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ANTI-PERIODIC BOUNDARY VALUE PROBLEMS FOR NONLINEAR
HIGHER ORDER FUNCTIONAL DIFFERENCE EQUATIONS

Yui Liu

(communicated by H. Srivastava)

Abstract. Sufficient conditions for the existence of at least one solution of anti-periodic boundary
value problems for nonlinear functional difference equations are established. We allow f to be
at most linear, superlinear or sublinear in obtained results.

1. Introduction

Let Z be the integers set, [a,b] = {a,a+1,--- b} foreach a,b € Z with a < b.
In this paper, we study anti-periodic boundary value problems for nonlinear functional
difference equations

Ax(n) = f (n,x(n), x(n + 1), x(n — 71 (n)), -+, x(n = Tu(n)), nel0,T],
x(0) = —x(T + 1),
x(i) = ¢(i)7 i€ [_T7 _IL

(@) =w(i), ie[T+2,T+9],

(1)

and
A%x(n f(n x( ), x(n+1),x(n— 1 (n)), - ,x(n — 1,(n)), nel0,T],

T+2), (2)
i€[-1,—1],
SV, ielr et

where T > 1, 1,:[0,7T] = Z,i=1,---,m, f(n,x,x0, X1, ,Xput1) i continuous
for each n € [0, T] with

T—max{max{’r,( ooi=1,---,m},
ne0,7]
0 = — min{ min {’L’l( VZroi=1,---,m}.
nel0,7]
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The motivation of this paper is mainly as follows:

In a recent paper [5], by using a fixed point theorem for operators on cones, Sun
established existence criteria for positive solutions for the following first-order discrete
periodic boundary value problem:

{ Ax(n) =f(n,x(n+ 1)), ne|0,T],
x(0) =x(T +1).

In paper [6], periodic and antiperiodic boundary value problems for self-adjoint
second-order difference equations were studied. Existence of eigenvalues of these
two different boundary value problems was proved, numbers of their eigenvalues were
calculated, and their relationships were obtained. In addition, a representation of
solutions of a nonhomogeneous linear equation with initial conditions was given.

Fixed point theorems for operators on cones are also used to get positive periodic
solutions of the equations

x(n+1) = b(n)x(n) + Ah(n)f (x(n — 7(n))), 3)

and
x(n+ 1) = b(n)x(n) — Ah(n)f (x(n — 7(n))), 4)

where b(n), h(n) and 7(n) are nonnegative and with period of 7 and 1 > b(n) > 0
in (3) and b(n) > 1 in (4), T is an integer with 7 > 1. One may see [1 - 4] and the
references therein.

There is no paper concerned with the solvability of problem (1) and problem (2).
The purpose of this paper is to establish sufficient conditions for the existence of at least
one solution of problem (1) and problem (2), respectively.

This paper is organized as follows. In Section 2, we give the main results and in
Section 3, examples to illustrate the main results will be presented.

2. Main Results

Let X and Y be Banach spaces, L: Dom L C X — Y be a Fredholm operator of
index zero. If Q is an open bounded subset of X, Dom LNQ # (), themap N : X — ¥
will be called L— compact on Q if QN(Q) is bounded and K,(I — Q)N : Q — X is
compact.

THEOREM GM[1]. Let X and Y be Banach spaces. Suppose L : D(L) C X — Y
is a Fredholm operator of index zero with Ker L = {0}, N : X — Y is L— compact on
any open bounded subset of X. If 0 € Q C X is a open bounded subset and

Lx # ANx forall x € D(L)NOQ and A € [0, 1],

then there is at least one x € Q so that Lx = Nx.

Let X = R™*™9 be endowed with the norm |[x||y = maX,e(1 7+t [¥(n)| for
x € X, Y = R™! be endowed with the norm ||y||y = max,cpo.7] [y(n)| for y € Y. It
is easy to see that X and Y are Banach spaces.
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For problem (1), choose

(i) =0, i€[-7---, 1],
DomL=<xeX: x(i)eR, ie€l0,T+1], x(0) = —x(T+1)
x(i)=0, ie[T+2,---, T+,
Set
L:DomLNX —X, Lex(n)=Ax(n), nel0,T],
and N: X — Y by

Nex(n) = f(nx(n) +x(n),x(n+1) +xo(n + 1),
x(n— 1 (1)) + Xo(n — T (1)), -+ +x(n — ) + Xo(n — Tu(n)))
€10,T], forall x € X, where
(P(l’l), ne [7’[’71}7
o) =4 0, nel0,T+1]
y(n), nel[T+2,T+3).
It is easy to show that Axy(n) = 0 for n € [0, T] and that x € Dom L is a solution of
L e x = N e x implies that x + x; is a solution of problem (1) and
(i) KerL={(0,---,0) € X}. B
(if) L is a Fredholm operator of index zero and N is L— compact on Q with Q
being an open bounded nonempty subset of X .

THEOREM L1. Suppose that there is numbers > 0, 0 > 1, nonnegative

sequences p(n), pi(n), r(n) (i = 0,---,m), functions g(n,x,xo, - ,%m),
h(n,x,x0,- -+ ,Xm) such that
f(naxa X0, 7xm) = g(n7x7x0a e 7xm) + h(n7x7x07 e 7xm)
and
g(n,x,xo,xl, e ,)Cm).X() < _B‘x0‘6+1>
and

m

‘h(nrxrxof' » X ) |x|0+zpl “xl )7

forall n e {0, -, T}, (x,x0,%1," ,Xm) € R’””. Then problem (1) has at least one
solution if

i m
lIplly + lpolly + (T + )77 > |lpilly < B (5)
i=1

Proof. Let Q; = {x: Lx = ANx, (x,A) € (DomL) x (0,1)}, we prove that Q;
is bounded. For x € Q;,wehave Lex=ANex, A € (0,1),so0

Ay(n) = Af (n,y(n), y(n+ 1),y(n — 1 (n)),- - ,y(n — Tu(n))), (6)
where y(n) = x(n) + xo(n). So
[Ay(m)]y(n + 1) = Af (n,y(n), y(n + 1), y(n = 11 (n)), -+, y(n = Tu(n))y(n + 1).
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It is easy to see that y(7'+ 1) = —y(0) and that

25 oAy(m)y(n+1) =23, o[y(n+1)2 = y(n)y(n + 1)]
=30 o+ 1) — y(m)]* = y(0)* + y(T +1)> > 0.

So, we get

Y fry(m),y(n+1),y(n = 71(n)), -+, ¥(n = Tu(n)y(n + 1) > 0.
n=0

It follows that

B o Iy + 1)+
< =30 o g(n,y(n),y(n + 1), y(n — 11 (n)), -+, y(n — Tu(n))y(n + 1)
< SF o h(n,y(n), y(n + 1), 3(n — 1(n)), -+, (1 — Tu(n))y(n + 1)
< Yon o n(n,y(n), y(n + 1), y(n — 11 (n)), -+ y(n — Tu(n)| [y(n + 1)]
< S pM)y(n+ D[y(m)]° + S po(n)|y(n + 1)+
3 S pi)ly(n = () Ply(n + 1) + S0 r(n)|y(n + 1)]
< |lplly X Iy(n+ DIly(m)[? + [[polly g y(n + 1)]!
+ 370 pilly g [y = w(m) Ply(n + 1)] + [rlly S [y(n + 1)1

Hence
T T GLH T GLH
BY v+ 1" < lplly (ZY(H+1)|9“> (Zly(n)|9“>
n=0 n=0 n=0
T
Hipolly Y Iv(n + 1)
n=0
o =
m 1 ]
Dilly y\n— Tl y\n
+, H I \ )IeH! y(n+1)[!
n=0
9#
+1
0
+Irll¥ ( ) (Zy n+1 6“)
T
= (llplly + [lpolly) Y lyn + 1)+
n=0

0

m 0+1
ZHP:‘HY ly(u+ 1)+
i=1 ue{n—ri(n)—1: n=0,--- T}
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1

T b+1
. (z v+ 1>|@+l)
n=0
1
0 0+1
(T + 1 (z e+ 1) )

T
(lplly + [lpolly) Y ly(n + 1)[**!
n=0

(T+ 1) Zl\pzl\yzly 1o+

T 0+1
0
H|r|ly (T + 1) (Z y(n + 1)9“>
n=0

m

T
= (lIplly + llpolly — (T + )75 D lpilly) Y v+ 1))
i=1 n=0
1

0+1

T
[l (T + 1) 7 (Z y(n+ 1)9“>
n=0

We get

m T
0
(ﬁ —lplly = llpolly = (T + )7 > |Pi|Y> > Iyl + 1)+
i=1 u=0

0+1

T
0
< Iy (T 4 1) 7 (Z y(n+ 1)|9“>
n=0

It follows from (5) that there is M; > 0 such that 31 [y(u + 1)[0*" < M;.
Hence |y(n+ 1)| < Mll/(e+1> forall n € {0,---,T}. Thus we get

1/(6+1)
1

x(n+ )| < |y(r+ )|+ |xo(n+1)| <M + ||xo|lx, n€0,---,T].

Hence ||x||x <M + ||xo]|x- So Q, is bounded.

Let Q D Q; be an open bounded subset of X, it is easy to see that Lx # ANx for
all x € Dom LN OQ and A € [0, 1].

Thus by Theorem GM, Lx = Nx has at least one solution in Dom L NQ, so x+xo
is a solution of problem (1).The proof is completed. [J

1/(6+1)
1

THEOREM L2. Suppose that there is numbers > 0, 0 > 1, nonnegative
sequences p(n), pi(n), r(n) (i = 0,---,m), functions g(n,x,xo, - ,%m),
h(n,x,x0, -+ ,Xn) such that

f(n,x,xo,~-~ ,)Cm) :g(n>x>x07"' ,)Cm) +h(n,x,x0,~-~ ,)Cm)
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and
g(n,x, x0,x1, -+, Xm)x = PBlxOF!,
and
m
|h(n,x, X0, -+ s xm)| < p |x|0+ZPt ‘xt‘e r(n),
SJorall n e {0, -, T}, (x,x0,%1," ,Xm) € R’””. Then problem (1) has at least one

solution if

i m
[1PIly + llpolly + (T + D)7 > " [Ipilly < B (7)

Proof. Let Q; = {x: Lx = ANx, (x,A) € (DomL) x (0,1)}. For x € Q;, we
have Lex=ANex, A € (0,1),s0
Azy(n) = /lf(n,y(n),y(n + 1),y(}’l -7 (}’l)), T ,y(}’l - Tm(n)))7 (8)
where y(n) = x(n) + xo(n). So

[A%y(n)]y(n) = Af (n,y(n),y(n+ 1), y(n — 71(n)), -, y(n = T(n))y(n).
It is easy to see from y(7 + 1) = —y(0) that

25 oAy (my(n) =23 l(n + 1)y(m) = y(n)]
= = Samob(r+ 1) =y —y(0) + (T +1)* < 0.

So, we get

T—1

D f (), y(n+1),y(n = 11 (n)), -+, y(n = Tu(n))y(n) <O0.

n=0
The remainder of the proof of is just similar to that of the proof of Theorem L1 and is
omitted. [

Let X = RT*79*! be endowed with the norm ||x||x = max,ec[ 14151 [X(1)]
for x € X, Y = R™™" be endowed with the norm ||y||y = max,e[o7 |y(n)| for y € Y.
It is easy to see that X and Y are Banach spaces.

For problem (2), choose

x(l)—O iel-1,--,—1],
DomL=<xe: x(i) € i€ [O, T—|-2], x(0) = —x(T+1),x(1) = —x(T+2)
x(i))=0, i€ [T+3,---,T+3],

Set
L:DomLNX — X, Lex(n)=A(n), nel0,T],

and N: X — Y by
Nex(n) = f(n,x(n)+xo(n),x(n+ 1) + xo(n + 1),
X(1— () + 3001 — (1)), 1 x(1 — (1)) + 3001 — T (1))
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€[0,T], for all x € X, where

(P(l’l), ne [7’[’71}7
xo(n) =4 0, ne[0,T+2,
y(n), nellT+3,T+9).

It is easy to show that Axy(n) = 0 for n € [0, T] and that x € Dom L is a solution of
L e x = N e x implies that x 4 xo is a solution of problem (2) and
(i) KerL={(0,---,0) € X}.
(ii) L is a Fredholm operator of index zero and N is L— compact on Q with Q
being an open bounded nonempty subset of X .
We have the following result.

THEOREM L3. Suppose that there is numbers > 0, 0 > 1, nonnegative

sequences p(n), pi(n), r(n) (i = 0,---,m), functions g(n,x,xg, - ,X%m),
h(n,x,x0,- -+ ,Xm) such that
f(n,x,xo, e ,)Cm) = g(n,x,xo, e ,)Cm) + h(n>x>x0> e ,)Cm)
and
g(n,x,xo,xl, e ,)Cm).X() 2 ﬁ|x0‘6+17
and

m

‘h(}’l,x,X(h" » X ) |x|0+zpl “xl )7

forall n e {0, -, T}, (x,x0,%1," ,Xm) € R’””. Then problem (2) has at least one
solution if

i m
Iplly + lpolly + (T + )77 > |Ipilly < B ©)
i=1

Proof. Let Q; = {x: Lx = ANx, (x,A) € [(Dom L\ Ker L)] x (0,1)}, we prove
that Q; is bounded. For x € Q;,wehave Lex=ANex, A € (0,1), so

Ny(n) = Af (n,3(n),3(n+ 1), 5(n = w0 (n)), - ,y(n = 1a(n))),  (10)
where y(n) = x(n) + xo(n). So
[A%y(m)]y(n + 1) = Af (0, y(n), y(n + 1), y(n — 71 (n)), -+ ,3(n = Tu(n))y(n + 1).
It is easy to see that y(7' + 1) = —y(0) and y(1) = —y(T + 2) and that
23 oAy + 1) =230, [y(n+2)y(n+ 1) = 2y(n + 1) + y(n)y(n + 1)]

=3 (6 +2) —y(n+ 1)+ ((n + 1) — y(n))?
—y(0)? + y(1)? + y(T + 1)* — y(T + 2)?)

N
o
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So, we get

Y f(my(n),y(n+1),y(n = u(n), -, y(n = Tu(n))y(n + 1) < 0.

n=0

The remainder of the proof is just similar to that of Theorem L2 and is omitted. []

3. Examples

In this section, we present some examples to illustrate the main results in Section 2.
EXAMPLE 3.1. Consider the following problem
Ax(n) = po(n)[x(n)**! + Blx(n + 1)1
+ 305 piln + Dlx(n = wi(n) P + r(n),
x(0) = —x(T + 1), (1)

x(l) = ¢(l)7 i€ [77‘-7 71]a
x(i) = w(i), i€l +2,0]
where k > 0 an integer, § < 0, p(n),pi(n),r(n),7;(n) (i=1,--- ,m) are sequences.

Corresponding to (1), we find
o, 200) = po(ma® 4 Bg" D pi(n)o™ !+ r(n).
i=1

It is easy to see that (11) has at least one solution for every r(n) if
[plly + llpolly + (T + ¥ S [Ipilly < —B.

EXAMPLE 3.2. Consider the following problem
A%x(n) = Blx(n) P +alx(n+ 1)
Y+ 2) P +r(n), 0 € [0,7],
x(0) = —x(T + 1),
x(1) = —x(T +2),

(12)

where k > 0 an integer, oo > 0. It follows from Theorem L3 that (12) has at least one
solution for each r if |B| + (T + )2k+2 ly] < o
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