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Abstract. Recently, the dynamical behaviors of a fractional order three species food chain model

was studied by Alidousti and Ghahfarokhi (Nonlinear Dynamics, doi: org/10.1007/s11071-018-

4663-6, 2018). They proved both the local and global asymptotic stability of all equilibrium

points except the interior one. This work extends their work and gives proof of both the local and

global stability analysis of the interior equilibrium point. Numerical examples are also provided

to substantiate the analytical findings.

1. Introduction

Fractional calculus is a generalization of classical differential and integral cal-

culus of integer order to arbitrary order. The notion of fractional derivative was first

introduced by Leibnitz in 1695 and subsequently developed by Liouville, Heaviside,

Caputo, Riemann. along with many others [1]. Initially, fractional order derivatives

and fractional order differential equations were treated as a topic of interest of pure

mathematicians [2], but later on it found its own way of application in different fields

of science and engineering mainly for two reasons. First, fractional order derivatives

not only depends on the local conditions but also on the previous history of the func-

tion [3]. Therefore, fractional derivatives became an efficient tool where consideration

of memory or hereditary properties of the function is essential to represent the system,

e.g., in case of biological systems. Secondly, fractional derivatives has an additional de-

gree of freedom over its integer order counterpart due to the additional parameter that

represents its order, and therefore more suitable for those systems having higher order

dynamics and complex nonlinear phenomena [4, 5]. In the last two decades, fractional

order calculus has been extensively used in several branches of science & engineering

and the number is huge. For brevity, we here mention only some review papers and

books [6, 7, 8, 9, 10]. Fractional order models have also been used to understand the

dynamics of interacting populations [11, 12, 13, 14, 15, 16, 17, 18].
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In recent past, Aziz-Alaoui [19] studied the following three-dimension coupled

nonlinear autonomous system of integer order differential equations to understand the

underlying dynamics of food chain model:

dX

dT
= a0X −b0X2 −

v0XY

d0 + X
, X(0) > 0,

dY

dT
= −a1Y +

v1XY

d1 + X
−

v2Y Z

d2 +Y
, Y (0) > 0, (1)

dZ

dT
= c3Z2 −

v3Z2

d3 +Y
, Z(0) > 0,

where X ,Y,Z are, respectively, the densities of prey, intermediate predator and top

predator at any instant of time T . All parameters are non-zero positive. For description

of the model and system parameters, readers are referred to [19].

With the transformations

X =
a0

b0

x, Y =
a2

0

b0v0

y, Z =
a3

0

b0v0v2

z, T =
t

a0

and

a =
b0d0

a0

, b =
a1

a0

, c =
v1

a0

, d =
d2v0b0

a2
0

, p =
c3a2

0

b0v0v2

, q =
v3

v2

, r =
d3v0b0

a2
0

,

the system (1) takes the simplified form

dx

dt
= x(1− x)−

xy

x + a
, x(0) = x0 > 0,

dy

dt
=

cxy

x + a
−by−

yz

y + d
, y(0) = y0 > 0, (2)

dz

dt
= pz2 −

qz2

y + r
, z(0) = z0 > 0.

This system admits three biologically feasible boundary equilibrium points and one

interior equilibrium point. Local and global stability criteria of these boundary equi-

librium points are given in [19] except the interior equilibrium point. It is numeri-

cally shown there that the system exhibits chaos through period doubling bifurcation.

Considering the fractional derivative in caputo sense, Alidousti and Ghahfarokhi [20]

extended the work of Aziz-Alaoui [19] and analyzed the following fractional order tri-

trophic model:

dmX

dT m
= a0X −b0X2 −

v0XY

d0 + X
, X(0) > 0,

dmY

dT m
= −a1Y +

v1XY

d1 + X
−

v2YZ

d2 +Y
, Y (0) > 0, (3)

dmZ

dT m
= c3Z2 −

v3Z2

d3 +Y
, Z(0) > 0,
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where m∈ (0,1) is the order of the derivative. With the same transformations as before,

the system (3) takes the following simplified form:

c
0Dm

t x = x(1− x)−
xy

x + a
, x(0) > 0,

c
0Dm

t y =
cxy

x + a
−by−

yz

y + d
, y(0) > 0, (4)

c
0Dm

t z = pz2 −
qz2

y + r
, z(0) > 0,

where c
0Dm

t is the Caputo fractional derivative with fractional order m (0 < m 6 1) .

They have shown that the solutions of system (4) are positively invariant and uniformly

bounded in R3
+ under some restrictions. Local and global stability of three boundary

equilibrium points of system (4) were also proved. Stability analysis of the coexistence

(or interior) equilibrium point, however, was omitted as in the case of integer order

system. Their simulation results using realistic parameter values showed that the frac-

tional order system (3) exhibits rich dynamics, like chaos, when the value of m is close

to 1 (m = 0.97) , but exhibits regular oscillations (for m = 0.9) , or even stable behav-

ior (for m = 0.88) as the value of m becomes smaller. We here extend the works of

Alidousti and Ghahfarokhi [20] and Aziz-Alaoui [19] by proving the local and global

stability criteria of the interior equilibrium point for both the integer and fractional order

systems. Simulation results are also given to validate the analytical results.

2. Mathematical results

Alidousti and Ghahfarokhi [20] proved the following results regarding positivity

and boundedness of the solutions of system (4).

THEOREM 1. If

c +
c

4b
+ r <

q

p
(5)

and A be the set defined by

A =

{

(x,y,z) ∈ R3
+ : 0 6 x 6 1,0 6 x +

y

c
6 1 +

1

4b
,0 6 x +

y

c
+ αz 6 1 +

1

4b
+

M

b

}

,

where

α =
1

b2(c + c
4b

+ r)
, M =

1

4(q− (c + c
4b

+ r)p)
,

then

(i) A is positively invariant,

(ii) all non negative solutions of system (4) initiating in R3
+ are uniformly bounded in

time and they enter the attracting set A.
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2.1. Existence and stability of equilibria

The system (4) has four biologically feasible equilibrium points. The trivial equilibrium

E0 = (0,0,0) and the axial equilibrium E1 = (1,0,0) always exist. The planner equi-

librium point E2 = (θ ,(1−θ )(a + θ ),0) exists if θ < 1, where θ = ab
c−b

; or in other

word c > b(1+a) . There exists a unique interior equilibrium point E∗ = (x∗,y∗,z∗) of

the system (4), where the equilibrium population densities are given by

x∗ =
(1−a)

2
+

√

(

1 + a

2

)2

− y∗, y∗ =
q

p
− r, z∗ = (−b +

cx∗

a + x∗
)(y∗ + d). (6)

The positivity condition of E∗ are

a0 > max{b0d0, 2

√

b0v0

(

v3

c3

−d3

)

−b0d0,
b0d0a1

(v1 −a1)
+

v0

d0v1

(

v3

c3

−d3

)

(v1 −a1)},

where v3 > d3c3 and v1 > a1 . Local and global stability results for the equilibrium

points E0,E1 and E2 are given in [20]. In the following, we give local and global

stability results of E∗ only.

3. Main results

For local stability of the interior equilibrium E∗ , we compute the Jacobian matrix of

system (4) at E∗ = (x∗,y∗,z∗) as

J(E∗) =









x∗

a+x∗
(1−a−2x∗) −x∗

a+x∗
0

ac(1−x∗)
a+x∗

y∗z∗

(y∗+d)2
−y∗

y∗+d

0
p(z∗)2

y∗+r
0









. (7)

The eigenvalues are the roots of the cubic equation

F(ξ ) = 0, (8)

where F(ξ ) = ξ 3 + A1ξ 2 + A2ξ + A3 ,

A1 = x∗

a+x∗
(2x∗−a−1)− y∗z∗

(y∗+d)2 ,

A2 = py∗(z∗)2

(y∗+r)(y∗+d) + x∗y∗z∗

(a+x∗)(y∗+d)2 (1−a−2x∗)+ acx∗(1−x∗)
(a+x∗)2 ,

A3 = x∗

a+x∗
(2x∗−a−1) py∗(z∗)2

(y∗+r)(y∗+d)
.

The equilibrium E∗ is said to be locally asymptotically stable if all eigenvalues of (8)

satisfy | arg(ξi) |>
mπ
2

,∀m ∈ (0,1] , i = 1,2,3. One can then determine the stability

of E∗ by noting the signs of the coefficients Ai and discriminant D(F) of the cubic
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polynomial F(ξ ) [11, 21]. The discriminant D(F) of the cubic polynomial F(ξ ) is

D(F) = −

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 A1 A2 A3 0

0 1 A1 A2 A3

3 2A1 A2 0 0

0 3 2A1 A2 0

0 0 3 2A1 A2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 18A1A2A3 +(A1A2)
2 −4A3A3

1 −4A3
2 −27A2

3.

Then the following theorem regarding local asymptotic stability of E∗ of the system

(4) is true [11, 21, 22].

THEOREM 2. (i) If D(F) > 0 , A1 > 0 , A3 > 0 and A1A2 −A3 > 0 then the

interior equilibrium E∗ is locally asymptotically stable for all m ∈ (0,1] .

(ii) If D(F) < 0 , A1 > 0 , A2 > 0 , A3 > 0 and 0 < m <
2
3

then the interior equilib-

rium E∗ is locally asymptotically stable.

(iii) If D(F) < 0 , A1 < 0 , A2 < 0 and m >
2
3

then the interior equilibrium E∗ is

unstable.

(iv) If D(F) < 0 , A1 > 0 , A2 > 0 , A1A2 = A3 and 0 < m < 1 then the interior

equilibrium E∗ is locally asymptotically stable.

To prove the global stability of E∗ , we use the following Lemma [16] .

LEMMA 1. Let x(t) ∈ ℜ+ be a continuous and derivable function. Then for any

time instant t > t0

c
t0

Dm
t

[

x(t)− x∗− x∗ln
x(t)

x∗

]

6

(

1−
x∗

x(t)

)

c
t0

Dm
t x(t),x∗ ∈ ℜ+,∀m ∈ (0,1].

THEOREM 3. The interior equilibrium E∗ = (x∗,y∗,z∗) of system (4) is globally

asymptotically stable for any m ∈ (0,1] if

(i) y∗

a(a+x∗) −1 < 0,

(ii) a+x∗

ac

(

z∗

d(d+y∗)
− 1

2(c+ c
4b +d)

)

+ q
2brα < 0,

(iii) q
brα − a+x∗

ac(c+ c
4b +d) < 0,

where

α =
1

b2(c + c
4b

+ r)
> 0.
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Proof. Let us consider the Lyapunov function

V (x,y,z) =

(

x−x∗−x∗ln
x

x∗

)

+
a + x∗

ac

(

y−y∗−y∗ln
y

y∗

)

+(y∗+r)

(

z−z∗−z∗ln
z

z∗

)

.

It is easy to see that V = 0 only at (x,y,z) = (x∗,y∗,z∗) and V > 0 whenever (x,y,z) 6=
(x∗,y∗,z∗) . Considering the m− th order fractional derivative of V (x,y,z) along the

solutions of (4), we have

c
0Dm

t V (x,y,z) =c
0Dm

t

(

x− x∗− x∗ln
x

x∗

)

+
a + x∗

ac
c
0Dm

t

(

y− y∗− y∗ln
y

y∗

)

+(y∗+ r)c
0Dm

t

(

z− z∗− z∗ln
z

z∗

)

.

(9)

Using Lemma 1, we have

c
0Dm

t V (x,y,z) 6
(x− x∗)

x
c
0Dm

t x(t)+
a + x∗

ac

(y− y∗)

y
c
0Dm

t y(t)+ (y∗+ r)
(z− z∗)

z
c
0Dm

t z(t).

Following [15, 18], one can easily prove

c
0Dm

t V (x,y,z) 6

[

y∗

a(a + x∗)
−1

]

(x− x∗)2 +

[

a + x∗

ac

(

z∗

d(d + y∗)
−

1

2(c + c
4b

+ d)

)

+
q

2brα

]

(y− y∗)2 +
1

2

[

q

brα
−

a + x∗

ac(c + c
4b

+ d)

]

(z− z∗)2

60,∀(x,y,z) ∈ ℜ3
+

if the following conditions hold:

y∗

a(a + x∗)
−1 < 0,

a + x∗

ac

(

z∗

d(d + y∗)
−

1

2(c + c
4b

+ d)

)

+
q

2brα
< 0,

q

brα
−

a + x∗

ac(c + c
4b

+ d)
< 0.

Here c
0Dm

t V (x,y,z) = 0 implies that (x,y,z) = (x∗,y∗,z∗) . Therefore, the only invariant

set on which c
0Dm

t V (x,y,z) = 0 is the singleton set {E∗} . Then, using Lemma 4.6 in

[17], it follows that the interior equilibrium E∗ is global asymptotically stable for any

m ∈ (0,1] if conditions of Theorem 3 are satisfied. Hence the theorem is proven. �

REMARK 1. This global stability result is independent of fractional order m and

it is also true for integer order (m = 1) .
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4. Numerical simulations

In this section, we perform extensive numerical computations of the fractional

order system (3) for different fractional values of m (0 < m < 1) and also for m = 1.

We use Adams-type predictor corrector method (PECE) for the numerical solution of

system (3). It is an effective method to give numerical solutions of both linear and

nonlinear FODE [23, 24]. We first replace our system (3) by the following equivalent

fractional integral equations:

X(T ) = X(0)+ D−m
T [a0X −b0X2 −

v0XY

d0 + X
],

Y (T ) = Y (0)+ D−m
T [−a1Y +

v1XY

d1 + X
−

v2YZ

d2 +Y
], (10)

Z(T ) = Z(0)+ D−m
T [c3Z2 −

v3Z2

d3 +Y
],

and then apply the PECE (Predict, Evaluate, Correct, Evaluate) method.

Several examples are presented to illustrate the analytical results obtained in the

previous section. To explore the effect of fractional order on the system dynamics, we

varied m in its range 0 < m < 1. We also plotted the solutions for m = 1, whenever

necessary, to compare the solutions of fractional order system with that of integer order.

It is to be mentioned that we first rescale all conditions and then verify different stability

conditions of the system (3).

EXAMPLE 1. We considered the parameter values as v0 = 1.0, d0 = d1 = d2 =
10.0, a1 = 1.0, v1 = 2.0, v2 = 0.405, v3 = 1.0, c3 = 0.038, d3 = 20.0 and initial point

X(0) = 1.2,Y (0) = 1.2,Z(0) = 1.2 from Aziz-Alaoui [19] except b0 = 0.075. Step

size for all simulations is considered as 0.05. This parameter set satisfies the positiv-

ity conditions of E∗ , viz., v3 > d3c3 , v1 > a1 and a0 > max{0.7500,0.6265,1.0658} .

Thus we choose a0 = 1.2 and compute D(F) = 0.00018925 > 0, A1 = 0.6007 > 0,

A3 = 0.0016 > 0, A1A2 −A3 = 0.0465 > 0. Therefore, following Theorem 2 (i), the

interior equilibrium E∗ = (12.2081,6.3158,4.0056) of (3) is locally asymptotically

stable for 0 < m 6 1. Fig. 1 represents the behavior of solutions of FDE system (3)

for different values of m , depicting the stability of interior equilibrium point E∗ . It

is noticeable that solutions reach to equilibrium value more slowly as the value of m

becomes smaller.

EXAMPLE 2. If we consider b0 = 0.06, as in [19], leaving other parameter values

unchanged, then E∗ exists if a0 > max{0.6000,0.6312,0.9158} . Selecting a0 = 0.95,

we observe that the conditions of Theorem 2 (ii) are satisfied with D(F) = −0.0100 <

0, A1 = 0.4988 > 0, A2 = 0.1611 > 0,A3 = 0.00028 > 0. Therefore, the interior equi-

librium point E∗ = (10.7638,6.3158,1.4819) of (3) is locally asymptotically stable for

0 < m <
2
3

as shown in Fig. 2.
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Figure 1: Asymptotically stable solutions of X , Y and Z populations with different

fractional orders 0 < m < 1 and integer order m = 1. Here b0 = 0.075, v0 = 1.0,

d0 = d1 = d2 = 10.0, a1 = 1.0, v1 = 2.0, v2 = 0.405, v3 = 1.0, c3 = 0.038, d3 = 20.0

and a0 = 1.2.
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Figure 2: Asymptotically stable solutions of X , Y and Z populations with different

fractional orders 0 < m <
2
3

. Parameters are as in Example 1 except b0 = 0.06 and

a0 = 0.95.

EXAMPLE 3. If we consider v1 = 10,v2 = 2.5, keeping other parameter values
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unchanged as in Example 1, then E∗ exists if a0 > max{0.7500,0.6265,0.6518} . We

then choose a0 = 1.5 and verify that all the conditions of Theorem 2 (iii) are satisfied

with D(F) = −7.4129 < 0, A1 = −0.6171 < 0, A2 = −0.0335 < 0. Therefore, the

interior equilibrium point E∗ = (16.8655,6.3158,34.4443) of (3) is unstable for m >
2
3

(Fig. 3).
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Figure 3: Unstable time evolution of X population (Fig. 3a) and corresponding phase

plane (Fig. 3b). Here m = 0.75(> 2
3
) , v1 = 10,v2 = 2.5,a0 = 1.5 and other parameters

are as in Fig. 1 .

EXAMPLE 4. To demonstrate the global stability of the interior equilibrium point

E∗ , we consider the parameter values b0 = 0.15, v0 = 1.0, d0 = d1 = d2 = 10.0, a1 =
1.0, v1 = 2.0, v2 = 2.5, v3 = 1.0, c3 = 0.038, d3 = 20.0 and different initial points

(1.2,1.2,1.2) , (10.1,30.1,3) , (30,10,5) , (25,5,1) , (22,5,4) , (18,15,8) , (12,20,2) ,

(5,30,6) . In this case, E∗ exists if a0 > max{1.5000,0.4467,1.8158} and so we con-

sider a0 = 2.0. With these parameter values, we verify that all conditions of Theorem

3 are satisfied as
y∗

a(a+x∗) − 1 = −0.8029 < 0, a+x∗

ac

(

z∗

d(d+y∗) −
1

2(c+ c
4b

+d)

)

+ q
2brα =

−0.2804 < 0,
q

brα − a+x∗

ac(c+ c
4b +d)

= −0.9242 < 0, where α = 1
b2(c+ c

4b +r)
= 2.1333 > 0.

Fig. 4 demonstrates that solutions starting from different initial values converge to the

equilibrium point E∗ = (11.3623,6.3158,0.4162) of (3) for different fractional orders,

m = 0.65,0.75,0.85, and also for the integer order, m = 1, depicting the global stability

of the interior equilibrium point for fractional order as well as integer order.
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Figure 4: Trajectories with different initial values converge to the interior equilibrium

point E∗ for different values of m , indicating global stability of the equilibrium E∗

when conditions of Theorem 3 are satisfied. All parameters are as in Fig. 1 except

a0 = 2.0, b0 = 0.15 and v2 = 2.5. Initial values are indicated with stars and equilibrium

point is denoted by red circle.

EXAMPLE 5. Here we consider the exact parameter set and initial value as in Ali-

dousti and Ghahfarokhi [20] and reproduce their bifurcation diagrams (Figs. 5a and

5b) with respect to the same growth rate parameter of prey (here it is a0 ) in the same

range [1.6,2.1] for the orders m = 1 and m = 0.97. As shown in [19, 20], the system

(3) exhibits complex chaotic dynamics through period-doubling bifurcation. The first

period-doubling bifurcation occurs at a0 ≈ 1.66 for the integer order m = 1.0 (Fig.
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5a) and it occurs (Fig. 5b) at a0 ≈ 1.69 for the fractional order m = 0.97 [20]. If we

consider our global parameter set of Example 4 with the same initial values as in [20]

and draw similar bifurcations (Figs. 5c and 5d) then no bifurcation and complex dy-

namics is observed because our equilibrium point is globally stable for both the integer

and fractional orders.

Figure 5: Bifurcation diagrams of X population of system (3) as shown in [19, 20] in

the range [1.6,2.1] with a0 as the bifurcation parameter. System becomes unstable for

integer order m = 1.0 at a0 ≈ 1.66 (Fig. 5a)) and then becomes chaotic for higher value

of a0 . Similar dynamics is also observed with first bifurcation at a0 ≈ 1.69 (Fig. 5b)

for fractional order m = 0.97. All parameters are as in Example 2. Similar bifurcation

diagrams (Figs. 5c, 5d) with the global parameter set of Example 4 show that there is

no bifurcation with respect to the parameter a0 , indicating stability of the system.
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5. Summary

In this paper, we extended the works of Alidousti and Ghahfarokhi [20] on fractional-

order three-species food chain model and Aziz-Alaoui [19] on corresponding integer

order model by giving proof of local and global stability of the interior equilibrium

point. For local stability we used Routh-Hurwitz criterion for fractional order differen-

tial equations. We defined suitable Lyapunov function to prove that the interior equilib-

rium is globally asymptotically stable if the system parameters satisfy some conditions.

In such a case, the system does not show any complicated dynamics like chaos as shown

in the earlier studies [19, 20], indicating its global stability. This is more reinforced by

the fact that solutions initiating from biologically feasible arbitrary initial points con-

verge to the interior equilibrium point.
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