

CAUCHY-RASSIAS STABILITY OF HOMOMORPHISMS ASSOCIATED TO A PEXIDERIZED CAUCHY-JENSEN TYPE FUNCTIONAL EQUATION

ABBAS NAJATI

(Communicated by Th. Rassias)

Abstract. We use a fixed point method to prove the Cauchy–Rassias stability of homomorphisms associated to the Pexiderized Cauchy–Jensen type functional equation

$$rf\left(\frac{x+y}{r}\right) + sg\left(\frac{x-y}{s}\right) = 2h(x), \qquad r, s \in \mathbb{R} \setminus \{0\}$$

in Banach algebras.

1. Introduction

The stability problem of functional equations originated from a question of S. M. Ulam [28] concerning the stability of group homomorphisms: Let $(G_1,*)$ be a group and let (G_2,\diamond,d) be a metric group with the metric $d(\cdot,\cdot)$. Given $\varepsilon>0$, does there exist $\delta(\varepsilon)>0$ such that if a mapping $h:G_1\to G_2$ satisfies the inequality

$$d(h(x*y),h(x)\diamond h(y)) < \delta$$

for all $x,y \in G_1$, then there is a homomorphism $H: G_1 \to G_2$ with

$$d(h(x), H(x)) < \varepsilon$$

for all $x \in G_1$?

In other words, we are looking for situations where homomorphisms are stable, i.e., if a mapping is almost a homomorphism, then there exists a homomorphism near it. D. H. Hyers [6] gave a first affirmative answer to the question of Ulam for Banach spaces. Let X and Y be Banach spaces: Assume that $f: X \to Y$ satisfies

$$||f(x+y) - f(x) - f(y)|| \le \varepsilon$$

for some $\varepsilon \geqslant 0$ and all $x, y \in X$. Then there exists a unique additive mapping $T: X \to Y$ such that

$$||f(x) - T(x)|| \le \varepsilon$$

for all $x \in X$.

Mathematics subject classification (2000): Primary: 39B72; Secondary 47H15, 47H09. Keywords and phrases: Generalized metric space, fixed point, stability, Banach module, C^* -algebra.

T. Aoki [2] and Th. M. Rassias [25] provided a generalization of the Hyers' theorem for additive and linear mappings, respectively, by allowing the Cauchy difference to be unbounded. The following theorem which is called the Cauchy–Rassias stability is a generalized solution to the stability problem.

THEOREM 1.1. (Th. M. Rassias). Let $f: E \to E'$ be a mapping from a normed vector space E into a Banach space E' subject to the inequality

$$||f(x+y) - f(x) - f(y)|| \le \varepsilon(||x||^p + ||y||^p)$$
 (1.1)

for all $x,y \in E$, where ε and p are constants with $\varepsilon > 0$ and p < 1. Then the limit

$$L(x) = \lim_{n \to \infty} \frac{f(2^n x)}{2^n}$$

exists for all $x \in E$ and $L: E \to E'$ is the unique additive mapping which satisfies

$$||f(x) - L(x)|| \le \frac{2\varepsilon}{2 - 2^p} ||x||^p$$
 (1.2)

for all $x \in E$. If p < 0 then inequality (1.1) holds for $x, y \neq 0$ and (1.2) for $x \neq 0$. Also, if for each $x \in E$ the mapping $t \mapsto f(tx)$ is continuous in $t \in \mathbb{R}$, then L is linear.

The inequality (1.1) is called *Cauchy–Rassias inequality* and the stability of the functional equation is called *Cauchy–Rassias stability* [5, 21, 27]. The inequality (1.1) has provided a lot of influence in the development of what is now known as a *generalized Hyers–Ulam stability or HyersUlamRassias stability* of functional equations. A generalization of the Th.M. Rassias' theorem was obtained by P. Găvruta [5]. We refer the readers to [8], [9], [14], [16]–[24] and references therein for more detailed results on the stability problems of various functional equations and mappings and their Pexider types. We also refer the readers to the books [4], [7], [10] and [26].

Let E be a set. A function $d: E \times E \to [0, \infty]$ is called a *generalized metric* on E if d satisfies

- (i) d(x,y) = 0 if and only if x = y;
- (ii) d(x,y) = d(y,x) for all $x,y \in E$;
- (iii) $d(x,z) \le d(x,y) + d(y,z)$ for all $x,y,z \in E$.

We recall the following theorem by Margolis and Diaz.

THEOREM 1.2. [13] Let (E,d) be a complete generalized metric space and let $J: E \to E$ be a strictly contractive mapping with Lipschitz constant L < 1. Then for each given element $x \in E$, either

$$d(J^n x, J^{n+1} x) = \infty$$

for all non-negative integers n or there exists a non-negative integer n_0 such that

- 1. $d(J^n x, J^{n+1} x) < \infty$ for all $n \ge n_0$;
- 2. the sequence $\{J^n x\}$ converges to a fixed point y^* of J;
- 3. y^* is the unique fixed point of J in the set $Y = \{y \in E : d(J^{n_0}x, y) < \infty\}$;
- 4. $d(y,y^*) \leqslant \frac{1}{1-L}d(y,Jy)$ for all $y \in Y$.

Throughout this paper, \mathscr{A} denotes a (complex) normed algebra and \mathscr{B} represents a (complex) Banach algebra. In addition, we assume r,s to be fixed non-zero real numbers.

In this paper using the fixed point method (see [1, 3, 11, 15]), we prove the Cauchy–Rassias stability of homomorphisms associated to the Pexiderized Cauchy–Jensen type functional equation

$$rf\left(\frac{x+y}{r}\right) + sg\left(\frac{x-y}{s}\right) = 2h(x), \qquad r, s \in \mathbb{R} \setminus \{0\}$$

in Banach algebras.

For convenience, we use the following abbreviation for given mappings $f,g,h:X\to Y,$

$$D_{\mu}(f,g,h)(x,y) := rf\left(\frac{\mu x + \mu y}{r}\right) + sg\left(\frac{\mu x - \mu y}{s}\right) - 2\mu h(x)$$

for all $x,y \in X$ and all $\mu \in \mathbb{T}^1$, where X and Y are linear spaces and $\mathbb{T}^1 := \{ \mu \in \mathbb{C} : |\mu| = 1 \}$.

2. Main Results

We will use the following Lemma in this paper:

LEMMA 2.1. [23] Let $f: A \to B$ be an additive mapping such that $f(\mu x) = \mu f(x)$ for all $x \in A$ and all $\mu \in \mathbb{T}^1$. Then the mapping f is \mathbb{C} -linear.

PROPOSITION 2.2. Let $f,g,h:X\to Y$ be mappings with f(0)=g(0)=0 such that

$$D_{\mu}(f,g,h)(x,y) = 0 \tag{2.1}$$

for all $x,y \in X$ and all $\mu \in \mathbb{T}^1$. Then the mappings f,g,h are \mathbb{C} -linear and f=g=h.

Proof. Letting $\mu = 1$ and y = x in (2.1), we get $rf\left(\frac{2x}{r}\right) = 2h(x)$ for all $x \in X$. So

$$rf\left(\frac{x}{r}\right) = 2h\left(\frac{x}{2}\right) \tag{2.2}$$

for all $x \in X$. Similarly, letting $\mu = 1$ and y = -x in (2.1), we get

$$sg\left(\frac{x}{s}\right) = 2h\left(\frac{x}{2}\right) \tag{2.3}$$

for all $x \in X$. Hence we get from (2.1), (2.2) and (2.3) that

$$h\left(\frac{x+y}{2}\right) + h\left(\frac{x-y}{2}\right) = h(x) \tag{2.4}$$

for all $x, y \in X$. Therefore h is additive, i.e., h(x+y) = h(x) + h(y) for all $x, y \in X$. Replacing x by μx in (2.2) and (2.3) and using (2.1), we get that

$$h\left(\frac{\mu x + \mu y}{2}\right) + h\left(\frac{\mu x - \mu y}{2}\right) = \mu h(x) \tag{2.5}$$

for all $x, y \in X$ and all $\mu \in \mathbb{T}^1$. It follows from (2.4) and (2.5) that $h(\mu x) = \mu h(x)$ for all $x \in X$ and all $\mu \in \mathbb{T}^1$. By Lemma 2.1 the mapping h is \mathbb{C} -linear. Since h is \mathbb{C} -linear, we get from (2.2) and (2.3) that

$$f(x) = \frac{2}{r}h\left(\frac{rx}{2}\right) = h(x), \quad g(x) = \frac{2}{s}h\left(\frac{sx}{2}\right) = h(x)$$

for all $x \in X$. So f = g = h. \square

Now we prove the Cauchy-Rassias stability of homomorphisms in Banach alebras.

THEOREM 2.3. Let $f,g,h: \mathcal{A} \to \mathcal{B}$ be mappings with f(0) = g(0) = 0 for which there exist functions $\varphi, \phi: \mathcal{A} \times \mathcal{A} \to [0,\infty)$ such that

$$\lim_{n \to \infty} 2^n \varphi\left(\frac{x}{2^n}, \frac{y}{2^n}\right) = 0, \quad \lim_{n \to \infty} 4^n \varphi\left(\frac{x}{2^n}, \frac{y}{2^n}\right) = 0, \tag{2.6}$$

$$||D_{\mu}(f,g,h)(x,y)|| \le \varphi(x,y),$$
 (2.7)

$$||f(xy) - g(x)h(y)|| \le \phi(x,y)$$
(2.8)

for all $x,y \in \mathcal{A}$ and all $\mu \in \mathbb{T}^1$. If there exists a constant L < 1 such that the function

$$x \mapsto \psi(x) := \varphi(x,0) + \varphi\left(\frac{x}{2}, \frac{x}{2}\right) + \varphi\left(\frac{x}{2}, -\frac{x}{2}\right)$$

has the property

$$2\psi(x) \leqslant L\psi(2x)$$

for all $x \in \mathcal{A}$, then there exists a unique homomorphism $H : \mathcal{A} \to \mathcal{B}$ such that

$$||h(x) - H(x)|| \le \frac{1}{2 - 2L} \psi(x),$$

$$||f(x) - H(x)|| \le \frac{1}{r} \varphi\left(\frac{rx}{2}, \frac{rx}{2}\right) + \frac{1}{r - rL} \psi\left(\frac{rx}{2}\right),$$

$$||g(x) - H(x)|| \le \frac{1}{s} \varphi\left(\frac{sx}{2}, -\frac{sx}{2}\right) + \frac{1}{s - sL} \psi\left(\frac{sx}{2}\right)$$

for all $x \in \mathcal{A}$.

Proof. Letting $\mu = 1$ and $y = 0, \pm x$ in (2.7), we get the following inequalities

$$\left\| rf\left(\frac{x}{r}\right) + sg\left(\frac{x}{s}\right) - 2h(x) \right\| \le \varphi(x,0),$$
 (2.9)

$$\left\| rf\left(\frac{x}{r}\right) - 2h\left(\frac{x}{2}\right) \right\| \leqslant \varphi\left(\frac{x}{2}, \frac{x}{2}\right),$$
 (2.10)

$$\left\| sg\left(\frac{x}{s}\right) - 2h\left(\frac{x}{2}\right) \right\| \leqslant \varphi\left(\frac{x}{2}, -\frac{x}{2}\right)$$
 (2.11)

for all $x \in \mathcal{A}$. So it follows from (2.9), (2.10) and (2.11) that

$$\left\| h(x) - 2h\left(\frac{x}{2}\right) \right\| \leqslant \frac{1}{2}\psi(x) \tag{2.12}$$

for all $x \in \mathcal{A}$. Let $\mathcal{X} := \{F : \mathcal{A} \to \mathcal{B} \mid F(0) = 0\}$. We introduce a generalized metric on \mathcal{X} as follows:

$$d(F,G) := \inf\{C \in [0,\infty] : ||F(x) - G(x)|| \leqslant C\psi(x) \text{ for all } x \in \mathscr{A}\}.$$

It is easy to show that (\mathcal{X},d) is a generalized complete metric space [3]. Now we consider the mapping $\Lambda: \mathcal{X} \to \mathcal{X}$ defined by

$$(\Lambda F)(x) = 2F\left(\frac{x}{2}\right)$$
, for all $F \in \mathcal{X}$ and $x \in \mathcal{A}$.

Let $F,G \in \mathcal{X}$ and let $C \in [0,\infty]$ be an arbitrary constant with $d(F,G) \leq C$. From the definition of d, we have

$$||F(x) - G(x)|| \le C\psi(x)$$

for all $x \in \mathcal{A}$. By the assumption and last inequality, we have

$$\|(\Lambda F)(x) - (\Lambda G)(x)\| = 2\left\|F\left(\frac{x}{2}\right) - G\left(\frac{x}{2}\right)\right\| \leqslant 2C\psi\left(\frac{x}{2}\right) \leqslant CL\psi(x)$$

for all $x \in \mathcal{A}$. So

$$d(\Lambda F, \Lambda G) \leqslant Ld(F, G)$$

for any $F,G \in \mathcal{X}$. It follows from (2.12) that $d(\Lambda h,h) \leq \frac{1}{2}$. Therefore according to Theorem 1.2, the sequence $\{\Lambda^n h\}$ converges to a fixed point H of Λ , i.e.,

$$H: \mathscr{A} \to \mathscr{B}, \quad H(x) = \lim_{n \to \infty} (\Lambda^n h)(x) = \lim_{n \to \infty} 2^n h\left(\frac{x}{2^n}\right)$$

and H(2x)=2H(x) for all $x\in\mathscr{A}$. Also H is the unique fixed point of Λ in the set $\mathscr{X}^*=\{F\in\mathscr{X}:d(h,F)<\infty\}$ and

$$d(H,h) \leqslant \frac{1}{1-L}d(\Lambda h,h) \leqslant \frac{1}{2-2L},$$

i.e., the inequality

$$||h(x) - H(x)|| \le \frac{1}{2 - 2L} \psi(x)$$
 (2.13)

holds true for all $x \in \mathcal{A}$. It follows from the definition of H, (2.6), (2.10) and (2.11) that

$$\lim_{n \to \infty} 2^n r f\left(\frac{x}{2^n r}\right) = \lim_{n \to \infty} 2^n s g\left(\frac{x}{2^n s}\right) = H(x)$$
 (2.14)

for all $x \in \mathcal{A}$. Hence we get get from (2.6) and (2.7) that

$$H(\mu x + \mu y) + H(\mu x - \mu y) = 2\mu H(x)$$

for all $x, y \in \mathcal{A}$ and all $\mu \in \mathbb{T}^1$. By Proposition 2.2 the mapping $H : \mathcal{A} \to \mathcal{B}$ is \mathbb{C} -linear. So we get from (2.10) and (2.13) that

$$||f(x) - H(x)|| \le ||f(x) - \frac{2}{r}h\left(\frac{rx}{2}\right)|| + \frac{2}{r}||h\left(\frac{rx}{2}\right) - H\left(\frac{rx}{2}\right)||$$
$$\le \frac{1}{r}\phi\left(\frac{rx}{2}, \frac{rx}{2}\right) + \frac{1}{r - rL}\psi\left(\frac{rx}{2}\right)$$

for all $x \in \mathcal{A}$. In a similar way we obtain the following inequality

$$\|g(x) - H(x)\| \leqslant \frac{1}{s}\varphi\left(\frac{sx}{2}, -\frac{sx}{2}\right) + \frac{1}{s - sL}\psi\left(\frac{sx}{2}\right)$$

for all $x \in \mathcal{A}$. Since H is \mathbb{C} -linear, it follows from (2.14) that

$$\lim_{n \to \infty} 2^n f\left(\frac{x}{2^n}\right) = \lim_{n \to \infty} 2^n g\left(\frac{x}{2^n}\right) = H(x)$$

for all $x \in \mathscr{A}$. Hence we get from (2.6) and (2.8) that H(xy) = H(x)H(y) for all $x,y \in \mathscr{A}$. So the mapping $H: \mathscr{A} \to \mathscr{B}$ is a homomorphism. Finally it remains to prove the uniqueness of H. Let $P: \mathscr{A} \to \mathscr{B}$ be another homomorphism satisfying $d(h,P) \leqslant \frac{1}{2-2L}$. So $P \in \mathscr{X}^*$ and $(\Lambda P)(x) = 2P(x/2) = P(x)$ for all $x \in \mathscr{A}$, i.e., P is a fixed point of Λ . Since H is the unique fixed point of Λ in \mathscr{X}^* , we infer that P = H. \square

COROLLARY 2.4. Let p > 1, q > 2 and θ be non-negative real numbers and let $f,g,h: \mathcal{A} \to \mathcal{B}$ be mappings with f(0) = g(0) = 0 satisfying the inequalities

$$||D_{\mu}(f,g,h)(x,y)|| \le \theta(||x||^p + ||y||^p), \quad ||f(xy) - g(x)h(y)|| \le \theta(||x||^q + ||y||^q)$$

for all $x,y \in \mathscr{A}$ and all $\mu \in \mathbb{T}^1$. Then there exists a unique homomorphism $H : \mathscr{A} \to \mathscr{B}$ such that

$$||h(x) - H(x)|| \le \frac{4 + 2^p}{2(2^p - 2)} \theta ||x||^p,$$

$$||f(x) - H(x)|| \le \frac{3r^p}{(2^p - 2)r} \theta ||x||^p,$$

$$||g(x) - H(x)|| \le \frac{3s^p}{(2^p - 2)s} \theta ||x||^p$$

for all $x \in \mathcal{A}$.

Proof. The proof follows from Theorem 2.3 by taking

$$\varphi(x,y) := \theta(\|x\|^p + \|y\|^p), \quad \phi(x,y) := \theta(\|x\|^q + \|y\|^q)$$

for all $x, y \in \mathcal{A}$. Then we can choose $L = 2^{1-p}$ and we get the desired results. \square

THEOREM 2.5. Let $f,g,h: \mathscr{A} \to \mathscr{B}$ be mappings with f(0) = g(0) = 0 for which there exist functions $\Phi, \Psi: \mathscr{A} \times \mathscr{A} \to [0,\infty)$ such that

$$\lim_{n \to \infty} \frac{1}{2^n} \Psi(2^n x, 2^n y) = 0, \quad \lim_{n \to \infty} \frac{1}{4^n} \Phi(2^n x, 2^n y) = 0,$$

$$||D_{\mu}(f,g,h)(x,y)|| \le \Psi(x,y), \quad ||f(xy) - g(x)h(y)|| \le \Phi(x,y)$$

for all $x,y \in \mathcal{A}$ and all $\mu \in \mathbb{T}^1$. If there exists a constant L < 1 such that the function

$$x \mapsto \psi(x) := \Psi(x,0) + \Psi\left(\frac{x}{2}, \frac{x}{2}\right) + \Psi\left(\frac{x}{2}, -\frac{x}{2}\right)$$

has the property

$$\psi(2x) \leqslant 2L\psi(x)$$

for all $x \in \mathcal{A}$, then there exists a unique homomorphism $H : \mathcal{A} \to \mathcal{B}$ such that

$$||h(x) - H(x)|| \leq \frac{L}{2 - 2L} \psi(x),$$

$$||f(x) - H(x)|| \leq \frac{1}{r} \Psi\left(\frac{rx}{2}, \frac{rx}{2}\right) + \frac{L}{r - rL} \psi\left(\frac{rx}{2}\right),$$

$$||g(x) - H(x)|| \leq \frac{1}{s} \Psi\left(\frac{sx}{2}, -\frac{sx}{2}\right) + \frac{L}{s - sL} \psi\left(\frac{sx}{2}\right)$$

$$(2.15)$$

for all $x \in \mathcal{A}$.

Proof. Using the same method as in the proof of Theorem 2.3, we have

$$\left\| \frac{1}{2}h(2x) - h(x) \right\| \le \frac{1}{4}\psi(2x) \le \frac{L}{2}\psi(x)$$
 (2.16)

for all $x \in \mathscr{A}$. We introduce the same definitions for \mathscr{X} and d as in the proof of Theorem 2.3 such that (\mathscr{X},d) becomes a generalized complete metric space. Let $\Lambda: \mathscr{X} \to \mathscr{X}$ be the mapping defined by

$$(\Lambda F)(x) = \frac{1}{2}F(2x)$$
, for all $F \in \mathcal{X}$ and $x \in \mathcal{A}$.

One can show that $d(\Lambda F, \Lambda G) \leq Ld(F, G)$ for any $F, G \in \mathcal{X}$. It follows from (2.16) that $d(\Lambda h, h) \leq \frac{L}{2}$. Due to Theorem 1.2, the sequence $\{\Lambda^n h\}$ converges to a fixed point H of Λ , i.e.,

$$H: \mathscr{A} \to \mathscr{B}, \quad H(x) = \lim_{n \to \infty} (\Lambda^n h)(x) = \lim_{n \to \infty} \frac{1}{2^n} h(2^n x)$$

and H(2x) = 2H(x) for all $x \in \mathcal{A}$. Also

$$d(H,h) \leqslant \frac{1}{1-L}d(\Lambda h,h) \leqslant \frac{L}{2-2L},$$

i.e.,

$$||h(x) - H(x)|| \le \frac{L}{2 - 2L} \psi(x)$$

holds true for all $x \in \mathcal{A}$. Similar to the proof of Theorem 2.3 we obtain the inequalities (2.15).

The rest of the proof is similar to the proof of Theorem 2.3 and we omit the details. \Box

COROLLARY 2.6. Let $0 and <math>\theta, \delta$ be non-negative real numbers and let $f, g, h : \mathscr{A} \to \mathscr{B}$ be mappings with f(0) = g(0) = h(0) = 0 satisfying the inequalities

$$||D_{\mu}(f,g,h)(x,y)|| \leq \delta + \theta(||x||^{p} + ||y||^{p}),$$

$$||f(xy) - g(x)h(y)|| \leq \delta + \theta(||x||^{q} + ||y||^{q})$$

for all $x,y \in \mathscr{A}$ and all $\mu \in \mathbb{T}^1$. Then there exists a unique homomorphism $H : \mathscr{A} \to \mathscr{B}$ such that

$$||h(x) - H(x)|| \le \frac{3 \times 2^p}{2(2 - 2^p)} \delta + \frac{4 + 2^p}{2(2 - 2^p)} \theta ||x||^p,$$

$$||f(x) - H(x)|| \le \frac{2(1 + 2^p)}{(2 - 2^p)r} \delta + \frac{(8 - 2^p)r^p}{2^p(2 - 2^p)r} \theta ||x||^p,$$

$$||g(x) - H(x)|| \le \frac{2(1 + 2^p)}{(2 - 2^p)s} \delta + \frac{(8 - 2^p)s^p}{2^p(2 - 2^p)s} \theta ||x||^p$$

for all $x \in \mathcal{A}$.

Proof. The proof follows from Theorem 2.5 by taking

$$\Psi(x,y) := \delta + \theta(\|x\|^p + \|y\|^p), \quad \Phi(x,y) := \delta + \theta(\|x\|^q + \|y\|^q)$$

for all $x, y \in \mathcal{A}$. Then we can choose $L = 2^{p-1}$ and we get the desired results. \square

REFERENCES

- M. AMYARI AND M.S. MOSLEHIAN, Hyers-Ulam-Rassias stability of derivations on Hilbert C*modules, Contemporary Math., 427 (2007), 31–39.
- [2] T. AOKI, On the stability of the linear transformation Banach spaces, J. Math. Soc. Japan, 2 (1950), 64–66.
- [3] L. CĂDARIU AND V. RADU, On the stability of the Cauchy functional equation: A fixed point approach, Grazer Math. Ber., 346 (2004), 43–52.
- [4] P. CZERWIK, Functional Equations and Inequalities in Several Variables, World Scientific Publishing Company, New Jersey, Hong Kong, Singapore and London, 2002.
- [5] P. GĂVRUTA, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431–436.

- [6] D. H. HYERS, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., 27 (1941), 222–224.
- [7] D. H. HYERS, G. ISAC AND TH. M. RASSIAS, Stability of Functional Equations in Several Variables, Birkhäuser, Basel, 1998.
- [8] G. ISAC AND TH. M. RASSIAS, Stability of Ψ-additive mappings: applications to nonlinear analysis, Internat. J. Math. Math. Sci., 19 (1996), 219–228.
- [9] K.-W. Jun, Y.-H. Lee, On the Hyers-Ulam-Rassias stability of a Pexiderized quadratic inequality, Math. Ineq. Appl., 4 (2001), 93–118.
- [10] S.-M. JUNG, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press Inc., Palm Harbor, Florida, 2001.
- [11] S.-M. JUNG AND T.-S. KIM, A fixed point approach to stability of cubic functional equation, Bol. Soc. Mat. Mexicana, 12 (2006), 51–57.
- [12] R. V. KADISON AND G. PEDERSEN, Means and convex combinations of unitary operators, Math. Scand., 57 (1985), 249–266.
- [13] B. MARGOLIS, J. B. DIAZ, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., 74 (1968), 305–309.
- [14] Y. H. LEE, K. W. Jun, A generalization of the Hyers-Ulam-Rassias stability of Pexider equation, J. Math. Anal. Appl., 246 (2000), 627-638.
- [15] M. MIRZAVAZIRI AND M. S. MOSLEHIAN, A fixed point approach to stability of a quadratic equation, Bull. Braz. Math. Soc., 37 (2006), 361–376.
- [16] M. S. MOSLEHIAN AND TH. M. RASSIAS, Stability of functional equations in non-Archimedian spaces, Appl. Anal. Disc. Math., 1 (2007), 325–334.
- [17] A. NAJATI, Hyers-Ulam stability of an n-Apollonius type quadratic mapping, Bulletin of the Belgian Mathematical Society-Simon Stevin, 14 (2007), 755–774.
- [18] A. NAJATI, On the stability of a quartic functional equation, J. Math. Anal. Appl., 340 (2008), 569–574.
- [19] A. NAJATI AND M. B. MOGHIMI, Stability of a functional equation deriving from quadratic and additive functions in quasi-Banach spaces, J. Math. Anal. Appl., 337 (2008), 399–415.
- [20] A. NAJATI AND C. PARK, Hyers-Ulam-Rassias stability of homomorphisms in quasi-Banach algebras associated to the Pexiderized Cauchy functional equation, J. Math. Anal. Appl., 335 (2007), 763–778.
- [21] C. PARK, Modified Trif's functional equations in Banach modules over a C*-algebra and approximate algebra homomorphisms, J. Math. Anal. Appl., 278 (2003), 93–108.
- [22] C. PARK, On the stability of the linear mapping in Banach modules, J. Math. Anal. Appl., 275 (2002), 711–720.
- [23] C. PARK, Homomorphisms between Poisson JC* -algebras, Bull. Braz. Math. Soc., 36 (2005), 79–97.
- [24] D.-W. PARK AND Y.-H. LEE, The Hyers-Ulam-Rassias stability of the pexiderized equations, Nonlinear Analysis, 63 (2005), e2503–e2513.
- [25] TH. M. RASSIAS, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297–300.
- [26] TH. M. RASSIAS, Functional Equations, Inequalities and Applications, Kluwer Academic Publishers Co., Dordrecht, Boston, London, 2003.
- [27] T. TRIF, On the stability of a functional equation deriving from an inequality of Popoviciu for convex functions, J. Math. Anal. Appl., 272 (2002), 604–616.
- [28] S. M. ULAM, A Collection of the Mathematical Problems, Interscience Publ. New York, 1960.

(Received July 21, 2008)

Abbas Najati
Department of Mathematics
Faculty of Sciences
University of Mohaghegh Ardabili
Ardabil
Iran
e-mail: a.nejati@yahoo.com