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ON THE QUASI-MONOTONE AND ALMOST INCREASING SEQUENCES

H. BOrR AND H. S. OZARSLAN

(communicated by G. Toader)

Abstract. In this paper, a theorem of Bor and Ozarslan [3] dealing with | C, o; B |, summability
factors has been generalized for | C, o, v; B |, summability methods.

1. Introduction

We will use the following notations and notions in our paper:

If ¢ > 0, then f = O(g) means that | f |< K.g, for some constant K > 0
(see [7]). Let (u,) be a sequence. We write that Au, = u, — ,y1, A’u, = u, and
Afu, = ANy, for k=1,2,..., (see[7]).

Abel’s transformation ([8]): Let (a;), (bx) be complex sequences, and write
S,=a;+a +...+a, . Then

n n—1
Zakbk = ZSkAbk + S,.b,. (1)
k=1 k=1
Holder’s inequality ([8]): If p > 1, 117 + é =1 and a;,a3,a3,...,a, > 0;

by,by,bs3,...,b, > 0 , then

n n 1/p n 1/q
> abi < (Z a§> (Z bg> . (2)
k=1 k=1 k=1

A sequence (b,) of positive numbers is said to be J -quasi-monotone, if b, — 0,
b, > 0 ultimately and Ab, > —§, , where (J,) is a sequence of positive numbers (see
[2]). A positive sequence (b,) is said to be almost increasing if there exists a positive
increasing sequence ¢, and two positive constants A and B such that Ac, < b, < B,
(see [1]). Let > a, be a given infinite series with partial sums (s,). We denote by o
and ¢ the n-th Cesaro means of order o, with a > —1, of the sequence (s,) and
(nay,) , respectively, i.e.,

1 n
0 = g 2 A (3)
noy=0
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1 & o
1 = e ZAff_vlvav, (4)
noy=1
where
AY=0(n%), a>-1, Af=1 and A%, =0 for n>0. (5)

The series ) a, is said to be summable | C, ot |, k > 1 and a > —1, if (see

[5])

%) >
Yoo —ol =) — <00 (6)
n=1 n=1

and it is said to be summable | C,a; B |,, k> 1, o« > —1 and B > 0, if (see [6])

o e
S oot e Y < 0
n=1

n=1

The series ) a, is said to be summable | C, o, v;B |,, k > 1 and o > —1,
0 > 0 and y is a real number, if (see [9])

Znﬂﬁk“*l)*k | 1% [F< . (8)

n=1

If wetake y = 1, then | C, &, y; B |, summability reduces to | C, a; B |, summa-
bility.
Bor and Ozarslan [3] have proved the following theorem for | C, a; |, summability
factors.

THEOREM A. Let (X,) be an almost increasing sequence suchthat | AX, |= O(%2)
and Ay — 0 as n— oco. Suppose that there exists a sequence of numbers (By)
such that it is 8 -quasi-monotone with Y nX,0, < oo, »_B,X, is convergent and
| Ay |<| By | for all n. If the sequence (u%), defined by (see [10])

n

. |3 |, a=1
Uy =93 max |17 ], O<a<l1 ©)
1<v<n
satisfies the condition
m
Znﬁk*l(u,‘f)k =0(X,y) as m— oo, (10)
n=1

then the series > ayA, is summable | C, ;3

o k=21 and 0<PB<a<l.
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2. The main result
The aim of this paper is to generalize Theorem A for | C, «,y; B |, summability
factors. We shall prove the following theorem.

THEOREM. Let (X,) be an almost increasing sequence such that | AX, |= O(%2)
and Ay — 0 as n— oco. Suppose that there exists a sequence of numbers (By)
such that it is 8 -quasi-monotone with Y nX,0, < oo, »_B,X, is convergent and
| Ay |<| By | for all n. If the sequence (ul), defined by (9) satisfies the condition

m

Znﬂﬁﬂk*l)*k(u,‘f)k =0(X,) as m— oo, (11)

then the series ) ayA, is summable | C,a,y;B |, where k > 1, f >0, 0 <o <1
and vy is a real number such that k + ok — y(Bk+k—1) > 1.

We need the following lemmas for the proof of our theorem.

LEMMA 1. ([4)If0<a <1 and 1 <v < n, then
| ZA;X aP |< max ‘ ZAm p . (12)
p=0

LEMMA 2. ([3]) Under the conditions regarding (A,) and (X,) of the Theorem,
we have

| A | X =0(1) as n— oo. (13)

LEMMA 3. ([3]) Under the conditions pertaining to (X,) and (B,) of the Theorem,
we have that

nB,X, = 0(1) (14)
> nX, | AB, |< oc. (15)
n=1

3. Proof of the Theorem

Let (T%) be the n-th (C, o) mean of the sequence (na,A,). Then, by (4) we have

n - ZA VClV Ve (16)

Using Abel’s transformation, we get that

n

- —ZA/X ZA,, DAy + 2 ZAO‘ va,,

=1
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so that making use of Lemma 1, we have

T < Zm HZA“

V=

Z A vav

n—1
1

noy=1

/A

= T,ffl + T,ffz, say.
Since
| Ty + T < 24| T nl I+ | T ‘ ),

to complete the proof of the Theorem, it is sufficient to show that
Zn”<ﬁk+k—l)_k | 7Y, [f< oo for r=1,2, by (8).

Now, when k > 1, applying Hélder’s inequality with indices k and k", where 1+ & =
1, we get that

m+1 m—+1 n—1 k
Zny(ﬁkJrk—l)—k | T,(,ﬁ ‘k < Z"Y BlAk—1)— {AO‘ ZA ‘ AN, |}

n=2 n=2
m+1 n—1
= 0(1) ZnY(BkHc—l)—k—ak {Zvak(utvx)k | B, }
n=2 v=1

n—1 k—1
» {z 5, |}
m+1

1
_ (Xk k
= Z" )" By | Z e ak—y (BEk—1)

n=v+1

o dx
_ ok /. ok
= 0(1)2" () |Bv\/ "
v=1 v

= 0(1)) v |B, [ y/PHD )
v=1

m—1 v
= 0(1)Y AW | B, |) Y prBrrkD—k( ek
v=1 r=1

+O(1)m | By, | Y v/ PGt

v=1
m—1
= 0(1)Y A |B.|) | X, +O(1)m | By | X,

v=1



ON THE QUASI-MONOTONE AND ALMOST INCREASING SEQUENCES 533

m—1 m—1

= 0()ZV|AB|X+O Z|BV+1|XV+1

v=1

JrO(l)m ‘ By, ‘ X = 0( ) as m — oQ,

by virtue of the hypotheses of the Theorem and Lemma 3.
Again, since | A, |= O(1/X,) = O(1) by (13), we have that

m
Zny(BkHc—l)—k ‘ Tr?fz |k Z | )k |k 1‘ A ‘ y(Bk+k—1)— ( Zc)k
n=1

= 0(1) Z | A | VPO

m—1

_ ZA|A|Z‘}yﬁk+kl )

1) ‘ A’m | Zny<ﬁk+k71)7k(ug)k
n=1

m—1
= 0(1)2 ‘ Az‘ﬂ |Xn +0(1) | A’m ‘ Xm
n=1
m—1
= O(1) > | By | Xa+ O(1) | An | X = O(1)

n=1
as m — o0,

by virtue of the hypotheses of the Theorem, Lemma 2 and Lemma 3.
Therefore, we get that

m

ZnY(ﬁkJrk—l)—k ‘ Tr‘l’fr |k: O(l) as m— oo, for r=1,2.

This completes the proof of the Theorem.

If we take ¥ = 1, then we get Theorem A. In this case condition (11) reduces to
condition (10). Alsoif wetake y = 1 and 8 = 0, then we have a new result concerning
| C, o |, summability factors. Finally if we take y =1, B =0 and o = 1, then we
obtain a new result related to | C, 1 |, summability factors.

Acknowledgement. The authors are very grateful to the referee for his/her invalu-
able suggestions.
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