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ON GENERALIZED RIESZ SUMMABILITY

OF FACTORED FOURIER SERIES

DEEPAK ACHARYA, SUBRATA KUMAR SAHU ∗ ,
PURNA CHANDRA NAYAK AND UMAKANTA MISRA

Abstract. In the present article, we have established a result on  −|N, pn; , |k summability
of general summability factor of Fourier series, generalizing a result on |N , pn|k summability.

1. Introduction

Let an be a given infinite series with sequence of its partial sums (sn) and (pn)
be a sequence of positive numbers such that

Pn =
n


=0

p , (P−1 = p−1 = 0, i � 1).

Then the sequence-to-sequence transformation

n =
1
Pn

n


=0

ps , (Pn �= 0),

defines the sequence (n) of the (N, pn) mean of the sequence (sn) , generated by the
sequence of coefficients (pn) [1]. The series an is said to be summable |N, pn|k, k �
1, if [2]




n=1

(Pn

pn

)k−1|�n−1|k < .

Let (n) be any sequence of positive real numbers. Then the series an is said to be

−|N, pn|k, k � 1, summable if [9]




n=1

k−1
n |n−n−1|k < .

and for  � 0, it is said to be summable −|N, pn; |k , if [9]




n=1

k+k−1
n |n−n−1|k < .
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Further, for  � 1, it is said to be −|N, pn; , |k summable, if [9]




n=1

(k+k−1)
n |n−n−1|k < .

Clearly, by taking  = 0,  = 1 and n =
Pn

pn
, the summability method −|N, pn; , |k

reduces to |N, pn|k summability.
Let f be a periodic function with period 2 and integrable-L over (− ,). As-

suming that the constant term in the Fourier series of the function f to be zero, let

f (t) =



n=1

(an cosnt +bn sinnt) =



n=1

Cn(t).

Dealing with |N, pn|k summability factors and −|N, pn; |k summability factors
of Fourier series, many results have been done by different authors (see [3, 4, 5, 6, 7, 8,
10, 11]). Among those, Bor [4] has proved the following theorem:

THEOREM 1.1. If (n) is a non-negative and non-increasing sequence such that

 pnn < , where (pn) is a sequence of positive numbers such that Pn → as n→

and
n


=1

PC(t) = O(Pn) , then the series Cn(t)Pnn is summable |N, pn|k , k � 1 .

Subsequently, dealing with  − |N, pn; |k,k � 1, summability, Yildiz [11] has
established the following theorem:

THEOREM 1.2. Let (pn) and (n) be sequences satisfying the conditions of The-
orem 1.1 and let (n) be a sequence of positive real numbers such that

(i) npn = O(Pn),

(ii)



n=+1

k−1
n (Pn−1)−1 = O

(
k
 (P)−1

)
,

(iii)
m


n=1

k
n pnn = O(1), as m → ,

(iv)
m


n=1

k
n Pn�n = O(1), as m → .

Then the series Cn(t)Pnn is summable −|N, pn; |k , k � 1 , 0 � k < 1 .

We require the following lemma to prove our main theorem.

LEMMA 1.3. ([4]) If (n) is a non-negative and non-increasing sequence such
that  pnn is convergent, where (pn) is a sequence of positive numbers such that
Pn →  as n →  , then pnn = O(1) and Pn�n <  .
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2. Main results

However, generalizing Theorem 1.1 and Theorem 1.2, we establish the following
theorem.

THEOREM 2.1. Let (pn) and (n) be sequences satisfying the conditions of The-
orem 1.1 and let (n) be a sequence of positive real numbers such that

(i) npn = O(Pn),

(ii)



n=+1

(k+k−1)−k
n (Pn−1)−1 = O

(
(k+k−1)−k+1
 (P)−1

)
,

(iii)
m


n=1

(k+k−1)−k+1
n pnn = O(1), as m → , and

(iv)
m


n=1

(k+k−1)−k+1
n Pn�n = O(1), as m → .

Then the series Cn(t)Pnn is summable  − |N, pn; , |k, k � 1, 0 � k <
1,  � 1 .

Proof. Let In(t) be the sequence of (N, pn) means of the series Cn(t)Pnn .Then,
by definition, we have

In(t) =
1
Pn

n


=0

p



i=0

Ci(t)Pii =
1
Pn

n


=0

(Pn−Pn−1)C(t)P .

Then, for n � 1, we have

In(t)− In−1(t) =
pn

PnPn−1

n


=1

P−1C (t)P .

Using Abel’s transformation, we have

In(t)− In−1(t) =
pn

PnPn−1

n−1


=1

�(P−1)



r=1

Cr(t)Pr +
pn

Pn
n

n


r=1

Cr(t)Pr

= O(1)
{ pn

PnPn−1

n−1


=1

(P� − p)P
}

+O(1)pnn

= O(1)
{ pn

PnPn−1

n−1


=1

(PP� − pn

PnPn−1

n−1


=1

(P p)+ pnn

}

= O(1)
{

In,1 + In,2 + In,3

}
.
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Using Minkowski’s inequality, in order to establish the theorem, it is sufficient to show

that



n=1

(k+k−1)
n |In,r|k < , for r = 1,2,3. Now we have

m+1


n=2

(k+k−1)
n |In,1|k =

m+1


n=1

(k+k−1)
n

∣∣∣ pn

PnPn−1

n−1


=1

PP�
∣∣∣
k

�
m+1


n=2

(k+k−1)−k
n

1
Pn−1

{ n−1


=1

PP�
}{ 1

Pn−1

n−1


=1

PP�
}k−1

= O(1)
m+1


n=2

(k+k−1)−k
n

1
Pn−1

{ n−1


=1

PP�
}

= O(1)
m


=1

PP�
m+1


n=+1

(k+k−1)−k
n

1
Pn−1

= O(1)
m


=1

(k+k−1)−k+1
 P� = O(1) as m → .

Now, when k > 1, applying Hölder’s inequality with indices k and k′ where
1
k

+
1
k′

,

we have

m+1


n=2

(k+k−1)
n |In,2|k =

m+1


n=2

(k+k−1)
n

∣∣∣ pn

PnPn−1

n−1


=1

P p
∣∣∣
k

�
m+1


n=2

(k+k−1)−k
n

1
Pn−1

{ n−1


=1

Pk
 p� k



}{ 1
Pn−1

n−1


=1

p
}k−1

= O(1)
m


=1

Pk
 p k



m+1


n=+1

(k+k−1)−k
n

1
Pn−1

= O(1)
m


=1

(k+k−1)−k+1


1
P

(P)k p

= O(1)
m


=1

(k+k−1)−k+1
 p = O(1) as m → .

by virtue of the hypothesis of Theorem 1.1 and Lemma 1.3. Finally, using the fact that
Pnn = O(1) , by Lemma 1.3, we obtain that

m


n=1

(k+k−1)
n |In,3|k =

m


n=1

(k+k−1)
n |pnn|k

�
m


n=1

(k+k−1)−k+1
n k−1

n (pnn)k−1(pnn)

=
m


n=1

(k+k−1)−k+1
n (npn)k−1(n)k−1(pnn)
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= O(1)
m


n=1

(k+k−1)−k+1
n Pnn)k−1pnn

= O(1)
m


n=1

(k+k−1)−k+1
n pnn = O(1) as m → .

by virtue of the hypotheses of Theorem 1.2. This completes the proof. �
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