ON GENERALIZED RIESZ SUMMABILITY OF FACTORED FOURIER SERIES

Deepak Acharya, Subrata Kumar Sahu*, Purna Chandra Nayak and Umakanta Misra

Abstract. In the present article, we have established a result on $\varphi-\left|\bar{N}, p_{n} ; \delta, \mu\right|_{k}$ summability of general summability factor of Fourier series, generalizing a result on $\left|\bar{N}, p_{n}\right|_{k}$ summability.

1. Introduction

Let $\sum a_{n}$ be a given infinite series with sequence of its partial sums $\left(s_{n}\right)$ and $\left(p_{n}\right)$ be a sequence of positive numbers such that

$$
P_{n}=\sum_{v=0}^{n} p_{v},\left(P_{-1}=p_{-1}=0, i \geqslant 1\right)
$$

Then the sequence-to-sequence transformation

$$
\sigma_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} s_{v},\left(P_{n} \neq 0\right)
$$

defines the sequence $\left(\sigma_{n}\right)$ of the $\left(\bar{N}, p_{n}\right)$ mean of the sequence $\left(s_{n}\right)$, generated by the sequence of coefficients $\left(p_{n}\right)$ [1]. The series $\sum a_{n}$ is said to be summable $\left|\bar{N}, p_{n}\right|_{k}, k \geqslant$ 1, if [2]

$$
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|\triangle \sigma_{n-1}\right|^{k}<\infty .
$$

Let $\left(\varphi_{n}\right)$ be any sequence of positive real numbers. Then the series $\sum a_{n}$ is said to be $\varphi-\left|\bar{N}, p_{n}\right|_{k}, k \geqslant 1$, summable if [9]

$$
\sum_{n=1}^{\infty} \varphi_{n}^{k-1}\left|\sigma_{n}-\sigma_{n-1}\right|^{k}<\infty
$$

and for $\delta \geqslant 0$, it is said to be summable $\varphi-\left|\bar{N}, p_{n} ; \delta\right|_{k}$, if [9]

$$
\sum_{n=1}^{\infty} \varphi_{n}^{\delta k+k-1}\left|\sigma_{n}-\sigma_{n-1}\right|^{k}<\infty
$$

[^0]Further, for $\mu \geqslant 1$, it is said to be $\varphi-\left|\bar{N}, p_{n} ; \delta, \mu\right|_{k}$ summable, if [9]

$$
\sum_{n=1}^{\infty} \varphi_{n}^{\mu(\delta k+k-1)}\left|\sigma_{n}-\sigma_{n-1}\right|^{k}<\infty
$$

Clearly, by taking $\delta=0, \mu=1$ and $\varphi_{n}=\frac{P_{n}}{p_{n}}$, the summability method $\varphi-\left|\bar{N}, p_{n} ; \delta, \mu\right|_{k}$ reduces to $\left|\bar{N}, p_{n}\right|_{k}$ summability.

Let f be a periodic function with period 2π and integrable- L over $(-\pi, \pi)$. Assuming that the constant term in the Fourier series of the function f to be zero, let

$$
f(t)=\sum_{n=1}^{\infty}\left(a_{n} \cos n t+b_{n} \sin n t\right)=\sum_{n=1}^{\infty} C_{n}(t) .
$$

Dealing with $\left|\bar{N}, p_{n}\right|_{k}$ summability factors and $\varphi-\left|\bar{N}, p_{n} ; \delta\right|_{k}$ summability factors of Fourier series, many results have been done by different authors (see [3, 4, 5, 6, 7, 8, 10, 11]). Among those, Bor [4] has proved the following theorem:

THEOREM 1.1. If $\left(\lambda_{n}\right)$ is a non-negative and non-increasing sequence such that $\sum p_{n} \lambda_{n}<\infty$, where $\left(p_{n}\right)$ is a sequence of positive numbers such that $P_{n} \rightarrow \infty$ as $n \rightarrow \infty$ and $\sum_{v=1}^{n} P_{v} C_{v}(t)=O\left(P_{n}\right)$, then the series $\sum C_{n}(t) P_{n} \lambda_{n}$ is summable $\left|\bar{N}, p_{n}\right|_{k}, k \geqslant 1$.

Subsequently, dealing with $\varphi-\left|\bar{N}, p_{n} ; \delta\right|_{k}, k \geqslant 1$, summability, Yildiz [11] has established the following theorem:

THEOREM 1.2. Let $\left(p_{n}\right)$ and $\left(\lambda_{n}\right)$ be sequences satisfying the conditions of Theorem 1.1 and let $\left(\varphi_{n}\right)$ be a sequence of positive real numbers such that
(i) $\varphi_{n} p_{n}=O\left(P_{n}\right)$,
(ii) $\sum_{n=v+1}^{\infty} \varphi_{n}^{\delta k-1}\left(P_{n-1}\right)^{-1}=O\left(\varphi_{v}^{\delta k}\left(P_{v}\right)^{-1}\right)$,
(iii) $\sum_{n=1}^{m} \varphi_{n}^{\delta k} p_{n} \lambda_{n}=O(1)$, as $m \rightarrow \infty$,
(iv) $\sum_{n=1}^{m} \varphi_{n}^{\delta k} P_{n} \triangle \lambda_{n}=O(1)$, as $m \rightarrow \infty$.

Then the series $\sum C_{n}(t) P_{n} \lambda_{n}$ is summable $\varphi-\left|\bar{N}, p_{n} ; \delta\right|_{k}, k \geqslant 1,0 \leqslant \delta k<1$.
We require the following lemma to prove our main theorem.
LEMMA 1.3. ([4]) If $\left(\lambda_{n}\right)$ is a non-negative and non-increasing sequence such that $\sum p_{n} \lambda_{n}$ is convergent, where $\left(p_{n}\right)$ is a sequence of positive numbers such that $P_{n} \rightarrow \infty$ as $n \rightarrow \infty$, then $p_{n} \lambda_{n}=O(1)$ and $\sum P_{n} \triangle \lambda_{n}<\infty$.

2. Main results

However, generalizing Theorem 1.1 and Theorem 1.2, we establish the following theorem.

THEOREM 2.1. Let $\left(p_{n}\right)$ and $\left(\lambda_{n}\right)$ be sequences satisfying the conditions of Theorem 1.1 and let $\left(\varphi_{n}\right)$ be a sequence of positive real numbers such that
(i) $\varphi_{n} p_{n}=O\left(P_{n}\right)$,
(ii) $\sum_{n=v+1}^{\infty} \varphi_{n}^{\mu(\delta k+k-1)-k}\left(P_{n-1}\right)^{-1}=O\left(\varphi_{v}^{\mu(\delta k+k-1)-k+1}\left(P_{v}\right)^{-1}\right)$,
(iii) $\sum_{n=1}^{m} \varphi_{n}^{\mu(\delta k+k-1)-k+1} p_{n} \lambda_{n}=O(1)$, as $m \rightarrow \infty$, and
(iv) $\sum_{n=1}^{m} \varphi_{n}^{\mu(\delta k+k-1)-k+1} P_{n} \triangle \lambda_{n}=O(1)$, as $m \rightarrow \infty$.

Then the series $\sum C_{n}(t) P_{n} \lambda_{n}$ is summable $\varphi-\left|\bar{N}, p_{n} ; \delta, \mu\right|_{k}, k \geqslant 1,0 \leqslant \delta k<$ $1, \mu \geqslant 1$.

Proof. Let $I_{n}(t)$ be the sequence of $\left(\bar{N}, p_{n}\right)$ means of the series $\sum C_{n}(t) P_{n} \lambda_{n}$.Then, by definition, we have

$$
I_{n}(t)=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} \sum_{i=0}^{v} C_{i}(t) P_{i} \lambda_{i}=\frac{1}{P_{n}} \sum_{v=0}^{n}\left(P_{n}-P_{n-1}\right) C_{v}(t) P_{v} \lambda_{v}
$$

Then, for $n \geqslant 1$, we have

$$
I_{n}(t)-I_{n-1}(t)=\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n} P_{v-1} C_{v}(t) P_{v} \lambda_{v}
$$

Using Abel's transformation, we have

$$
\begin{aligned}
I_{n}(t)-I_{n-1}(t) & =\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} \triangle\left(P_{v-1} \lambda_{v}\right) \sum_{r=1}^{v} C_{r}(t) P_{r}+\frac{p_{n}}{P_{n}} \lambda_{n} \sum_{r=1}^{n} C_{r}(t) P_{r} \\
& =O(1)\left\{\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1}\left(P_{v} \triangle \lambda_{v}-p_{v} \lambda_{v}\right) P_{v}\right\}+O(1) p_{n} \lambda_{n} \\
& =O(1)\left\{\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1}\left(P_{v} P_{v} \triangle \lambda_{v}-\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1}\left(P_{v} p_{v} \lambda_{v}\right)+p_{n} \lambda_{n}\right\}\right. \\
& =O(1)\left\{I_{n, 1}+I_{n, 2}+I_{n, 3}\right\}
\end{aligned}
$$

Using Minkowski's inequality, in order to establish the theorem, it is sufficient to show that $\sum_{n=1}^{\infty} \varphi_{n}^{\mu(\delta k+k-1)}\left|I_{n, r}\right|^{k}<\infty$, for $r=1,2,3$. Now we have

$$
\begin{aligned}
\sum_{n=2}^{m+1} \varphi_{n}^{\mu(\delta k+k-1)}\left|I_{n, 1}\right|^{k} & =\sum_{n=1}^{m+1} \varphi_{n}^{\mu(\delta k+k-1)}\left|\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} P_{v} P_{v} \triangle \lambda_{v}\right|^{k} \\
& \leqslant \sum_{n=2}^{m+1} \varphi_{n}^{\mu(\delta k+k-1)-k} \frac{1}{P_{n-1}}\left\{\sum_{v=1}^{n-1} P_{v} P_{v} \triangle \lambda_{v}\right\}\left\{\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} P_{v} P_{v} \triangle \lambda_{v}\right\}^{k-1} \\
& =O(1) \sum_{n=2}^{m+1} \varphi_{n}^{\mu(\delta k+k-1)-k} \frac{1}{P_{n-1}}\left\{\sum_{v=1}^{n-1} P_{v} P_{v} \triangle \lambda_{v}\right\} \\
& =O(1) \sum_{v=1}^{m} P_{v} P_{v} \triangle \lambda_{v} \sum_{n=v+1}^{m+1} \varphi_{n}^{\mu(\delta k+k-1)-k} \frac{1}{P_{n-1}} \\
& =O(1) \sum_{v=1}^{m} \varphi_{v}^{\mu(\delta k+k-1)-k+1} P_{v} \triangle \lambda_{v}=O(1) \text { as } m \rightarrow \infty
\end{aligned}
$$

Now, when $k>1$, applying Hölder's inequality with indices k and k^{\prime} where $\frac{1}{k}+\frac{1}{k^{\prime}}$, we have

$$
\begin{aligned}
\sum_{n=2}^{m+1} \varphi_{n}^{\mu(\delta k+k-1)}\left|I_{n, 2}\right|^{k} & =\sum_{n=2}^{m+1} \varphi_{n}^{\mu(\delta k+k-1)}\left|\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} P_{v} p_{v} \lambda_{v}\right|^{k} \\
& \leqslant \sum_{n=2}^{m+1} \varphi_{n}^{\mu(\delta k+k-1)-k} \frac{1}{P_{n-1}}\left\{\sum_{v=1}^{n-1} P_{v}^{k} p_{v} \triangle \lambda_{v}^{k}\right\}\left\{\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_{v}\right\}^{k-1} \\
& =O(1) \sum_{v=1}^{m} P_{v}^{k} p_{v} \lambda_{v}^{k} \sum_{n=v+1}^{m+1} \varphi_{n}^{\mu(\delta k+k-1)-k} \frac{1}{P_{n-1}} \\
& =O(1) \sum_{v=1}^{m} \varphi_{v}^{\mu(\delta k+k-1)-k+1} \frac{1}{P_{v}}\left(P_{v} \lambda_{v}\right)^{k} p_{v} \\
& =O(1) \sum_{v=1}^{m} \varphi_{v}^{\mu(\delta k+k-1)-k+1} p_{v} \lambda_{v}=O(1) \text { as } m \rightarrow \infty
\end{aligned}
$$

by virtue of the hypothesis of Theorem 1.1 and Lemma 1.3. Finally, using the fact that $P_{n} \lambda_{n}=O(1)$, by Lemma 1.3, we obtain that

$$
\begin{aligned}
\sum_{n=1}^{m} \varphi_{n}^{\mu(\delta k+k-1)}\left|I_{n, 3}\right|^{k} & =\sum_{n=1}^{m} \varphi_{n}^{\mu(\delta k+k-1)}\left|p_{n} \lambda_{n}\right|^{k} \\
& \leqslant \sum_{n=1}^{m} \varphi_{n}^{\mu(\delta k+k-1)-k+1} \varphi_{n}^{k-1}\left(p_{n} \lambda_{n}\right)^{k-1}\left(p_{n} \lambda_{n}\right) \\
& =\sum_{n=1}^{m} \varphi_{n}^{\mu(\delta k+k-1)-k+1}\left(\varphi_{n} p_{n}\right)^{k-1}\left(\lambda_{n}\right)^{k-1}\left(p_{n} \lambda_{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left.=O(1) \sum_{n=1}^{m} \varphi_{n}^{\mu(\delta k+k-1)-k+1} P_{n} \lambda_{n}\right)^{k-1} p_{n} \lambda_{n} \\
& =O(1) \sum_{n=1}^{m} \varphi_{n}^{\mu(\delta k+k-1)-k+1} p_{n} \lambda_{n}=O(1) \text { as } m \rightarrow \infty .
\end{aligned}
$$

by virtue of the hypotheses of Theorem 1.2. This completes the proof.

REFERENCES

[1] G. H. Hardy, Divergent Series, Oxford University Press, Oxford, 1949.
[2] H. Bor, On two summability methods, Math. Proc. Cambridge Philos. Soc., 97 (1985), 147-149.
[3] H. Bor, Multipliers for $\left|\bar{N}, p_{n}\right|_{k}$ summability of Fourier series, Bull. Inst. Math. Acad. Sin. (N.S.), 17, (1989), 285-290.
[4] H. Bor, On the absolute summability factors of Fourier series, J. Comput. Anal. Appl., 8, (2006), 223-227.
[5] H. Bor, Some new results on infinite series and Fourier series, Positivity, 19, (2015), 467-473.
[6] H. Bor, Some new results on absolute Riesz summability of infinite series and Fourier Series, Positivity, 20, (2016), 599-605.
[7] H. S. Ozarslan, On the local property of $\varphi-\left|\bar{N}, p_{n} ; \delta\right|_{k}$ summability of factored Fourier Series, Bull. Inst. Math. Acad. Sin. (N.S.), 25, (1997), 311-316.
[8] H. S. Ozarslan, A note on $\left|\bar{N}, p_{n}\right|_{k}$ summability factors, Int. J. Pure Appl. Math. 13, (2004), 485490.
[9] H. Seyhan, The absolute summability methods, Ph.D. thesis, Ereiyes University, Kayseri, 1995.
[10] K. H. Mishra, Multipliers for $\left|\bar{N}, p_{n}\right|_{k}$ summability of Fourier series, Bull. Inst. Math. Acad. Sin. (N.S.), 14, (1986), 431-438.
[11] S. YildIZ, On Riesz Summability factors of Fourier series, Transaction of A. Razmadze Mathematical Institute, 171, (2017), 328-33.

[^0]: Mathematics subject classification (2020): 40D15, 42A24, 42A16.
 Keywords and phrases: Summability factors, absolute summability, infinite series, Fourier series, Hölder inequality, Minkowski inequality.

 * Corresponding author.

