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SCHUR CONVEXITY AND SCHUR–GEOMETRICALLY

CONCAVITY OF GENERALIZED EXPONENT MEAN

DA-MAO LI AND HUAN-NAN SHI

(Communicated by G. Toader)

Abstract. The monotonicity, the Schur-convexity and the Schur-geometrically convexity with
variables (x,y) in R

2
++ for fixed a of the generalized exponent mean Ia(x,y) is proved. Besides,

the monotonicity with parameters a in R for fixed (x,y) of Ia(x,y) is discussed by using the
hyperbolic composite function. Furthermore, some new inequalities are obtained.

1. Introduction

Throughout the paper we denote the set of the real numbers, the nonnegative real
numbers and the positive real numbers by R,R+ and R++ respectively.

Let (a,b) ∈ R
2 , (x,y) ∈ R

2
++ . The extended mean (or Stolarsky mean) of (x,y)

is defined in [1, p. 43] as

E(a,b;x,y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
b
a
· ya− xa

yb− xb

)1/(a−b)

, ab(a−b)(x− y) �= 0,(
1
a
· ya− xa

lny− lnx

)1/a

, a(x− y) �= 0, b = 0;

1

e1/a

(
xxa

yya

)1/(xa−ya)

, a(x− y) �= 0, a = b;
√

xy, a = b = 0, x �= y;

x, x = y.

In particular, for a �= 0,

E(a,a;x,y) =

⎧⎪⎨
⎪⎩

1

e1/a

(
xxa

yya

)1/(xa−ya)

, x �= y;

x, x = y

is called the generalized exponent or identric mean, in symbols Ia(x,y) .
The Schur-convexity of the extended mean E(r,s;x,y) with (x,y) was discussed

in [2] and the following conclusion is obtained:
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THEOREM A. For fixed (a,b) ∈ R
2 ,

(i) if 2 < 2a < b or 2 � 2b � a, then E(a,b;x,y) is Schur-convex with (x,y) on
R

2
++ ,

(ii) if (a,b) ∈ {a < b � 2a,0 < a � 1}∪ {b < a � 2b,0 < b � 1}∪ {0 < b < a �
1}∪{0 < a < b � 1}∪{b � 2a < 0}∪{a � 2b < 0} , then E(a,b;x,y) is Schur-
concave with (x,y) on R

2
++ .

But this conclusion is not related to the case a = b . In other words, the Schur-
convexity of the generalized exponent mean Ia(x,y) with (x,y) is not discussed in [2].

In this paper, the monotonicity, the Schur-convexity and the Schur-geometrically
convexity with variables (x,y) in R

2
++ for fixed a of the generalized exponent mean

Ia(x,y) is proved. Besides, the monotonicity with parameters a in R for fixed (x,y)
of Ia(x,y) is discussed by using the hyperbolic composite function. Furthermore, some
new inequalities are obtained.

2. Definitions and Lemmas

We need the following definitions and lemmas.

DEFINITION 1. ([3, 4]) Let x = (x1, . . . ,xn) and y = (y1, . . . ,yn) ∈ R
n .

(i) x is said to be majorized by y (in symbols x ≺ y) if ∑k
i=1 x[i] � ∑k

i=1 y[i] for k =
1,2, . . . ,n−1 and ∑n

i=1 xi = ∑n
i=1 yi , where x[1] � · · · � x[n] and y[1] � · · · � y[n]

are rearrangements of x and y in a descending order.

(ii) x � y means xi � yi for all i = 1,2, . . . ,n . Let Ω⊂R
n . The function ϕ : Ω→ R

is said to be increasing if x � y implies ϕ(x) � ϕ(y) . ϕ is said to be decreasing
if and only if −ϕ is increasing.

(iii) Ω⊂R
n is called a convex set if (αx1 +βy1, . . . ,αxn +βyn)∈Ω for every x and

y ∈Ω , where α and β ∈ [0,1] with α +β = 1.

(iv) let Ω⊂R
n . The function ϕ : Ω→R be said to be a Schur-convex function on Ω

if x ≺ y on Ω implies ϕ (x) � ϕ (y) . ϕ is said to be a Schur-concave function
on Ω if and only if −ϕ is Schur-convex.

DEFINITION 2. ([5, 6]) Let x = (x1, . . . ,xn) and y = (y1, . . . ,yn) ∈ R
n
++ .

(i) Ω⊂ R
n
++ is called a geometrically convex set if (xα1 yβ1 , . . . ,xαn yβn ) ∈Ω for all x

and y ∈Ω , where α and β ∈ [0,1] with α +β = 1.

(ii) Let Ω⊂ R
n
++ . The function ϕ : Ω→ R+ is said to be Schur-geometrically con-

vex function on Ω if (lnx1, . . . , lnxn) ≺ (lny1, . . . , lnyn) on Ω implies ϕ (x) �
ϕ (y) . The function ϕ is said to be a Schur-geometrically concave on Ω if and
only if −ϕ is Schur-geometrically convex.
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DEFINITION 3. ([4]) (i) Ω⊂R
n is called symmetric set, if x∈Ω implies Px∈

Ω for every n×n permutation matrix P .

(ii) The function ϕ : Ω→ R is called symmetric if for every permutation matrix P ,
ϕ(Px) = ϕ(x) for all x ∈Ω .

LEMMA 1. ([3, 4]) A function ϕ(x) is increasing if and only if ∇ϕ(x) � 0 for
x ∈Ω , where Ω⊂ R

n is an open set, ϕ : Ω→ R is differentiable, and

∇ϕ(x) =
(
∂ϕ(x)
∂x1

, . . . ,
∂ϕ(x)
∂xn

)
∈ R

n.

LEMMA 2. ([3, 4]) Let Ω⊂ R
n be a symmetric set and with a nonempty interior

Ω0 , ϕ :Ω→ R be a continuous on Ω and differentiable in Ω0 . Then ϕ is the Schur−
convex(Schur− concave) f unction, if and only if ϕ is symmetric on Ω and

(x1− x2)
(
∂ϕ
∂x1

− ∂ϕ
∂x2

)
� 0(� 0)

holds for any x = (x1,x2, · · · ,xn) ∈Ω0 .

LEMMA 3. ([5, p. 108]) Let Ω⊂R
n
++ be symmetric with a nonempty interior ge-

ometrically convex set. Let ϕ :Ω→ R+ be continuous on Ω and differentiable in Ω0 .
If ϕ is symmetric on Ω and

(lnx1− lnx2)
(

x1
∂ϕ
∂x1

− x2
∂ϕ
∂x2

)
� 0(� 0)

holds for any x = (x1,x2, · · · ,xn) ∈Ω0 , then ϕ is a Schur-geometrically convex (Schur-
geometrically concave) function.

LEMMA 4. Let x � y, u(t) = tx+ (1− t)y, v(t) = ty + (1− t)x . If 1/2 � t2 �
t1 � 1 or 0 � t1 � t2 � 1/2 , then

(u(t2),v(t2)) ≺ (u(t1),v(t1)) ≺ (x,y). (1)

Proof. Case 1. When 1/2 � t2 � t1 � 1, it is easy to see that u(t1) � v(t1) ,
u(t2) � v(t2) , u(t1) � u(t2) and u(t2)+ v(t2) = u(t1)+ v(t1) = x+ y , that is (1) holds.

Case 2. When 0 � t1 � t2 � 1, then 1/2 � 1− t2 � 1− t1 � 1, by the Case 1, it
follows

(u(1− t2),v(1− t2)) ≺ (u(1− t1),v(1− t1)) ,

i.e. (u(t2),v(t2)) ≺ (u(t1),v(t1)) . �

LEMMA 5. ([4, 7]) Let 0 � x � y, c � 0 . Then(
x+ c

x+ y+2c
,

y+ c
x+ y+2c

)
≺
(

x
x+ y

,
y

x+ y

)
. (2)
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LEMMA 6. For x in R with x �= 0 , we have

sinh2 x > x2. (3)

Proof. Let f (x)= sinh2x−x2 . Then f ′(x)= sinh2x−2x . Since f ′′(x)= 2(cosh2x
− 1) > 0 for x ∈ R with x �= 0, f ′(x) is strictly increasing. It follows that f ′(x) >
f ′(0) = 0, so f (x) > f (0) = 0 for x > 0. As f (−x) = f (x) , (3) holds for any x ∈ R

with x �= 0. �

LEMMA 7. Let (x,y) and (a,b) ∈ R
2
++ with x < y, a < b, a+b = 1 . Then

ax+by >
x+ y

2
, (4)

bx+ay <
x+ y

2
, (5)

Proof. As

ax+by− x+ y
2

=
(

a− 1
2

)
x+
(

b− 1
2

)
y

=
(

1−b− 1
2

)
x+
(

b− 1
2

)
y = −

(
b− 1

2

)
x+
(

b− 1
2

)
y

=
(

b− 1
2

)
(y− x) > 0,

(4) holds. (5) can be proved similarly. �

LEMMA 8. Let (x,y) ∈ R
2
++ and (a,b) ∈ R

2 with ab(a−b)(x− y) �= 0 . Then

E(a,b;x,y) =
√

xy

(
bsinh(a ln

√
u)

asinh(b ln
√

u)

) 1
a−b

, (6)

where u = y/x .

Proof. Without loss of generality, we may assume 0 < x < y . Then

E(a,b;x,y) =
(

b
a
· ya− xa

yb− xb

) 1
a−b

=
(

b
a
· ua−1
ub−1

xa−b
)1/(a−b)

= x

(
b
a
· e

2a ln
√

u −1

e2b ln
√

u −1

) 1
a−b

= x

⎛
⎝b

a
·

e2a ln
√

u−1
2ea ln

√
u

e2b ln
√

u−1
2eb ln

√
u

e(a−b) ln
√

u

⎞
⎠

1
a−b

= x
√

u

(
bsinh(a ln

√
u)

asinh(b ln
√

u)

) 1
a−b

=
√

xy

(
bsinh(a ln

√
u)

asinh(b ln
√

u)

) 1
a−b

. �
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LEMMA 9. Let (x,y) ∈ R
2
++ with x �= y, and let a ∈ R with a �= 0 . Then

Ia(x,y) =
√

xyexp

{
t

tanh(at)
− 1

a

}
(7)

where t = ln
√

u, u = y/x .

Proof. For b ∈ R with b �= a , let

v =
bsinh(a ln

√
u)−asinh(b ln

√
u)

asinh(b ln
√

u)
.

Then from Lemma 8 we have

Ia(x,y) = lim
b→a

E(a,b;x,y) = lim
b→a

√
xy

(
bsinh(a ln

√
u)

asinh(b ln
√

u)

) 1
a−b

=
√

xy lim
b→a

(1+ v)
1

a−b

=
√

xy lim
b→a

[
(1+ v)

1
v

] b sinh(a ln
√

u)−a sinh(b ln
√

u)
a−b

1
a sinh(b ln

√
u)

=
√

xyexp

{
lim
b→a

bsinh(a ln
√

u)−asinh(b ln
√

u)
a−b

1
asinh(b ln

√
u)

}

=
√

xyexp

{
1

asinh(a ln
√

u)
lim
b→a

bsinh(a ln
√

u)−asinh(b ln
√

u)
a−b

}

=
√

xyexp

{
1

asinh(a ln
√

u)
lim
b→a

sinh(a ln
√

u)−a(ln
√

u)cosh(b ln
√

u)
−1

}

=
√

xyexp

{
a(ln

√
u)cosh(a ln

√
u)− sinh(a ln

√
u)

asinh(a ln
√

u)

}

=
√

xyexp

{
(at)cosh(at)− sinh(at)

asinh(at)

}

=
√

xyexp

{
t

tanh(at)
− 1

a

}
. �

3. Main results and their proofs

THEOREM 1. For fixed (x,y) ∈ R
2
++ , Ia(x,y) is increasing with a on R .

Proof. For a �= 0, set f (a) = t
tanh(at) − 1

a , where t = ln
√

u , u = y/x . Then

f ′(a) =
−t2

tanh2(at)cosh2(at)
+

1
a2 =

−t2

sinh2(at)
+

1
a2 =

sinh2(at)− (at)2

a2 sinh2(at)
.
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Thus from Lemma 6 it follows that f ′(a) > 0, that is f (a) is increasing on R with a
and

Ia(x,y) =
√

xyexp

{
t

tanh(at)
− 1

a

}
=
√

xye f (a)

is increasing on R with a . The proof of Theorem 1 is completed. �

THEOREM 2. For fixed a ∈ R , Ia(x,y) is increasing with (x,y) on R
2
++ .

Proof. Let A = xa , B = ya . Then

ln Ia(x,y) =
xa lnx− ya lny

xa− ya − 1
a

=
1
a

(
A lnA−B lnB

A−B
−1

)
.

∂ ln Ia
∂x

=
∂ ln Ia
∂A

dA
dx

=
1
a
∂
∂a

(
A lnA−B lnB

A−B
−1

)
axa−1

=
A
x

[
(A−B)−B(lnA− lnB)

(A−B)2

]

=
A

x(A−B)

(
1− lnA− lnB

A−B
·B
)

=
A

x(A−B)

(
1− B

ξ

)
(where ξ lies between A and B )

=
A

x(A−B)
ξ −B
ξ

=
A
xξ

· ξ −B
A−B

� 0;

Similarly can be proved that ∂ ln Ia
∂y � 0.

By Lemma 1, it follows that ln Ia(x,y) is increasing with (x,y) on R
2
++ , and then

Ia(x,y) is increasing with (x,y) on R
2
++ too.

The proof of Theorem 2 is completed. �

THEOREM 3. If 0 < a � 1 , then Ia(x,y) is Schur-concave with (x,y) on R
2
++ .

Proof. For (x,y) ∈ R
2
++,0 < a � 1, let A = xa , B = ya . When x �= y , we have

∂ ln Ia
∂x

=
A
x
· (A−B)−B(lnA− lnB)

(A−B)2

∂ ln Ia
∂y

=
B
y
· A(lnA− lnB)− (A−B)

(A−B)2

and then

Δ : = (x− y)
(
∂ ln Ia
∂x

− ∂ ln Ia
∂y

)

= (x− y)
[
A
x
· (A−B)−B(lnA− lnB)

(A−B)2 − B
y
· A(lnA− lnB)− (A−B)

(A−B)2

]
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=
x− y

(A−B)2

[
A
x
(A−B)− AB

x
(lnA− lnB)− AB

y
(lnA− lnB)+

B
y
(A−B)

]

=
x− y

(A−B)2

[(
A
x

+
B
y

)
(A−B)−AB

(
1
x

+
1
y

)
(lnA− lnB)

]

=
x− y
A−B

· lnA− lnB
A−B

[(
A
x

+
B
y

)
A−B

lnA− lnB
−AB

(
1
x

+
1
y

)]

=
x− y
A−B

· lnA− lnB
A−B

(
A
x

+
B
y

)⎡⎣ A−B
lnA− lnB

−
(

1
x + 1

y

)
AB

A
x + B

y

⎤
⎦

=
x− y
A−B

· lnA− lnB
A−B

(
A
x

+
B
y

)(
xa− ya

lnxa− lnya −
ya−1xa + xa−1ya

xa−1 + ya−1

)

=
x− y
A−B

· lnA− lnB
A−B

(
A
x

+
B
y

)[
L(xa,ya)−

(
ya−1

xa−1 + ya−1 xa +
xa−1

xa−1 + ya−1 ya
)]

where L denotes the logarithm mean.
Without loss of generality, we may assume 0 < x < y . When 0 < a < 1 we have

ya−1

xa−1 + ya−1 <
xa−1

xa−1 + ya−1

and
ya−1

xa−1 + ya−1 +
xa−1

xa−1 + ya−1 = 1,

and then by Lemma 7, it follows that

ya−1

xa−1 + ya−1 xa +
xa−1

xa−1 + ya−1 ya >
xa + ya

2
= A(xa,ya) .

Furthermore notice that L(xa,ya) < A(xa,ya) , we have

L(xa,ya)−
(

ya−1

xa−1 + ya−1 xa +
xa−1

xa−1 + ya−1 ya
)

< L(xa,ya)−A(xa,ya) < 0.

Hence Δ < 0 for 0 < a < 1. It is easy to see that Δ < 0 for a = 1. By Lemma 2, it
follows that for 0 < a � 1, ln Ia(x,y) is Schur-concave on R

2
++ with (x,y) , and then

Ia(x,y) is Schur-concave on R
2
++ with (x,y) too.

The proof of Theorem 3 is completed. �

THEOREM 4. If a > 0 , then Ia(x,y) is Schur-geometrically convex with (x,y) on
R

2
++ ; If a < 0 , then Ia(x,y) is Schur-geometrically concave with (x,y) on R

2
++ .

Proof. For (x,y) ∈ R
2
++,a ∈ R , let A = xa,B = ya . When x �= y , we have

∂ ln Ia
∂x

=
A
x
· (A−B)−B(lnA− lnB)

(A−B)2



224 D.-M. LI AND H.-N. SHI

∂ ln Ia
∂y

=
B
y
· A(lnA− lnB)− (A−B)

(A−B)2

and then

Λ : = (x− y)
(

x
∂ ln Ia
∂x

− y
∂ ln Ia
∂y

)

=
x− y

(A−B)2 [A(A−B)−AB(lnA− lnB)−AB(lnA− lnB)+B(A−B)]

=
x− y

(A−B)2 [(A+B)(A−B)−2AB(lnA− lnB)]

=
(x− y)(A+B)(lnA− lnB)

(A−B)2

(
A−B

lnA− lnB
− 2AB

A+B

)

=
(x− y)(A+B)(lnA− lnB)

(A−B)2 (L(A,B)−H(A,B)) .

where H denote the harmonic mean.
For (x,y) ∈ R

2
++ with x �= y and a ∈ R , we have L(A,B) > H(A,B) . If a > 0(<

0), then (x− y)(lnA− lnB) = a(x− y)(lnx− lny) > 0(< 0) , and then Λ> 0(< 0) . By
Lemma 3, it follows that ln Ia(x,y) is Schur-geometrically convex (concave) on R

2
++

with (x,y) , and then Ia(x,y) is Schur-geometrically convex (concave) on R
2
++ with

(x,y) too.
The proof of Theorem 4 is completed. �

4. Applications

THEOREM 5. Let 0 < a � 1 , and let x � y,u(t)= tx+(1−t)y,v(t)= ty+(1−t)x .
If 1/2 � t2 � t1 � 1 or 0 � t1 � t2 � 1/2 , then we have

G(x,y) � Ia
(
xu(t1)yv(t1),xv(t1)yu(t1)

)
� Ia

(
xu(t2)yv(t2),xv(t2)yu(t2)

)
� Ia(x,y) � Ia (u(t2),v(t2)) � Ia (u(t1),v(t1)) � A(x,y). (8)

Proof. Combining Lemma 4 with Theorem 3, we have

Ia(x,y) � Ia (u(t2),v(t2)) � Ia (u(t1),v(t1))
� Ia ((x+ y)/2,(x+ y)/2) = A(x,y).

On the other hand, since

(ln
√

xy, ln
√

xy) ≺
(
lnxu(t1)yv(t1), lnxv(t1)yu(t1)

)
≺
(
lnxu(t2)yv(t2), lnxv(t2)yu(t2)

)
≺ (lnx, lny),

from Theorem 4, it follows

G(x,y) = Ia (
√

xy,
√

xy) � Ia
(
xu(t1)yv(t1),xv(t1)yu(t1)

)
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� Ia
(
xu(t2)yv(t2),xv(t2)yu(t2)

)
� Ia(x,y).

The proof is complete. �

THEOREM 6. Let 0 � x � y, c � 0 , 0 < a � 1 . Then

Ia

(
x+ c

x+ y+2c
,

y+ c
x+ y+2c

)
� Ia

(
x

x+ y
,

y
x+ y

)
. (9)

Proof. By Lemma 5 and Theorem 3, it follows that (9) holds.
The proof is complete. �
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