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Abstract. Mathematical model introduced by Black and Scholes express financial derivatives
more significantly. This model with fractional derivatives resulting in fractional Black-Scholes
(B-S) equation express financial problems in a better way. In this paper, we introduce the frac-
tional reduced differential transform method (FRDTM) to solve the time-space fractional Black-
Scholes equation executing European options. This method is a modified version of the original
differential transform method (DTM). This method proves to be valid for solving time-space
Black-Scholes equation as it reduces the computational work to a greater extent. Moreover, this
method helps in finding the solution without linearization or discretization. The efficiency of the
method is tested by solving certain examples. The proposed mathematical representation can
be useful to understand and solve time-space fractional differential equations arising in financial
mathematics and other related fields.

1. Introduction

Option pricing has attained a lot of interest as it plays a central part in financial
investments. Because of its growing importance in financial industry, the problem has
become both theoretical and practical in its nature. In this connection, Black-Scholes
(B-S) equation has fascinated considerable attention from researchers being an impor-
tant and leading mathematical equation in financial mathematics. This equation is the
fundamental equation for pricing options. The B-S equation has lead to B-S model ob-
tained under certain assumptions [ 1]. To weaken these assumptions and to make the B-S
model more practical, various methods were employed from time to time to obtain the
modified Black-Scholes model that works closer to the actual financial market [2, 3].
The most notable ones are fractional Black-Scholes model [4, 5, 6, 7, 8, 9], stochastic
volatility models [10], jump (Levy-stable) processes [11], Black-Scholes model with
transaction costs [12], intrinsic parallel difference methods [13], universal difference
method [14].

In past few decades, fractional calculus and fractional differential equations have
seen remarkable developments. Various phenomena existing in the field of science, en-
gineering, management and finance are well defined by fractional differential equations
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[17]. Differential equations involving fractional derivatives model a number of systems
mainly in the fields of heat conduction, visco-elasticity, acoustics, diffusion equation,
electro-magnetic waves and material science [18, 19]. In financial mathematics, frac-
tional B-S models are studied widely and extensive progress has been made in recent
years to examine these models as the stock prices exhibit stochastic fractional differen-
tial equations. The time fractional Black-Scholes equation for European options was
first studied by Wyss [5]. Cartea and Del-Castilo-Negrete derived various space frac-
tional B-S equations to price exotic options with jumps [6]. Sunil er al. obtained
the analytical solution of time fractional Black-Scholes equation governing European
options by extending the application of homotopy analysis method and homotopy per-
turbation method [15]. Jumarie used the fractional Taylor formula to solve time-space
fractional B-S equation and derived the optimal fractional Mertons’s portfolio [8]. Yang
Xiaozhong et al. applied universal difference method to arrive at the solution of space
time fractional Black-Scholes equation [14]. Yue Li ef al. introduced the class of
intrinsic parallel difference methods to find the solution of space-time fractional Black-
Scholes equation [13]. Akrami et al. applied the reconstruction of variational iteration
method to time fractional Black-Scholes equation for European options. The analytical
solutions of time fractional Black-Scholes option pricing equations were derived in the
form of Mittag-Leffler functions [20]. Gandheri and Ranjbar obtained the series solu-
tion of time fractional B-S equation through extension of the decomposition method
[21]. Kumar et al. obtained the analytical solution of fractional B-S equation by cou-
pling the homotopy perturbation and Laplace transform method [22]. The fractional
differential transform method (FDTM) and fractional modified differential transform
method (MFDTM) were applied by Kanth and Aruna to derive the solution of time
fractional B-S equation [23]. The fractional reduced differential transform method has
been applied to solve space-time fractional order heat and wave equations [16].

The use of differential transform method (DTM) was pioneered by Zhou in elec-
trical circuit analysis [24]. Since then DTM has been widely used by researchers and
its applications have been extended to obtain the solution of linear and non-linear dif-
ferential equations. DTM has been successfully used in various fields like linear and
non linear Schrodinger equations [25], partial differential equations [26], space-time
heat and wave equations [16], one dimensional Volterra integral equations and integro-
differential equations [27] etc. Despite many advantages of DTM like it doesn’t require
discretization or linearization, some level of difficulty is still met while handling non
linear equations or differential equations having variable co-efficients. This provides
the room to modify the DTM in many forms by various researchers [28, 29].

In this work, we extend the application of fractional reduced differential trans-
form method to obtain the analytical and approximate solution of time-space fractional
Black-Scholes equation governing European options. The rest of the paper is outlined
as follows: The basic definitions, mathematical preliminaries and main notations of
fractional calculus are inclined in section 2. A brief investigation of fractional reduced
differential transform method (FRDTM) is given in section 3. In section 4, FRDTM is
employed to solve some time space fractional models governing European options. The
results and discussion are presented in section 5. Moreover, the graphical presentation
for interpretation of results is given in this section. Finally, the concluding remarks are
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presented in section 6.

2. Fractional calculus: definitions, notations and preliminaries

This section presents a brief introduction of fractional calculus with respect to
its definitions, notations and preliminaries [30, 31, 32]. The important definitions of
Riemann Liouville and Caputo fractional order integrals and derivatives used in this
work are also given. The gamma function of f(¢) is given as:

T(s) = /0 T e dr, R()eN, (1)
with ,
21=T(z+1) (F(%)) =
Suppose
fl) =2,
Df(z) = —d’;(;) =k,
d*f(z) - kU e
2 k=2 _ k-2
D f(z) = e =k(k—1)7" "= (k—Z)!Z )
In general
Dmf(Z) _ d f(Z) . k! Zkfm.

dzm  (k—m)!

This can be expressed in gamma function as:

p df(z) _ Tlk+1) ;4
DAG@) == = (k—a+1)Zk ’

where D f(z) is the fractional derivative of f(z) of order o, a€R.

DEFINITION 1. The fractional integral operator J f(z) of a function feUy, n >
—1 in Riemann-Liouville sense is defined as [32, 33]:

! /Z(Z—t)a_lf(t)dt, a>0,z>0. )

JAF@) = oo

DEFINITION 2. The Riemann-Liouville definition of fractional differential oper-
ator DY f(z) of order o¢ > 0 is given as [32, 33]:

L ""’ Yz—r)mmol g —l<oa<meN
w Ja(z—1) (t)dt, m m } 3

Daf(z):{ (;—Z)mf(Z), a=meN
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DEFINITION 3. The Caputo definition of fractional order derivative D (o > 0)
of f(z) is given as [34]:

gy Ja @~ tym=e ) (1)t
Cpgf(z): —1<a<meN , 4)

(4)" f(2), a=meN

where a is the initial value of function f and o defines the order of the derivative.

DEFINITION 4. The Caputo definition of time fractional derivative of order o > 0
is given as [16]:

m—o—1) 9" f(x,z,E)
9% f(x,2,1) roa Jo (¢ = &) N LSl g,

CD,O‘f(x»y»ZJ)ZT: m—l<oa<m

" f(xyz.t)

S a=méeN.

&)

DEFINITION 5. The space fractional derivative of order 3 > 0 in Caputo’s sense
is given as [16]:

D ) m—B—1)9"f(§ vz,
9P t Wfo(l—é)( P U%d;

C Ef(x,y,z,t):%_ W
N B=meN.

(6)

REMARK 1. The Riemann-Liouville fractional differential operator and Caputo
fractional differential operator for oo € R, n— 1 < a < n are related as:

n—1 o

CD%t" = D%" — -
a mg’o 'm+1-o)

7™(0).

DEFINITION 6. The generalization of exponential function e* is given as [35]:

o 2P
Eq(z) = ), =———. o >0, aeR, zeC. (7
«(d go Flap+1)

Ey(z) is known as the Mittag-Leffler function in one parameter.

The Mittag-Leffler function in two parameter type is given as [36]:

=

Z1"0619+13)

p=0

(>0, B>0). (3
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3. Fractional reduced differential transform method

Let f(x,t) be an analytic and continuously differentiable function with respect to
time and space, then the Taylor series expansion of f(x,7) with respect to t = g is
given by [16]:

— 1
0= ———— (D" f(x,1)]1=s (t —10)™". 9
The fractional reduced differential transform F*(x) of f(x,7) at t =tg is given as:

1

m[@?)hﬂxﬁ]r:tm (10)

F(x) =
where 0 < o < 1 and DY represents the fractional differential operator with respect

to time of order . The fractional reduced differential inverse transform of F,*(x) is
defined as [16]:

ZFh )(t —10)*". (11)

Substituting equation (10) in Eq. (11), we get:
i ) SDF) ) (12)
In real application, the function f(x,7) can be approximated by a finite series:
Z FX(x)(r —10)*", (13)

where m denotes the order of the approximation. Therefore, the exact solution can be
obtained as follows:

fp) = lim £ (x,1) = ZFh Yt —10)*". (14)

In above Eq. (14), if we put o = 1, the fractional reduced differential transform
method converts to regular differential transform method [24].

From above definitions, some basic properties and fundamental operations of FRDTM
are listed below [37, 38]:

THEOREM 1. If v(X,t) = u(X,t) +w(X,1), then V*(X) =UX(X) + WX*(X).

THEOREM 2. If v(X,t) = Au(X,t), then V*(X) = AUX(X).

IUZ (X)

X

THEOREM 3. If v(X,1) = 204 then v (X) =
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THEOREM 4. If v(X,t) = Dgu(X,t), then V) (X) = %Uﬂl(m.

THEOREM 5. If v(X,t) = xlllxlzzx?tm, then V¥(X) = xlllxlzle;S(ah —m) where

1 if oh=m
5(0"’_’"):{0 if ah;ém}

THEOREM 6. If v(X,1) = Dp®u(X 1), then V*(X) = NohtNatl) o (X).

T(aht1)  “h+N

THEOREM 7. If v(X,1) = (25 )u(X,1), then V&(X) = (25)U%(X).

4. Time-space fractional Black-Scholes equations

In this section the proposed method is applied on some time-space fractional
Black-Scholes models governing European options.

MODEL 4.1. Consider the following time-space fractional Black-Scholes equa-
tion for European options given as:

0 1 Br\\ 0 1 Bry oP
7 _ _oP Ltadl I _oP Ldad - _
37 v(x,T) (r+20 cos( > >>8xv(x,1)+26 cos( > >8+x/3 v(x,T) rv(x, T),
(15)
subject to the initial condition:
v(x,0) =¢"—1, (16)

where 0 <o <1,0< <2, % is the left fractional derivative in Riemann-Liouville
+

sense, v(x,T) represents the option price or option premium at asset price x and at time
T, o represents the volatility, r represents the risk free interest rate.

When o« — 1 and 3 — 2, equation (15) coincides with the regular Black-Scholes
equation:

adv  d*v av 2r
Equation (15) can be written as:
O ) = (5 0) 4 p) Dovl ) () as)
810‘vx’ = pa+xﬁvx, r paxvx, mv(x,T),

where p = %Gﬁ cos(ﬁ—zn).
Applying the fractional reduced differential transform method on equation (18),
we have:

B
Vi) = R T L P+ P S =) (19)
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with initial condition given as:

Vi (x) = (e"—1). (20)
For h =0,1,2,3,... using recurrence relation (19) and initial condition (20), we get:
B
V) = Py W+ ) W= 0}
B
N r(al+ ) { _paixﬁ (¢-1+ ("+P)%(ex— D-re=1}
- 9B B
:r(a1+1){_p_aixp —8?_7(1)}+(r—|—p)%(ex—1)—r(ex_1)}
1 xkB 1 ~ .
:F(a+1){_p +Z reri-p) ta—p™ P petr)
1 [ 2 )C2 B xl_ﬁ x_ﬁ
“Farnt P RO oy e )
B
(1= B)} +pex—|-r}
1
= m{—P[xlfﬁEhzfﬁ(x)] +pEi1(x)+r}
= ﬁ{P[Eu(x) —x'PE, p(x)]+7}
(2D

where DP (€*) is the Caputo fractional derivative.

Vit = 1 {_p ~ Va(x)+(r+P)iVa(X)—rV“(x)}
? T20+1) PR 55V |
ﬁ —
I P22 PEL1 () — p PEL > p(x) + ]
S i . l_ﬁ
TRa+1) | TP EPEL() —px P p(x)+7] )
—r{pE11(x) — px' PE 5 5(x) +1]
P2 [xlizﬁEm—Z/} (x) _ximEu_z/} (x) —|—x71*ﬁE1.p (x)
1 o — — —
= Taarm ) B - prl P op) —x B
_xliﬁEla—[B (x)+Ep1(x)]
Using fractional reduced differential transform we have:
= Z Vi (X)Tah (23)
h=0
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The solution through fractional reduced differential transform method is given as:

Ei1(x) = 1+ miay ApIE1Li (0) =<' PE 5 ()] + 7}

200
+m{l72[x172ﬁ5172—2/3 (x) —fzﬁEl,l—zﬁ (x) +x717ﬁ517/3 (x) 4
_x_ﬁEl,lfﬁ (x)] _pr[x_zﬁEl,lfﬂi(x) —x_l_ﬁEl,ﬁ(x)

—xl’ﬁEm_p(x) +E 1 (x)]}+-..

where E,, g(x) is the Mittag-Leffler function in two parameter [36]. By putting p = 1,
r=—k, o — 1, B — 2 in equation (24) and using the properties of Mittag-Leffler
function, most of the terms in equation (24) get canceled and the simplified solution is
obtained as:

v(x,7) = " —e KT, (25)
which is the exact solution of the Black-Scholes equation (15).

MODEL 4.2. Consider the following time-space fractional Black-Scholes equa-
tion for European options given as:

B
4l 405x T —v=0, O<a<1, 0<B<2, (26)
X X

subject to the initial condition:

v(x,0) = max(x* — 0) =

{x3, for x>0 27

0, for x<O

Taking the fractional reduced differential transform method of equations (26), we get:

T(ah+1) [_ , PV (x)

o _ IV*(x)
Vh+1(x> = et 1)+ 1) —0.5x—=%

P B +VX(x)], (28)

B . . T
where 3‘97 is the fractional derivative in Caputo sense.

With initial condition:

V& (x) = x>, (29)

For h=0,1,2,3,... using the recurrence relation (28) and initial condition (29), we
get:
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1 PV (x) IV (x)
o o 2 0 _ 0
Vi) = F(a+1){ SR A )
B 1 B 6 5-B 3
_l"(oz—i—l){ PRt 0.5
w1 PV V()
W= R a0 e )
1L 1 6I(6-B) 5,5 (12-3B) 54 3
_ X 4+ "y +0.25x
F(2a+1)LT(4—B)r(6—2B) I'(4-B) 0
o 1 [ 28 Vi) 0 9V | e
V3 ()C) - 1'*(3a_|_ 1) L a*xﬁ 0-5x dx +V2 (X)]
6T (6 8—2 _ 27-9B)T(6—B) .7—
1 —r<4—ﬁ(>r<£_z(ﬁ>r(533ﬁ>x9 W %’ﬂ ”
T(3a+1) _Wﬁ—ﬁ —0.125x°

Using fractional reduced differential inverse transform we have:
=2 W (x)z®"
h=0

X+ F(a+1)[ ﬁxs’ﬁ —0.5x7]

_ 12-38) 5_ (31)
X728 4 —(1-(47ﬁ))x5 B 4+0.25x%7

L 6T (6—p)
+F(2a+1)[ T(4-B)T(6-2B)
+ [ 6r'(6—p)I'(8—2p8) 9_3[3

F(3a+1 T—B)T(6—2B)T(8—3P)"
27-9B)r _ 1.5B210.58+19.5) 5
Wﬂ 2 — (Wxs B —0.125x3} +

By putting o — 1, B — 2 in equation (31) and using the properties of Mittag-Leffler
function, most of the terms in equation (31) get canceled and the simplified solution is
obtained as:

v(x,T) =x}e 37, (32)

which is the exact solution of the Black-Scholes equation (26).

5. Results and discussion

In this section, the series solutions of above time space fractional European option
models are computed through MATLAB.

Figure 1(a) shows the surface plot of model 4.1 with order a = 0.5, § = 1.5,
0<x<10 and 0 < 7 < 2. The results demonstrate that the value of v increases
significantly when the value of x increases. With increasing x from 0 — 7 the value of
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v reaches to zero. After that the solution increases significantly. Figure 1(b) shows the
exact solution of model 4.1.

(@) (b)

Figure 1: (a) demonstrates the solution of model 4.1. for . =0.5, B =1.5, r=1and p=1
and (b) exact solution for model 4.1 at k= 1.

Figure 2(a) shows the surface plot of the model 4.1 with different orders of o =
0.1,0.2,...,1.0 and B =2. By setting x = 10, 0 < 7 < 2, the solution of model 4.1 is
plotted in figure 2(a). Figure 2(b) shows the solution of model 4.1 by setting 7 =1,
0 <x < 10 with order &z =0.1,0.2,0.3,...1.0 and order B =1.1,1.2,...,2.0.

x10* 4
2.6 35><ID

— = —a=10,3=20

(a) (b)

Figure 2: (a) demonstrates the solution of model 4.1 for different values of o and (b) demon-
strates the solution of model 4.1 for different values of o and .

The solution of model 4.2 is plotted in Figures 3 — 4. Figure 3(a) shows the
surface plot of the solution of model 4.2 by setting . =1, =2, 0<x<3 and 0 <
7 < 0.2. Figure 3(b) shows the surface plot of the exact solution of model 4.2. Figure
4(a) shows the solution v with respect to 7 for different orders of o =0.1.0.2,...1.0
and § =1.1,1.2,...,2.0 with x=3 and 0 < 7 < 0.2. In figure 4(b), the solution v
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is shown by setting T =3, 0 < x < 3 with different orders of & =0.1,0.2,...,1.0 and
B=1.1,12,...,2.0.

(a) (b)

Figure 3: (a) demonstrates the solution of model 4.2 for o« =1, B =2 and (D) exact solution
for model 4.2.

x 10 10

— —-or10p=20 — —-oe106-20

— a0l
3 0=03,p=13
— = as02,p=12
=01 f=1.1

=0.1p=11

(a) (b)

Figure 4: (a) demonstrates the solution of model 4.2 for different values of o, B with respect
to T and (b) demonstrates the solution of model 4.2 for different values of o, B with respect to
X.

In figure 5(a,b), the results are compared to the time fractional Black-scholes
formula in subdiffusive regime (SDBSM) [39]. The exact solution of model 4.1 is
compared to SDBSM and the results are shown in figure 5(a). While the FRDTM
results of model 4.1 are compared to SDBSM and the comparison analysis are shown
in figure 5(b).

The approximate numerical solutions of model 4.1 for different values of o, 3,
x and 7 are shown in table 1. While the numerical solutions of model 4.2 for different
values of o, 3, x and T are shown in table 2.
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08 9
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T

06 i
05 /
04 / /

(a) (b)

Figure 5: (a) demonstrates the comparison of exact solution with SDBSM presented in [39] of
model 4.1 and (b) demonstrates the comparison of FRDTM solution with SDBSM [39] of model
4.1.

Table 1: Comparison of numerical results of model 4.1 through FRDTM for different values of
o and f3.

. . o=0.5 o=1 oa=1.5 o=1
B=15 B=15 B=2 B=2
0.25 0.40 4.5667 1.1260 0.6420 1.3357
0.50 3.3585 1.1286 0.7814 1.2329
0.60 2.8797 1.2354 0.9514 1.3014
0.75 2.7491 1.5003 1.2530 1.5504
1.00 3.2504 2.1351 1.8838 2.1980
0.50 0.40 8.4117 2.6808 1.1628 3.3215
0.50 5.8084 2.1751 1.1522 2.4114
0.60 4.6499 2.0404 1.2629 2.1285
0.75 4.0509 2.1508 1.5416 2.1679
1.00 4.3620 2.7616 2.2086 2.7789
0.75 0.40 12.2189 5.1563 2.3099 6.4494
0.50 8.2154 3.7880 1.8784 4.1841
0.60 6.3727 3.2372 1.8103 3.3034
0.75 5.2985 3.0683 1.9915 2.9691
1.00 5.4044 3.5887 2.6710 3.4608
1.00 0.40 16.0064 8.5523 4.3582 10.7191
0.50 10.6003 5.9674 3.0973 6.5511
0.60 8.0711 4.8257 2.6686 4.8260
0.75 6.5179 4.2530 2.6352 3.9541

1.00 6.4109 4.6193 3.2796 4.2437
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Table 2: Comparison of numerical results of model 4.2 through FRDTM for different values of
o and f3.

. N oa=0.5 oa=1 oa=1.5 o=1
B=15 B=15 B=2 B=2
0.25 0.40 —0.2800 0.0264 0.0313 —0.0013
0.50 —0.7736 0.0448 0.0611 —0.0025
0.60 —1.7671 0.0658 0.1055 —0.0043
0.75 —4.8402 0.0950 0.2061 —0.0084
1.00 —17.6879 —0.0289 0.4886 —0.0199
0.50 0.40 —0.9274 —2.7831 —0.0051 -0.1722
0.50 —2.4980 —0.0960 —-0.0101 —0.3363
0.60 —5.6155 —0.2408 —-0.0174 —0.5811
0.75 —15.1463 —-0.7125 —0.0339 —1.1349
1.00 —54.5141 —2.7831 —0.0804 —2.6901
0.75 0.40 —1.8069 —0.1772 —0.0411 —0.7233
0.50 —4.8342 —0.4936 —0.0804 —1.4127
0.60 —10.8171 —1.1351 —0.1389 —2.4412
0.75 —29.0351 —3.1355 —-0.2712 —4.7679
1.00 —103.9540 —11.5877 —0.6429 —11.3018
1.00 0.40 —2.8744 —0.4935 —0.1341 —1.9293
0.50 —7.6723 —1.3443 —0.2618 —3.7682
0.60 —17.1266 —3.0486 —0.4524 —6.5115
0.75 —45.8505 —8.3091 —0.8839 —12.7178
1.00 —163.6740 —30.2951 —2.0946 —30.1458

6. Conclusion

The time space fractional Black-Scholes model is the generalization of regular
Black-Scholes model. As a result the fractional B-S model proves to be more ade-
quate and competent than the regular B-S model. In this study, the fractional reduced
differential transform method (FRDTM) is applied to solve time space fractional op-
tion models with boundary conditions governing European options. The solutions are
obtained in convergent series forms. The obtained results converge faster when com-
pared to their exact form of solutions. Theoretical analysis prove that FRDTM is a
powerful technique to find the approximate analytical solution of time space fractional
Black-Scholes equation as it needs less computation with no linearization or perturba-
tion required. A few examples are solved to test the efficiency and performance of the
proposed method and the numerical results are in strong agreement with the theoretical
analysis. Thus, it can be concluded that FRDTM is an appropriate method to solve
time space fractional Black-Scholes equation and other linear and nonlinear stochastic
differential equations existing in the field of financial mathematics.
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