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MULTIVARIATE MOMENT TYPE OPERATORS:

APPROXIMATION PROPERTIES IN ORLICZ SPACES

CARLO BARDARO AND ILARIA MANTELLINI

(communicated by R. Verma)

Abstract. In this papermodular convergence theorems inOrlicz spaces for multivariate extensions
of the one-dimensional moment operator are given and the order of modular convergence in
modular Lipschitz classes is studied.

1. Introduction

In several papers (see [18], [9], [2], [7], [3]) various approximation properties of the
one-dimensional moment operator

(Mnf )(s) =
∫ 1

0
(n + 1)tnf (ts)dt

and some of its generalized versions were studied. In particular, these operators have
nice pointwise approximation properties. Indeed they reduce the essential jump of the
function f at a point s ∈ [0, 1] and they converge to f (s) when s is a Lebesgue
point of f . Moreover the use of these operators in problems of calculus of variation
was very wide. For example it is possible to show that the sequence Mnf converges in
variation or in lenght to f . Again the one-dimensional moment operator has interesting
applications to the fractional calculus and it was used in the study of the fractional
dimension of measurable sets (see [18], [12]).

In [9] and [11] some bivariate versions of the above operator were studied in
connection with the pointwise convergence and convergence with respect to some
functional of calculus of variation as, for example, the surface area and perimeter of
sets. Some of these extended operators have a kernel given by radial functions which
characterizes them as “metric type operators”. It is important to remark that in the
earlier paper [17], some of the above properties were obtained in a general form by
considering families of Urysohn type operators.

Here we give some multidimensional versions of the moment type or metric type
operators and we study their convergence properties in the general frame of the Orlicz
spaces. This enables us to obtain corresponding results in Lp -spaces. In particular we
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248 C. BARDARO AND I. MANTELLINI

take into consideration two kinds of operators: a multidimensional metric type operator
with a suitable weight and a box version of the one-dimensional moment operator.

In Sections 3 and 4, we obtain modular convergence theorems in the Orlicz spaces
for the two operators. A key tool in order to obtain these convergence theorems is a
multivariate version in modular spaces of the well known Korovkin theorem, proved
recently in [5] (for the classical Korovkin approximation theory see e.g. [10] and [1]).
This result enables us to check the modular convergence only on a finite set of test
functions determined by the projections on the axis. Moreover we study the behaviour
of the convergence on certain Lipschitz subclasses of the Orlicz space and we give an
order of modular convergence on these subclasses.

Note that the results given here hold also in abstract modular function spaces [15],
[6]. In this instance, the generating modular functional �, has to satisfy monotonicity,
absolute finiteness, absolute continuity assumptions, some generalized Jensen convexity
in integral form and a notion of subboundedness (see e.g. [6]). In particular we have to
assume an inequality of the form

�[f (t·)] � F(t)�[f (·)]

where F is a measurable function such that∫
A
Kn(t)F(t)dt � D

for every n ∈ IN and an absolute constant D > 0. These assumptions are automatically
satisfied in Orlicz spaces and are fundamental in order to obtain the modular continuity
for the family of operators.

2. Notations and Definitions

Let us consider A = [0, 1]N provided with the Lebesgue measure dt. For any
two vectors t = (t1, . . . , tN), s = (s1, . . . , sN) ∈ A, we put ts = (t1s1, . . . , tNsN),
〈 t 〉 = t1 · · · tN and, as usual, |t| = (t21 + . . . + t2N)1/2. By θ we denote the vector
θ = (1, · · · , 1).

We will denote by X(A) the space of all real-valued measurable functions defined
on A providedwith equality a.e. and by C(A) the space of all continuous and bounded
functions.

Let Φ be the class of all functions ϕ : IR+
0 → IR+

0 such that
(i) ϕ is a convex function,
(ii) ϕ(0) = 0, ϕ(u) > 0 for u > 0 and limu→+∞ ϕ(u) = +∞.

For ϕ ∈ Φ, we define the functional

�ϕ [f ] =
∫

A
ϕ(|f (s)|)ds

for every f ∈ X(A).
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As it is well known, �ϕ is a convex modular on X(A) and the subspace

Lϕ(A) = {f ∈ X(A) : �ϕ [λ f ] < +∞ for some λ > 0}
is the Orlicz space generated by ϕ, (see [15]). The subspace of Lϕ(A), defined by

Eϕ(A) = {f ∈ X(A) : �ϕ [λ f ] < +∞ for every λ > 0},
is called the space of finite elements of Lϕ(A). For example every bounded function
belongs to Eϕ(A), (see [15] and [6]).

We say that a sequence of functions (f n)n∈IN ⊂ Lϕ(A) is modularly convergent to
a function f ∈ Lϕ(A), if there exists λ > 0 such that

lim
n→+∞ �ϕ [λ (f n − f )] = 0.

This notion extends the norm-convergence in Lp -spaces.
Moreover a sequence of functions (f n)n∈IN ⊂ Lϕ(A) is norm-convergent (or

strongly convergent) to f ∈ Lϕ(A) if

lim
n→+∞ �ϕ [λ (f n − f )] = 0

for every λ > 0. The two notions of convergence are equivalent if and only if the
function ϕ satisfies a Δ2 -condition, i.e. there exists a constant M > 0 such that
ϕ(2u) � Mϕ(u), for every u � 0. For example, this happens for every Lp -spaces
generated by the ϕ -functions defined as ϕ(u) = up, u � 0 (see [15], [6]).

Let T = (Tn)n∈IN be a sequence of modularly continuous positive linear operators
Tn : Lϕ(A) → Lϕ(A), i.e. there exists a positive constant W > 0 such that

�ϕ [Tnf ] � W�ϕ [f ]

for every f ∈ Lϕ(A) and for every n ∈ IN.
Let us consider the functions ei ∈ Lϕ(A), i = 0, . . . , N + 1 defined by

e0(t) = 1, ei(t) = ti, i = 1, . . . , N and eN+1(t) = |t|2.
Note that the above system of functions satisfies the following property: there exist
continuous functions ai, i = 0, . . . , N + 1 such that the function

Ps(t) =
N+1∑
i=0

ai(s)ei(t), s, t ∈ A

is positive and equal to zero if and only if s = t. Indeed we can take a0(s) =
|s|2, ai(s) = −2si, i = 1, . . . , N and aN+1(s) = 1, s ∈ A.

Our main convergence theorems make use of the following result which is a
consequence of a general Korovkin type theorem in abstract modular spaces proved in
[5]. The proof of this theorem is mainly based on a modular density theorem of the
subspace C(A) (see [14]).
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For convenience of the reader we reformulate the statement of the theorem in this
special instance

THEOREM 1. Assume that

lim
n→+∞ Tnei = ei, i = 0, . . . , N + 1

strongly in Lϕ(A) then
lim

n→+∞Tn f = f

modularly in Lϕ(A).

3. Weighted metric type kernels

Let N � 2 and let, for every n ∈ IN, Kn : A → IR+
0 be the function defined by

Kn(t) = cn〈 t 〉 |t|2nχAn , t ∈ A,

where for every n ∈ IN, An = [1/n, 1]N, χAn is the characteristic function of An and

1
cn

=
∫

A
〈 t 〉 |t|2nχAndt.

Let us consider the family of operators defined by

(Mnf )(s) =
∫

A
Kn(t)f (ts)dt,

for every function f belonging to the domain D = DomM =
⋂

n∈IN DomMn, where
DomMn is the subset of X(A) onwhich Mnf is well defined as ameasurable function
of s ∈ A.

A similar bivariate version of the above operator (without the weight 〈 t 〉), was
considered in [11] (see also [9]).

3.1. Convergence theorem

We begin with some lemmas.

LEMMA 1. There holds, for every n ∈ IN,

cn � 22N(n + 1)N

Nn
.

Proof. We estimate
1
cn

=
∫

A
〈 t 〉 |t|2nχAndt.
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Using N − 1 times the Newton formula we can write, for n � 2,

1
cn

=
n∑

k1=0

k1∑
k2=0

· · ·
kN−2∑

kN−1=0

(
n
k1

)(
k1

k2

)
· · ·
(

kN−2

kN−1

)

×
∫

An

t2(n−k1)+1
1 t2(k1−k2)+1

2 · · · t2kN−1+1
N dt

=
n∑

k1=0

k1∑
k2=0

· · ·
kN−2∑

kN−1=0

(
n
k1

)(
k1

k2

)
· · ·
(

kN−2

kN−1

)
1

2(n − k1) + 2
· · · 1

2kN−1 + 2

×
(

1 − 1
n2(n−k1)+2

)
· · ·
(

1 − 1
n2kN−1+2

)

� 1
22N

1
(n + 1)N

n∑
k1=0

k1∑
k2=0

· · ·
kN−2∑

kN−1=0

(
n
k1

)(
k1

k2

)
· · ·
(

kN−2

kN−1

)

=
1

22N

Nn

(n + 1)N

and so the assertion follows. �

LEMMA 2. For every ball Bδ (θ) centered at the point θ with radius δ < 1 there
holds

lim
n→+∞

∫
A\Bδ (θ)

Kn(t)dt = 0.

Proof. Let B̃δ be the ball centered at the origin with radius
√

N − 1 + (1 − δ)2.

Since An \ Bδ (θ) ⊂ A \ Bδ (θ) ⊂ B̃δ we have∫
An\Bδ (θ)

Kn(t)dt � cn

∫
A\Bδ (θ)

|t|2ndt � cn

∫
B̃δ

|t|2ndt

= cn
2πN/2

Γ(N/2)

∫ √
N−1+(1−δ)2

0
v2nvN−1dv

= cn
2πN/2

Γ(N/2)
(N − 1 + (1 − δ)2)n+N/2

2n + N

� 22N(n + 1)N

Nn

2πN/2

Γ(N/2)
(N − 1 + (1 − δ)2)n+N/2

2n + N

=
22N+1πN/2(N−1+(1−δ)2)N/2

Γ(N/2)
(n+1)N

2n+N

(
N−1+(1−δ)2

N

)n

.

Since δ < 1 we have the assertion. �
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LEMMA 3. There exists a constant W > 0 such that∫
A
Kn(t)〈 t 〉−1dt � W

for every n ∈ IN.

Proof. Putting Ak = [0, 1]k, [t]k = t1 + t2 + . . . + tk for k = 1, . . . , N we have
successively∫

A
Kn(t)〈 t 〉−1dt = cn

∫
An

|t|2ndt � cn

∫
A
[t]ndt

� cn

n + 1

∫
AN−1

[
([t]N−1 + 1)n+1 − ([t]N−1)n+1

]
dt1 . . . dtN−1

� cn

n + 1

∫
AN−1

([t]N−1 + 1)n+1dt1 . . . dtN−1

=
cn

n + 1

∫
AN−2

dt1 . . . dtN−2

∫ 1

0
([t]N−1 + 1)n+1dtN−1

� cn

(n + 1)(n + 2)

∫
AN−2

([t]N−2 + 2)n+2dt1 . . . dtN−2

� cn

(n + 1)(n + 2) · · · (n + N − 1)

∫ 1

0
(t1 + N − 1)n+N−1dt1

� cn
Nn+N

(n + 1) · · · (n + N)
� cn

Nn+N

(n + 1)N

� 22N(n + 1)N

Nn

Nn+N

(n + 1)N
= 22NNN .

So we can take W = 22NNN and the assertion follows. �
Let ϕ ∈ Φ be fixed and let �ϕ [f ] be the modular generated by ϕ. As a

consequence of Lemma 3 we have the following

PROPOSITION 1. For every n ∈ IN and f ∈ Lϕ(A) there holds

�ϕ [Mnf ] � W�ϕ [f ].

In particular we have Mnf ∈ Lϕ(A) whenever f ∈ Lϕ(A).

Proof. By Jensen inequality and Fubini-Tonelli theorem, we have

�ϕ [Mnf ] �
∫

A
Kn(t)

[∫
A
ϕ(|f (ts)|)ds

]
dt �

∫
A
Kn(t)〈 t 〉−1�ϕ [f ]dt

� W�ϕ [f ]

i.e. the assertion. �
Hence we obtain that Lϕ(A) ⊂ D .

Using Lemma 2, we have the following
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THEOREM 2. Putting ei(t) = ti, i = 1, . . . , N and eN+1(t) = |t|2, there holds

lim
n→+∞ Mnei = ei, i = 1, · · · , N + 1

strongly in Lϕ(A).

Proof. Note that

|(Mnei)(s) − ei(s)| � si

∫
A
Kn(t)(1 − ti)dt �

∫
A
Kn(t)(1 − ti)dt.

Let 0 < ε < 1 be fixed and let Bε(θ) be the ball centered at the point θ
with radius ε. We have

|Mnei(s) − ei(s)| �
{∫

A\Bε (θ)
+
∫

Bε (θ)∩A

}
Kn(t)(1 − ti)dt = J1 + J2.

For J1 from Lemma 2, there exists an integer n such that

J1 � 2
∫

A\Bε(θ)
Kn(t)dt < 2ε,

for every n � n. Moreover

J2 � ε
∫

Bε (θ)∩A
Kn(t)dt � ε.

Thus
|Mnei(s) − ei(s)| � 3ε.

Let now λ > 0 be fixed and let us assume that 3ε < 1. We have, by the convexity of
the function ϕ,

�ϕ [λ (Mnei − ei)] < 3ε�ϕ [λ ]

and so for the arbitrariness of ε we obtain the assertion for the functions ei, i =
1, . . . , N. For the function eN+1 we can repeat the same arguments as before in order
to prove that

lim
n→+∞Mne

2
i = e2

i

strongly in Lϕ(A) and so we obtain easily the assertion. �

COROLLARY 1. There holds

lim
n→+∞Mnf = f

modularly in Lϕ(A) for every f ∈ Lϕ(A).

Proof. The proof follows from Theorem 1. �
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3.2. Rate of modular convergence

Let T be the class of all functions τ : A → IR+
0 such that τ(θ) = 0 and

τ(t) 	= 0 for t 	= θ. For a fixed τ ∈ T we define the class:

Lipτ(ϕ) = {f ∈ Lϕ(A) : ∃ λ > 0 with �ϕ [λ |f (t·) − f (·)|] = O(τ(t)), t → θ}
where, for any two functions f , g ∈ X(A), f (t) = O(g(t)), t → θ means that there is
a constant C > 0 and δ > 0 such that |f (t)| � C|g(t)|, for every t ∈ Bδ (θ).

THEOREM 3. Let α ∈]0, 1] and τ ∈ T be fixed. Assume that there is δ > 0 such
that ∫

Bδ (θ)∩A
Kn(t)τ(t)dt = O(n−α), n → +∞. (1)

If f ∈ Lipτ(ϕ) then for sufficiently small λ > 0 we have

�ϕ [λ (Mnf − f )] = O(n−α), n → +∞.

Proof. Let λ > 0 be fixed. We have

�ϕ [λ (Mnf − f )] �
∫

A
ϕ
(
λ
∫

A
Kn(t)|f (ts) − f (s)|dt

)
ds

�
∫

A
Kn(t)

(∫
A
ϕ(λ |f (ts) − f (s)|ds

)
dt

=

(∫
Bδ (θ)∩A

+
∫

A\Bδ (θ)

)
Kn(t)

(∫
A
ϕ(λ |f (ts) − f (s)|)ds

)
dt

= I1 + I2.

For I1 we can choose λ and δ such that

�ϕ [λ |f (t·) − f (·)|] � Cτ(t)

for every t ∈ Bδ (θ) ∩ A and (1) holds. So by (1), for α ∈]0, 1], we obtain

I1 � C
∫

Bδ (θ)∩A
Kn(t)τ(t)dt = O(n−α).

For I2 we have

I2 �
∫

A\Bδ (θ)
Kn(t)

(∫
A
ϕ(2λ |f (ts)|)ds

)
dt +

∫
A\Bδ (θ)

Kn(t)
(∫

A
ϕ(2λ |f (s)|)ds

)
dt

� cn

∫
A\Bδ (θ)

|t|2n�ϕ [2λ f ]dt +
∫

A\Bδ (θ)
Kn(t)�ϕ [2λ f ]dt.

Following the proof of Lemma 2 we easily obtain for every α > 0

I2 = O(n−α)
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and so the assertion follows. �

EXAMPLE 1. Here we give a bidimensional example of Theorem 3. We take
for α ∈]0, 1], τ(x, y) = | log x|α | log y|α which is defined in a neighbourhood of
θ = (1, 1). We will show that our bidimensional kernel Kn(x, y) satisfies assumption
(1) of Theorem 3. Indeed, by the concavity of the function g(t) = tα , t � 0 we have∫

Bδ (θ)∩A
Kn(x, y)τ(x, y)dxdy �

(
cn

∫
A
(x2 + y2)n| log x|| log y|dxdy

)α

.

Let us consider now the integral

In = cn

∫
A
(x2 + y2)n| log x|| log y|dxdy.

We have, by elementary calculation,

cn

n∑
k=0

(
n
k

)(∫ 1

0
x2k| log x|dx

)(∫ 1

0
y2(n−k)| log y|dy

)

= cn

n∑
k=0

(
n
k

)
1

(2k + 1)2

1
(2(n − k) + 1)2

� cn

n∑
k=0

(
n
k

)
1

[(k + 1)((n − k) + 1)]2

=
cn

(n + 2)2

n∑
k=0

(
n
k

)(
1

(k + 1)
+

1
n − k + 1

)2

=
cn

(n + 2)2

n∑
k=0

(
n
k

)
1

(n−k+1)2
+

cn

(n+2)2

n∑
k=0

(
n
k

)
2

(n−k+1)(k+1)

+
cn

(n + 2)2

n∑
k=0

(
n
k

)
1

(k + 1)2

= I1 + I2 + I3.

For I1 we have

I1 � cn

(n + 2)2

n∑
k=0

(
n
k

)
1

(n − k + 1)
=

cn

(n + 2)2

2n+1 − 1
(n + 1)

.

In the same way

I3 � cn

(n + 2)2

2n+1 − 1
(n + 1)

.

Finally for I2 we get

I2 =
2cn

(n + 2)3

n∑
k=0

(
n
k

)(
1

k + 1
+

1
n − k + 1

)
=

4cn

(n + 2)3

2n+1 − 1
(n + 1)

.
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Thus we have the estimate∫
Bδ (θ)∩A

Kn(x, y)τ(x, y)dxdy

�
[
2cn(2n+1 − 1)

(
1

(n + 2)2(n + 1)
+

2
(n + 2)3(n + 1)

)]α
�
[
25 (n + 1)2

2n
(2n+1 − 1)

(
1

(n + 2)2(n + 1)
+

2
(n + 2)3(n + 1)

)]α
= O(n−α)

REMARKS.
1. We can take other examples of functions τ(x, y) for example

τ(x, y) = (1 − x)α(1 − y)α ,

obtaining the same error of approximation.
2. In (1) it is possible also to consider other comparison sequences ξ(n) such

that limn→+∞ ξ(n) = 0, in place of n−α . In this case we obtain an order of
approximation O(ξ(n)).

4. Another extension of one-dimensional moment kernels

Here we introduce a direct extension to the multivariate case of the classical one-
dimensional moment kernel (see [18], [2], [9],[7], [3]). Let A = [0, 1]N and let, for
every n ∈ IN, Kn : A → IR+

0 be the function defined by

Kn(t) = (n + 1)N〈 t 〉 n, t ∈ A.

Let us consider the family of operators defined by

(Mnf )(s) =
∫

A
Kn(t)f (ts)dt,

for every function f belonging to the domain D of the operator Mn.

At first, note that ∫
A
Kn(t)dt =

N∏
j=1

(n + 1)
∫ 1

0
tnj dtj = 1

and ∫
A
Kn(t)〈 t 〉−1dt = (n + 1)N

∫
A
〈 t 〉 n−1dt =

(
n + 1

n

)N

� 2N .
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Moreover, putting Rδ (θ) = [1 − δ, 1]N, we have A \ Rδ (θ) ⊂ Vδ =
⋃N

k=1 Uk where

Uk = [0, 1] × . . .

k−place︷ ︸︸ ︷
[0, 1 − δ ] × . . . [0, 1] and∫

A\Rδ (θ)
Kn(t)dt = O(n−α)

for every α > 0. Indeed we have∫
A\Rδ (θ)

Kn(t)dt �
∫

Vδ

Kn(t)dt =
N∑

k=1

N∏
j=1,j�=k

(n + 1)
∫ 1

0
tnj dtj · (n + 1)

∫ 1−δ

0
tnkdtk

=
N∑

k=1

(n + 1)
∫ 1−δ

0
tnkdtk = N(1 − δ)n+1

and so the assertion follows.
As before, we can prove that �ϕ [Mnf ] � 2N�ϕ [f ] and so Mnf ∈ Lϕ(A) whenever

f ∈ Lϕ(A). Hence we obtain that Lϕ(A) ⊂ D .

THEOREM 4. Putting ei(t) = ti, i = 1, . . . , N and eN+1 = |t|2 there holds

lim
n→+∞ Mnei = ei, i = 1, . . . , N + 1,

strongly in Lϕ(A).

Proof. We have easily

|(Mnei)(s) − ei(s)| �
∫

A
Kn(t)(1 − ti)dt =

N∏
j=1

(n + 1)
∫ 1

0
tnj (1 − ti)dtj

= (n + 1)
∫ 1

0
tni (1 − ti)dti =

1
n + 2

.

Taking into account that any constant function defined on A belongs to the space
Eϕ(A), passing to the modular, we have the assertion letting n → +∞. For the
function eN+1 we can argue as in Theorem 2. �

COROLLARY 2. For the operator Mn we have

lim
n→+∞Mnf = f

modularly in Lϕ(A) for every f ∈ Lϕ(A).
Regarding the rate of modular convergence in Lipschitz classes, using the notations

of previous section, we have the following theorem

THEOREM 5. Let α ∈]0, 1] and τ ∈ T be fixed. Assume that there is δ > 0 such
that ∫

Rδ (θ)
Kn(t)τ(t)dt = O(n−α), n → +∞. (2)
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If f ∈ Lipτ(ϕ) then for sufficiently small λ > 0 we have

�ϕ [λ (Mnf − f )] = O(n−α), n → +∞.

EXAMPLE 2. Let τ(t) =
∏N

j=1(1 − tj)α/N with α ∈]0, 1], then we have

nα
∫

A
Kn(t)τ(t)dt = nα

N∏
j=1

(n + 1)
∫ 1

0
tnj (1 − tj)α/Ndtj

= nα(n + 1)NBN(n + 1,
α
N

+ 1).

Since limn→+∞(n + 1)
α
N +1B(n + 1, α

N + 1) = Γ(αN + 1) (see [16]) we obtain (2).

Note that we can obtain similar order of approximation by different choises of the
function τ. For example we can take

τ(t) =
N∏

j=1

| log tj|α/N

for α ∈]0, 1].
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