

ON THE QUASI-MONOTONE AND ALMOST INCREASING SEQUENCES

H. BOR AND H. S. ÖZARSLAN

(communicated by G. Toader)

Abstract. In this paper, a theorem of Bor and Özarslan [3] dealing with $\mid C, \alpha; \beta \mid_k$ summability factors has been generalized for $\mid C, \alpha, \gamma; \beta \mid_k$ summability methods.

1. Introduction

We will use the following notations and notions in our paper:

If g > 0, then f = O(g) means that |f| < K.g, for some constant K > 0 (see [7]). Let (u_n) be a sequence. We write that $\Delta u_n = u_n - u_{n+1}$, $\Delta^0 u_n = u_n$ and $\Delta^k u_n = \Delta \Delta^{k-1} u_n$, for k = 1, 2, ..., (see [7]).

Abel's transformation ([8]): Let (a_k) , (b_k) be complex sequences, and write $S_n = a_1 + a_2 + ... + a_n$. Then

$$\sum_{k=1}^{n} a_k b_k = \sum_{k=1}^{n-1} S_k \Delta b_k + S_n b_n.$$
 (1)

Hölder's inequality ([8]): If p > 1, $\frac{1}{p} + \frac{1}{q} = 1$ and $a_1, a_2, a_3, ..., a_n \geqslant 0$; $b_1, b_2, b_3, ..., b_n \geqslant 0$, then

$$\sum_{k=1}^{n} a_k b_k \leqslant \left(\sum_{k=1}^{n} a_k^p\right)^{1/p} \left(\sum_{k=1}^{n} b_k^q\right)^{1/q}.$$
 (2)

A sequence (b_n) of positive numbers is said to be δ -quasi-monotone, if $b_n \to 0$, $b_n > 0$ ultimately and $\Delta b_n \geqslant -\delta_n$, where (δ_n) is a sequence of positive numbers (see [2]). A positive sequence (b_n) is said to be almost increasing if there exists a positive increasing sequence c_n and two positive constants A and B such that $Ac_n \leqslant b_n \leqslant Bc_n$ (see [1]). Let $\sum a_n$ be a given infinite series with partial sums (s_n) . We denote by σ_n^α and t_n^α the n-th Cesàro means of order α , with $\alpha > -1$, of the sequence (s_n) and (na_n) , respectively, i.e.,

$$\sigma_n^{\alpha} = \frac{1}{A_n^{\alpha}} \sum_{\nu=0}^n A_{n-\nu}^{\alpha-1} s_{\nu} \tag{3}$$

Mathematics subject classification (2000): 40D15, 40F05, 40G05.

Key words and phrases: Absolute summability, almost increasing and quasi-monotone sequences.

$$t_n^{\alpha} = \frac{1}{A_n^{\alpha}} \sum_{\nu=1}^n A_{n-\nu}^{\alpha-1} \nu a_{\nu}, \tag{4}$$

where

$$A_n^{\alpha} = O(n^{\alpha}), \quad \alpha > -1, \quad A_0^{\alpha} = 1 \quad \text{and} \quad A_{-n}^{\alpha} = 0 \quad for \quad n > 0.$$
 (5)

The series $\sum a_n$ is said to be summable $|C, \alpha|_k$, $k \ge 1$ and $\alpha > -1$, if (see [5])

$$\sum_{n=1}^{\infty} n^{k-1} \mid \sigma_n^{\alpha} - \sigma_{n-1}^{\alpha} \mid^{k} = \sum_{n=1}^{\infty} \frac{1}{n} \mid t_n^{\alpha} \mid^{k} < \infty$$
 (6)

and it is said to be summable $|C, \alpha; \beta|_k$, $k \ge 1$, $\alpha > -1$ and $\beta \ge 0$, if (see [6])

$$\sum_{n=1}^{\infty} n^{\beta k + k - 1} \mid \sigma_n^{\alpha} - \sigma_{n-1}^{\alpha} \mid^k = \sum_{n=1}^{\infty} n^{\beta k - 1} \mid t_n^{\alpha} \mid^k < \infty.$$
 (7)

The series $\sum a_n$ is said to be summable $|C, \alpha, \gamma; \beta|_k$, $k \ge 1$ and $\alpha > -1$, $\delta \ge 0$ and γ is a real number, if (see [9])

$$\sum_{n=1}^{\infty} n^{\gamma(\beta k+k-1)-k} \mid t_n^{\alpha} \mid^k < \infty.$$
 (8)

If we take $\gamma=1$, then $\mid C,\alpha,\gamma;\beta\mid_k$ summability reduces to $\mid C,\alpha;\beta\mid_k$ summability.

Bor and Özarslan [3] have proved the following theorem for $|C, \alpha; \beta|_k$ summability factors.

THEOREM A. Let (X_n) be an almost increasing sequence such that $|\Delta X_n| = O(\frac{X_n}{n})$ and $\lambda_n \to 0$ as $n \to \infty$. Suppose that there exists a sequence of numbers (B_n) such that it is δ -quasi-monotone with $\sum nX_n\delta_n < \infty$, $\sum B_nX_n$ is convergent and $|\Delta \lambda_n| \leq |B_n|$ for all n. If the sequence (u_n^α) , defined by (see [10])

$$u_n^{\alpha} = \begin{cases} |t_n^{\alpha}|, & \alpha = 1\\ \max_{1 \leqslant \nu \leqslant n} |t_{\nu}^{\alpha}|, & 0 < \alpha < 1 \end{cases}$$
 (9)

satisfies the condition

$$\sum_{n=1}^{m} n^{\beta k-1} (u_n^{\alpha})^k = O(X_m) \quad as \quad m \to \infty,$$
 (10)

then the series $\sum a_n \lambda_n$ is summable $|C, \alpha; \beta|_k$, $k \ge 1$ and $0 \le \beta < \alpha \le 1$.

2. The main result

The aim of this paper is to generalize Theorem A for $|C, \alpha, \gamma; \beta|_k$ summability factors. We shall prove the following theorem.

THEOREM. Let (X_n) be an almost increasing sequence such that $|\Delta X_n| = O(\frac{X_n}{n})$ and $\lambda_n \to 0$ as $n \to \infty$. Suppose that there exists a sequence of numbers (B_n) such that it is δ -quasi-monotone with $\sum nX_n\delta_n < \infty$, $\sum B_nX_n$ is convergent and $|\Delta \lambda_n| \leq |B_n|$ for all n. If the sequence (u_n^{α}) , defined by (9) satisfies the condition

$$\sum_{n=1}^{m} n^{\gamma(\beta k + k - 1) - k} (u_n^{\alpha})^k = O(X_m) \quad as \quad m \to \infty,$$
(11)

then the series $\sum a_n \lambda_n$ is summable $|C, \alpha, \gamma; \beta|_k$, where $k \ge 1$, $\beta \ge 0$, $0 < \alpha \le 1$ and γ is a real number such that $k + \alpha k - \gamma(\beta k + k - 1) > 1$.

We need the following lemmas for the proof of our theorem.

LEMMA 1. ([4]) If $0 < \alpha \le 1$ and $1 \le v \le n$, then

$$|\sum_{p=0}^{\nu} A_{n-p}^{\alpha-1} a_p| \leqslant \max_{1 \leqslant m \leqslant \nu} |\sum_{p=0}^{m} A_{m-p}^{\alpha-1} a_p|.$$
 (12)

LEMMA 2. ([3]) Under the conditions regarding (λ_n) and (X_n) of the Theorem, we have

$$|\lambda_n| X_n = O(1)$$
 as $n \to \infty$. (13)

LEMMA 3. ([3]) Under the conditions pertaining to (X_n) and (B_n) of the Theorem, we have that

$$nB_nX_n = O(1) (14)$$

$$\sum_{n=1}^{\infty} nX_n \mid \Delta B_n \mid < \infty. \tag{15}$$

3. Proof of the Theorem

Let (T_n^{α}) be the n-th (C, α) mean of the sequence $(na_n\lambda_n)$. Then, by (4) we have

$$T_n^{\alpha} = \frac{1}{A_n^{\alpha}} \sum_{\nu=1}^n A_{n-\nu}^{\alpha-1} \nu a_{\nu} \lambda_{\nu}. \tag{16}$$

Using Abel's transformation, we get that

$$T_n^{\alpha} = \frac{1}{A_n^{\alpha}} \sum_{\nu=1}^{n-1} \Delta \lambda_{\nu} \sum_{p=1}^{\nu} A_{n-p}^{\alpha-1} p a_p + \frac{\lambda_n}{A_n^{\alpha}} \sum_{\nu=1}^{n} A_{n-\nu}^{\alpha-1} \nu a_{\nu},$$

so that making use of Lemma 1, we have

$$|T_{n}^{\alpha}| \leq \frac{1}{A_{n}^{\alpha}} \sum_{\nu=1}^{n-1} |\Delta \lambda_{\nu}| |\sum_{p=1}^{\nu} A_{n-p}^{\alpha-1} p a_{p}| + \frac{|\lambda_{n}|}{A_{n}^{\alpha}} |\sum_{\nu=1}^{n} A_{n-\nu}^{\alpha-1} \nu a_{\nu}|$$

$$\leq \frac{1}{A_{n}^{\alpha}} \sum_{\nu=1}^{n-1} A_{\nu}^{\alpha} w_{\nu}^{\alpha} |\Delta \lambda_{\nu}| + |\lambda_{n}| w_{n}^{\alpha}$$

$$= T_{n,1}^{\alpha} + T_{n,2}^{\alpha}, \quad \text{say}.$$

Since

$$|T_{n,1}^{\alpha} + T_{n,2}^{\alpha}|^{k} \leqslant 2^{k} (|T_{n,1}^{\alpha}|^{k} + |T_{n,2}^{\alpha}|^{k}),$$

to complete the proof of the Theorem, it is sufficient to show that

$$\sum_{n=1}^{\infty} n^{\gamma(\beta k+k-1)-k} \mid T_{n,r}^{\alpha} \mid^{k} < \infty \quad \text{for} \quad r = 1, 2, \quad \text{by} \quad (8).$$

Now, when k > 1, applying Hölder's inequality with indices k and k', where $\frac{1}{k} + \frac{1}{k'} = 1$, we get that

$$\begin{split} \sum_{n=2}^{m+1} n^{\gamma(\beta k + k - 1) - k} \mid T_{n,1}^{\alpha} \mid^{k} & \leq \sum_{n=2}^{m+1} n^{\gamma(\beta k + k - 1) - k} \left\{ \frac{1}{A_{n}^{\alpha}} \sum_{\nu=1}^{n-1} A_{\nu}^{\alpha} u_{\nu}^{\alpha} \mid \Delta \lambda_{\nu} \mid \right\}^{k} \\ & = O(1) \sum_{n=2}^{m+1} n^{\gamma(\beta k + k - 1) - k - \alpha k} \left\{ \sum_{\nu=1}^{n-1} v^{\alpha k} (u_{\nu}^{\alpha})^{k} \mid B_{\nu} \mid \right\} \\ & \times \left\{ \sum_{\nu=1}^{n-1} \mid B_{\nu} \mid \right\}^{k-1} \\ & = O(1) \sum_{\nu=1}^{m} v^{\alpha k} (u_{\nu}^{\alpha})^{k} \mid B_{\nu} \mid \sum_{n=\nu+1}^{m+1} \frac{1}{n^{k + \alpha k - \gamma(\beta k + k - 1)}} \\ & = O(1) \sum_{\nu=1}^{m} v^{\alpha k} (u_{\nu}^{\alpha})^{k} \mid B_{\nu} \mid \int_{\nu}^{\infty} \frac{dx}{x^{\alpha k + k - \gamma(\beta k + k - 1)}} \\ & = O(1) \sum_{\nu=1}^{m} v \mid B_{\nu} \mid v^{\gamma(\beta k + k - 1) - k} (u_{\nu}^{\alpha})^{k} \\ & = O(1) \sum_{\nu=1}^{m-1} \Delta(\nu \mid B_{\nu} \mid) \sum_{\nu=1}^{\nu} r^{\gamma(\beta k + k - 1) - k} (u_{\nu}^{\alpha})^{k} \\ & + O(1) m \mid B_{m} \mid \sum_{\nu=1}^{m} v^{\gamma(\beta k + k - 1) - k} (u_{\nu}^{\alpha})^{k} \\ & = O(1) \sum_{\nu=1}^{m-1} \mid \Delta(\nu \mid B_{\nu} \mid) \mid X_{\nu} + O(1) m \mid B_{m} \mid X_{m} \end{split}$$

$$= O(1) \sum_{\nu=1}^{m-1} \nu \mid \Delta B_{\nu} \mid X_{\nu} + O(1) \sum_{\nu=1}^{m-1} \mid B_{\nu+1} \mid X_{\nu+1} + O(1)m \mid B_{m} \mid X_{m} = O(1) \text{ as } m \to \infty,$$

by virtue of the hypotheses of the Theorem and Lemma 3.

Again, since $|\lambda_n| = O(1/X_n) = O(1)$ by (13), we have that

$$\sum_{n=1}^{m} n^{\gamma(\beta k + k - 1) - k} | T_{n,2}^{\alpha} |^{k} = \sum_{n=1}^{m} | \lambda_{n} |^{k-1} | \lambda_{n} | n^{\gamma(\beta k + k - 1) - k} (u_{n}^{\alpha})^{k}$$

$$= O(1) \sum_{n=1}^{m} | \lambda_{n} | n^{\gamma(\beta k + k - 1) - k} (u_{n}^{\alpha})^{k}$$

$$= O(1) \sum_{n=1}^{m-1} \Delta | \lambda_{n} | \sum_{\nu=1}^{n} v^{\gamma(\beta k + k - 1) - k} (u_{\nu}^{\alpha})^{k}$$

$$+ O(1) | \lambda_{m} | \sum_{n=1}^{m} n^{\gamma(\beta k + k - 1) - k} (u_{n}^{\alpha})^{k}$$

$$= O(1) \sum_{n=1}^{m-1} | \Delta \lambda_{n} | X_{n} + O(1) | \lambda_{m} | X_{m}$$

$$= O(1) \sum_{n=1}^{m-1} | B_{n} | X_{n} + O(1) | \lambda_{m} | X_{m} = O(1)$$

by virtue of the hypotheses of the Theorem, Lemma 2 and Lemma 3.

Therefore, we get that

$$\sum_{n=1}^m n^{\gamma(\beta k+k-1)-k} \mid T_{n,r}^{\alpha} \mid^k = O(1) \quad \text{as} \quad m \to \infty, \quad \text{for} \quad r = 1, 2.$$

This completes the proof of the Theorem.

If we take $\gamma=1$, then we get Theorem A. In this case condition (11) reduces to condition (10). Also if we take $\gamma=1$ and $\beta=0$, then we have a new result concerning $\mid C,\alpha\mid_k$ summability factors. Finally if we take $\gamma=1$, $\beta=0$ and $\alpha=1$, then we obtain a new result related to $\mid C,1\mid_k$ summability factors.

Acknowledgement. The authors are very grateful to the referee for his/her invaluable suggestions.

REFERENCES

- [1] S. ALJANCIC AND D. ARANDELOVIC, O-regularly varying functions, Publ. Inst. Math., 22 (1977), 5-22.
- [2] R.P. Boas, *Quasi-positive sequences and trigonometric series*, Proc. London Math. Soc. Ser. A, 14 (1965), 38-46.
- [3] H. BOR AND H.S. ÖZARSLAN, A note on absolute summability factors, Adv. Stud. Contemp. Math. (Kyungshang), 6 (2003), 1-11.
- [4] L.S. BOSANQUET, A mean value theorem, J. London Math. Soc., 16 (1941), 146-148.
- [5] T.M. FLETT, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc., 7 (1957), 113-141.
- [6] T.M. FLETT, Some more theorems concerning the absolute summability of Fourier series, Proc. London Math. Soc., 8 (1958), 357-387.
- [7] G.H. HARDY, *Divergent Series*, Oxford Univ. Press, Oxford, (1949).
- [8] I.J. MADDOX, Introductory Mathematical Analysis, Adam Hilger Ltd., Bristol, (1977).
- [9] A.N. TUNCER, On generalized absolute Ces à ro summability factors, Ann. Polon. Math., 78 (2002), 25-29.
- [10] T. PATI, The summability factors of infinite series, Duke Math. J., 21 (1954), 271-284.

(Received July 28, 2007)

H. Bor Department of Mathematics Erciyes University 38039 Kayseri Turkey e-mail: bor@erciyes.edu.tr

H. S. Özarslan
Department of Mathematics

Erciyes University 38039 Kayseri Turkey

 $\emph{e-mail:}$ seyhan@erciyes.edu.tr