), A7 (1), 4. (1))
= min H(S"(t),Lg(t), L, (t), L (), I (), 1, (1), L (2), R™ (), A" (1), ui(£)),  (34)

0y <1

w; (1) = min { max {o, SILTW(IW)I_M(I))}J}, (35)
(1) = min{max{(), 8212*(15*(‘22— A3(1)) }1} (36)
() _min{max{(), 8312(/16‘(‘23— A (1)) }1} a7
(1) = min { max {o, aile (A7 (;4_ A (1) } 1}, (38)

where the stationarity condition is a =0, k=1,2,3.4.

Proof. Using the conditions (22), we can get equations (26)—(33), where the Hamil-
tonian H is given by:

H:H(SaL.\'7LmaanI.\'aIm;IxaR z’ uk)
2Bi | 2By ,By  ,Bi
=I+ 1 +I+L+u12+ o i i
+ 2 (b% — d%s — B¢ ——ﬁ,:z‘——ﬁ;"N)

LI,
(A + ofABE T — apa

N

smﬁm

S)Cﬁx
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—(d*+¢ +tf‘5+81u1(t))Ls>
S, R, L], Ll
2{ (A(X o m OCAOC o m OCAOC o o =m m_ o o —mix

+ YLy — (d* 4 €% )Ly +1{-Ls + €1uy () Ly — P{t{ Ly + 150 + &oup (1) s — Pyt5-I )
o R Ly, Lol ogalals

(AR AR aE AT 4 ot BEAC T g
— (d*+ X)Ly + Y+ 15,0 + E3u3 (1) Ly — Py t2mIm>
LI SI RI;
As - 2% ?(—S o ) o,
A (0B + (1 20 BE (T + 00 ) el
—(d*+ 65“ + 13+ 77 + eua (1))
L1, ST, RI, LI,
o mim l—la o ) SaLm
o (ot Bt = 4 (L= 2B (S + O+ o )
— (A 85 155, + esus (1) + Y, )
LI Ll LI,
+2’7< N l_lxaﬁ ( gc N +a1?1(x N >+8)<(:XLX
—<d“+6x“+r%+yf+s4u4(r>>1x)
RI
TN (Pl L+ PSS, + P15, L+ 15,0+ e (1) — 07 B2
RI, RI,
— ol — ol —d“R), (39)
where A;, i =1,2,3,...,8 are the Lagrange multipliers. It is known as a co-state or

adjoint variables.

Moreover, the transversality conditions A;(T) =0, i = 1,...,8, hold

and the optimal controls (35)—(38) can be claimed from the minimization condition
34. O

4. Numerical methods for solving FOCP

4.1. Generalized Euler method

Generalized Euler method (GEM), is a generalization of the classical Euler’s met-
hod, for more details see [33]. The headlines of this method is given as follows, let us
consider (12)-(19): Let [0,a] be the interval over which we want to find the solution
of the problem (12)—(19). The interval [0,a] will be subdivided into K subintervals
[tj;tj+1] of equal width & = & by using the nodes ¢; = jh, for j=0,1,2,...K. The
general formula for GEM when ¢ =¢; +h is

S(Ij+1) = S(l‘j) + 1_,(0};7(:_1)

ug(tj)stj),

gl (S(tj)’L-\'(tj)’Lm(tj)’Lx(tj)7lv(t,f)’Im(tj)’lx(tj)7R(tj>7
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Ls(fj+1) = LS(tj) + HTO_:_I)Q(S(tj)7LS(tj)7Lm(tj)7LX(tj)»IS(tj)7Im(tj)JX(tj)vR(tj)v
ug(tj)stj),
Lm(thrl) = Lm(tj) + mé(S(tj)7LS(tj)7Lm(tj)7LX(tj)7IS(tj)va(tj)vIX(tj)vR(tj)7
ug(tj) 1)),
Ly(tj1) = Le(tj) + ﬁ@(s(fj),Ls(’j)7Lm(fj):Lx(’j)Jv(f.f)’Im(f.f)’lx(?f)7R(’j>7
ur(tj) 1)),
L(tjy1) = Li(t)) + ﬁéi(S(tj)7Ls(tj)7Lm(’j)7LX(IJ')Js(tj)aIm(’j)alx(tj)aR(tj):
ug(tj),tj),
Lu(tjv1) = Ln(tj) + ﬁis(k‘?(%L.v(’j)7Lm(fj),Lx(’j),Is(fj%Im(fj)’lx(’j%R(’j),
ug(tj)stj),
Ix(fjJrl) = Ix(lj) + %57(S(tj),Ls(lj),Lm(tj),Lx(tj)7Is(tj)»Im(tj)alx(tj)7R(tj)7
ug(tj)stj),
R(tj+1) = R(1) + més(5(11)7Ls(fj%Lm(tj)7Lx(lj%Is(fj)Jm(fj)»lx(fj%R(lj%

ug(tj)stj),

for j =0,1,...,K —1. It is clear that if oo = 1, then the GEM [9], reduces to the
classical Euler’s method.

4.2. Shifted Chebyshev spectral method

Itis well known Chebyshev polynomials of the first kind are defined on the interval
[—1,1] and can be determined with the aid of the following recurrence formula [11].

Tir1(z) = 22Tk (2) — Ti1(2), k=1,2,3,...,

where Ty(z) =1, and Tj(z) = z. In order to use these polynomials on the interval [0, L]
we define the so called shifted Chebyshev polynomials of the first kind by introducing
the change of variable z = % — 1. Let the shifted Chebyshev polynomials Tk(% -1
be denoted by

2t

i@ =2(F -GG, k=123,

where T;(z) = 1 and Tj(z) = % — 1. The analytic form of the shifted Chebyshev
polynomials 7;(r) of degree k is given by

k+i—1!
! / (40)

k
Tk*(t) _ kigg)(_l)kﬂ'zﬂm .
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Note that 7;*(0) = (—1)* and T;7(1) = 1. The function u(z), which is a square inte-
grable function in [0,L], may be expressed in terms of shifted Chebyshev polynomials
as

u(r) = Ty (1), (41)
i=0
where the coefficients c; are given by:
2 /L
c,:—/ W(OTF()dt, ho=2, hi=1, i=0,1,.... 2)
mhi Jo

In practice, only the first (m+ 1)-terms of shifted Chebyshev polynomials are consid-
ered. Then we have

un(t) = 3 T3 (1), 43)
i=0

Do un(t)) = 3 eiD® (T(1)). (44)
i=0

Therefore, for i = 1,2,...,m,

(—1) k% (k+i—11) Dok

’ 'kz% (i—k)!kHL
- ik:%‘ﬂ (—1)iko2 ; —%?E;l;)lljélffrjlz)Litk_a' 45)
Then
D%uy (1)) = iciQi,k» (46)
i=0
where ©;; is given by
oo § i T

k=Tct] (i— k) (2k)T(K+ 1 — o)L

5. Error analysis

In this section, special attention is given to study the convergence analysis and
evaluate an upper bound of the error of the proposed formula.

THEOREM 5.1. (Chebyshev truncation theorem) [41] The error in approximating
u(t) by the sum of its first m terms is bounded by the sum of the absolute values of all
the neglected coefficients. If

unt) = YT} 1), (48)
i=0
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then

Er(m) = lun(t) —u()| < 3 &T7 (1), (49)
i=m+1

forall u(t), all m, and all t € [—1,1].

THEOREM 5.2. The error Er(m) in approximating D*u(t) and D%u,,(t) is boun-
ded by

i k—[a]
Er(m)< Y, ¢ Y, 2 Ot 1, (50)

Proof. A combination of Egs. (41), (43) and (44)

|Er(m)| = [D%up(t) — D%u(t)|
m  k—[o]

= Y a3y Y o1

i=m+1  k=[o] j=0

but [7;| <1 so, we can obtain

ET(m) < Z Ci Z Z lkt l 7
i=m+1 j=[a] j=0

and subtracting the truncated series from the infinite series, bounding each term in the
difference, and summing the bounds completes the proof of the theorem. [J

5.1. Discretizations and numerical results

Consider the systems given in Egs. (1)—(8) and (26)—(33). In order to use SCSM,
we first approximate S(z), Ly(t), Ly (t), Le(2), L(2), Ln(t), L(2), R(t), A1(2), A2(2),
As(t), Aa(t), As(r), Ae(t), A7(¢) and Ag(r) as follows:

S(r) = iam* szTl* (51)
L) = EOT (1), Lu(r) = idmm (52)
(1) = goeir,-*ox Ilt) = ém*(z), (53)

- gogm*(m R(r) = gohm*(m (54)

=Y kTH(), do= Y nT (1), (595)
=0 i=0
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Eu, , A= EV,T*

i=0

2,5 = ZWI‘TI-*(I), 2'6 - inn*(t)a
i=0 i=0

A= 2 yT (1), As= D T (1)
i=0 i=0

Now we collocate the soluation at m+ 1 — [et] points #,, (p =0,1,...,

as:

(56)

(57)

(58)

m+1—[o])

o Zizo @T;" (1p) Xito el (1p)

2 2 a;0 tktk I _ _dazaiTi*(tp)_ 3 i= i I7N

i=[o] k=[a] i=0

Stoailr(ty)
_ﬁg% ZﬁT* tp

_BazzmzoaiTi*(tP)Zi:Ogi i (tp)
X N )

m i ; t m_ iT;'* t
S Y bk =agpeZodl (pzvz,_oe (1)

i=[o] k=[ex]

Sl (tp) Xio ey (tp)

)
+ Gsaz’saﬁsa N
— o%B Yo biTy (tp) XitoeiTi (1p)
SSIEs N

B o biTy (tp) o fiTi" (1p)
smPm N

" obiT (1) X" (¢
_agc xa =077 (Pivzz Ogl 17 +Yazel

—(d¥ &)+t + E1ui (1)) ZbiTi*(tp)a

L o it qageSoal () SI AT ()

2 2 C,‘@,-JCII; = 'm Fm N

S0 Ty (1p) X fiTy" (1)

+ 0 2o B

N

o bily (1) X0 fiT7 (1)
Olq OCAOC i i i=
+ smﬁm m N

ﬁa zl OClT*(t)zfn—OfiT*(t)
N

(59)

(tp)

(60)

OC ﬂazz Ocl ()zz Ogl +%zisz* tp

N i=0
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—(d*+¢€Y) Ec, (tp) +tf;2bT (tp)
i=0 i=0

+eun(r) tlssz 1) +t§§2e,

M§

0

+ euy(t Ze, By o Ze,-T*(tp), (61)
i=0

3

S Y 4okt =AeBe itoaiT (tp) X0 &iT" (1p)
i= o] k=cr] N

S ohiT*(1p) X0 &iT (1))

o0y oo

+ oA By N

+ o akazyl:ObiT*(tp)Z?LOgiT*(tp)
SX. X N

alaz Ocl (tp)zzmzogiT*(tP)

N

Yo diT" (tp) 3o giT" (1p)

N

Egl tP +t2m2fl

+ &3u3(t) Eﬁ-T*(rp) 15 Eﬁ (62)
=0

+ amxﬁ

— o B —(d*+ef) 2 diT" (1)

N

i i i@ty = V_Yﬁ;"Z?LobiT*(’p)z?":oei (1)
=lo]k=[a

i=[o] k

+ (1 - 2 pe (Rt ) Ep e T 0

" T (1) S g el T 1 m
+ Gsoc 2170 i ( P3V2170 €; ( P)) + gsoc ZbiT*(tp)

—(@*+ 8+ 15+ Y+ e (1) Y, e T (1), (63)
i=0
i th fi®i,kt§_l =a,‘3fm[>’n‘f 2 CiT*(tp])v ;n=OfiT*(t)
i=[o] k=[a]
SioaiT" (1p) Xt fiT" (2p)
N
i iT" (tp)

+(1- 2085 (

+o? Z;H:O hiT* (tl’

)
N
+O‘s0:n 0 i PN LofiT )4‘&%201
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—(d*+ 85 + 15, + esus(t) + ) Y, LT (1), (64)
i=0

i Zl‘ g.@,ktk—lz o azzr‘nzodiT*(tP)zzr‘n:OgiT*(tﬁ)
iZiklp xx Px
i=[o] k=[a] N
o\ Ro zl Oal ( )zl Ogl ( )
+(1- 2982 ( S

zmoh T*(tp)zm()gz ( )
N

SiobiT™ (tp) Xito&iT" (tp)

N

n T (8 n T (t n
+ aZXZI—OC ( [73\72170g ( P)) +8)(Cx Zle*(tp)

—(d* + 8% 1% + V¥ + gquq(t Zg, (65)

+

+ oy

m i
2 2 hi@hkl‘ﬁil :Platlsz/b T tp +P2 tzszelT* t[7 +P3 tszﬁ
i=[a] k=[] i=0
+t2x2g, (tp) + €4u4(t Eg,‘T*(tp)

aﬁa i= OhT*(tP)zt Oel (tp)

N
_Gaﬁa Zi-nzoh,-T*(tp)Z' OflT*(tp)
mrEm N
Yo hiT™(tp) X0 &iT ™ (1p) Y-
e —d"‘gohiT (t,).  (66)
m i m oc m o m
2 2 ki®i7kt§_l = — (2le* l‘p < Zel tp +_m Zf‘
i=[a] k=[a] i=0
o m a a m
+72g,T* tp)+d%) — Zr, e (1)
i=0
aﬁa m a a m
—Eu,-T* 4 Zf,T* 1) Ev,-T* 2 iT*(1p)
Aa Boc m

—Z T ( z,, Z T (t))
_Z T lp m mez
—Z T z,, (=ADBE Zgl ) (67)
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m i k - m - ﬂaaa m()ezT (tp)
n O Zi”ofz “(tp) | Bios:
o))

_|_

XZng*(t,,JrZr, (tp)(d* + €% + 1% + £14}(¢))
o
_ZuiT*(t 2, ﬁm sm Zfl
i=0

— (tf‘s—l—eluf(t) _Pltls) EuiT*(tp)
i=0

m 2{06 Oc
_EViT*(tp ﬁx st T* tp
i=0

m
-y wiT*(tp)—‘N EeiT*(tp) - ZwiT*(tp)Sa
i=0 ' '

m (X m
- ;)xiT*(tp) Bn %sm Zfl
—zyir*op)(l—Ax“>%zgir*<rp> tlszz, (t))
i=0 i=0
(68)
< d k=1 _ o azyrl:OfiT*(tp) o azyiogiT*(tp)
i:%d k:X[:ﬂu@l kt ZuT tP ( mmﬁm N + 0y Py N
2il08&i
%) - sz (1), WE‘AE‘OT()
- ixfT*<rp><azmﬁ:; EST ) 4 g
i=0
< * Zf'; &iT (1
S (tp>(1—lx“)a,ﬁ‘xﬁf‘°T(”)), (69)
i i Otk =— (zvl Baz —o&iT (tp)+da+£ o)
i=[o] k=[o] N
T*
_Ele* tp ( O(ﬂa l OgN ( ) 83)), (70)

m i 3 . 2:11: aTH(t
I R e

—|—Zn ﬁaszbNT*(’p)
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_ )Lsaﬂsa Yitoail” (tp) _ )Lsacsaﬁsa XitohiT” (tp) - ysa)
N N

+Zw, ( (d* + 8% + 1% + e (1) + 1)
_l_laal P_Otl_laal P

( s ) S N GS ( s ) s N

oo m
MZb,-T* t,,) Zu, (tp) (tas + £2u5 (1) — PY15.)
hT*(t

+3aT ()0 “ﬁ“%(”’— ig). )

i=0

- ( 1y ikiT* (1) pa Z0 4T ) a]i,T*(tp )

+ Z T < B ALLNY) bNT )

o [ az Oal (tp) o0 az OhT (IP)
Zul ) (A Bt S0 A B =

ﬁm smsz tp ﬁmNmmi T tp +,ya)

N
—Evl (tp)tam — ZvT (tp)esuz(t Zvl Pits,
i=0
OCaOC m n TH(t
=S ) (B 3 )+ 1 -2 o)
N 5 N
hiT* (¢ biT*(t
o%(1—A%)B, %(P) o (1—A%)B; %(P)

—(d*+ 8% +15, +eus (1) + y;if))

- S ) (Piog, - ozpy Et T ) )

_ ( 14+ i kT (,) B Zio@T (tp) a]i,T*(tp )
+Zrt ﬁazz ObNT (tP>
+Zuz ﬁaz OC]lv “(tp)

aaaz OhT*(t) aaz Oal (t)
—zv, (7L R
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Yo biT" (1p) o 2imoCiT™(1p)
o O QO i ooy i
+2’X aSX X N z’x mx X N
oc az Ogl t17 < o azzm:OdiT*(tP)
" yai 2o biT*
4 (1 _A'xa) ;szfoaN (tp) ( )ﬁx 52170 v (tp)
ZiohiT"(1p)
R RAY: P
+(1-AfBos ST
+(1=AY)B o “72 OC]’V ( )+(d“+53+tg+e4uz+yf))
"o T*
—Ezl (1) (1 + vy — oepe ZR MU YY )
m i 2 el ( )
91 tk I : aka oc i=0 P
f:%dk:%ﬂ ! (- zr N
_Eu tp ﬁa z?:ofiT*(tp)
' N
=S (B op b )
i=0
_ < b _qo\pa az?LOeiT*(tP)
%WIT (tp)(l A‘.\' )ﬁs Gs N
. < st o az OflT*(tP)
szT (tp)(1 = An)Byo, N

. - s R AY- 1] azT:OgiT*(tP)
Zle (tp)(l A’x )ﬁx Gx N

itoel" (1p) Xito fiT"(tp)
+2Zl tP < Saﬁsa O;V L +Ggﬁn? O;V £

" o&iT (¢
+a§ﬁf‘7‘—°g]’v ) +d%)). (73)
In the following we will use the roots of shifted Chebyshev polynomials 7;*(¢) as suit-
able collocation points. By substituting the initial conditions and the transeverslty con-
ditions in Egs. (51)—(58), we can obtain sixteen equations as follows:

S (—1ai=So, Y, (—1)bi=Ly, Y,(—1)¢c;=Lyuo, (74)
=0 =0 i=0
N (—Didi=Lo, Y (-1)ej=1Lo, > (1) fi=1I, (75)
i=0 i=0 i=0

S (~1)gi=Lo, Y.(—1)'hi =R, (76)

i=0 i=0
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m

(—D)'ri=2a(ty) =0, Y, (—1)u; =X3(t5) =0, (77)

m
)y

i=0 i=0 i=0
m
>

ﬁ(—l)iw =2a(ty) =0, Y(=1)'wi=2As(ty) =0, i(—l)iXi = Ae(ty) =0, (78)
i(—l)"y,-zh(tf)zo, i(—l)izizz,g(tf)zo. (79)
i=0 i=0

Equations (59)—(73), together with the equations (74)—(79), give (16m + 16) of non-
linear algebraic equations where m is the degree of shifted Chebyshev polynomials,
this algebraic equations can be solved using the Newton’s iteration method for the un-
knowns ai, b,‘, Ci, d,', e, f,', 8i, /’l,‘, k,‘, i, Uiy Vi, Wi, Xi, Vi, and Zi, i=0,1,...,m.

6. Numerical experiment

The purpose of this section is to show that, SCSM designed in this paper provides
good approximations for the optimality system (1)—(8) and (26)—(33). The approximate
solutions of the proposed system are given in Figures (1-8) by using SCSM and GEM.
Also, using the initial condition (S(0),Ls(0),L,(0),L:(0),75(0),7,(0),1:(0),R(0)) =
(17760N, %N, S—ON, 1270N7 I%N, é_oN’ 1270N7 1370N) , m = 8 and the parameters in Table
3. Fig. 1, shows that S(¢) + L(¢) + Ly (¢) + Ly (¢) + L(¢) + Ln(t) + L(t) + R(z) /N is
constant in time using SCSM for the controlled case when 0 < u; < 1, where k =
1,2,3,4 compared with the uncontrolled case i.e., u; = up =u3 =us =0 with x = 1.
Regarding the obtained results in Fig. 2, the effect of the controller on this model is

135 T T T T T T T
four controls
+  without control [|

19— ————+

09} —

08 B

07 B

06 T

05 ! ! I I I I I
0 4 i

Figure 1: Plorof S(t)+ Ls(t) + Ly (1) + Ly (¢) + 15(¢) + L () + L (t) + R(¢) /N versus t in years by
using SCSM for the controlled case when 0 < uy,up,u3,uq < 1, compared with the uncontrolled
case when uy =uy =u3 =uy =0.
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reliable mainly for the two state variables I;(¢) and I,(¢). The effect of the controllers
on other variables is not quite effective. Since Fig. 2, shows the numerical simulations
of the model (1)—(8) for the controlled case using SCSM when 0 < u; < 1, compared
with the uncontrolled case when u; = uy = uz = ugs = 0. We note that the numbers 1,
and I are larger in uncontrolled case compared with the controlled case. The number of
R(t),S(t) is larger in controlled case compared with the uncontrolled case. Also, from
Table4, the value of objective functional is larger in uncontrolled case compared with
the value of objective functional in controlled case. Fig. 3, shows the control variables
uy in a time units of years by using SCSM.

Table 4: Comparisons between the obtained result by using SCSM in controlled case and un-
controlled case, i.e., when uy =uy =u3 =ug =0 and T = 4.

J(u17u2au3au4) L\(4)+1s(4)+lm(4)+lx(4)
With control 16796.1772 1196
Without control 25783 3422

Table 5: The values of objective functional by using SCSM with T = 4 and differieren values of
o.

o | J(ur,up,uz,ug) | Lg(4) 4+ L(4) + Ly(4) + L(4)
0.90 | 16796.1772 1196
0.80 14685.8392 1882
0.7 15009.0953 1968
0.6 16944.1784 2055

Table 6: Comparisons between GEM and SCSM where T = 4 and differieren values of o.

o | Methods | J(uj,uz,u3,us)
1 GEM 20938
SCSM 16796.1772
0.98 GEM 19850
SCSM 18132.8658
0.95 GEM 18277
SCSM 17940.3829

Fig. 4, shows that S(t) + Ly(t) 4 Ly (t) 4 Ly (t) 4+ Is(t) + Lu(t) + I:(t) + R(¢) /N is
constant in time using GEM for the controlled case when 0 < u; < 1. Fig. 5, shows the
control variables u; by using GEM at o = 1. Fig. 6, shows the numerical simulations
of the model (1)—(8) and (26)—(33) for the controlled case using GEM at different values
of a. Fig. (6-8), show that, how the fractional model is a generalization of the integer
order model. In Table 5, the numerical value of sum the state variables Ly, I, I,
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and I, at T =4 and the objective functional, obtained by SCSM with different values
of «. In Table 6, the values of the objective functional which are obtained by SCSM
is compared with the results which obtained by GEM . From the numerical solutions,
it is found that, the results which obtained by SCSM is better than GEM. All results
were obtained by using MATLAB (R2013a). on a computer machine with intel(R) core
i3—-3110M @ 2.40GHz and 4GB RAM.

4

%10
P 6000
— — —four controls = — —four controls
1.5 without contral |] 4000 without contral ||
7] .
2000
0
2 3 4
t t
15000 8000
e e 6000 =
10000 + -
k= _% 4000
5000 = == four controls 2000 — — —four controls
without control without control
0 . ! i} : "
0 2 3 4 2 3 4
t t
4000 4000 = = —four controls
3000 ———four contrals 3000 BtharkeRty
without control
_w 2000 _E 2000
‘h-.__ -
1000 1000 \‘-\~__-__-
0 i] 3
0 2 3 4 a 2 3 4
t t
2000 = — = four contrals 15000
without control
1500 7
10000
_> 1000 x
500 e e s oo 5000 = = =four controls
without control
0 . 0 n n
0 2 3 4 0 2 3 4

t

Figure 2: The numerical simulations of the model (1)—(8) for the controlled case when 0 <
uy, up,uz, Uy < 1, compared with the uncontrolled case when u; = uy = uz = ug = 0 by using
SCSM .
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Figure 3: The optimal control uj,u3,u3,u} in a time units of years by using SCSM.
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Figure 4: Plot of S(t) + Ls(t) + Ly (t) + Ly (¢) + I5(¢) 4—1,,1 (t) + L(t) + R(¢) /N versus t in years

by GEM.
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Figure 5: The optimal control uy,u5,u3,u}; in a time units of years by using GEM.



26 N. SWEILAM AND S. AL-MEKHLAFI
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Figure 6: The numerical simulations for the controlled case using GEM with different c.
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Figure 7: The numerical simulations for the controlled case with different values of o using
SCSM.
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mamum gpha=1
----- alpha=0.98
mumem glnhg=0.95

S 05 Sos kY \
\\.
\‘.
i,
D D . 1 1
0 1 0 1 2 3 4
t t
1 1 -
) *w,
Y ! \\\
S 05 < 05 N
0 0
0 1 2 3 4 0 1 2 3 4

Figure 8: The optimal control uj,u},u},u} in a time units of years by using SCSM.

7. Conclusions

In this paper, numerical solutions of the optimal control problem for multi-strain
TB model are presented. Modified parameters are introduced to account for the frac-
tional order model. Four controls functions u;, uy, u3, and uy, are introduced, these
controls are given to reduce the number of active infected and latent TB individuals of
first strain. The controls uy, uz,and u4, represents the effort that prevents the failure
of treatment in active TB infectious individuals I, I,,, and I, e.g., supervising the
patients, helping them to take the TB medications regularly and to complete the TB
treatment, while the control u; governs the latent individuals L under treatment with
anti-TB drugs. Necessary and sufficient conditions that guarantee the existence and
the uniqueness of the solution of the resulting systems are given. The optimality sys-
tem is approximated by shifted Chebyshev polynomials which transformed the model
problem to a system of algebraic equations with unknown coefficients. It is solved nu-
merically using Newton’s iteration method. Some figures are given to demonstrate how
the fractional model is a generalization of the integer order model. Comparative studies
are implemented between SCSM and GEM, It can be concluded from the numerical
results presented in this paper that, the proposed method is better than GEM. Moreover,
It can be concluded that fractional models have the potential to describe more complex
dynamics than the integer models and can include easily the memory effect present in
many real world phenomena.
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