

SOME CLASSES OF ANALYTIC FUNCTIONS RELATED WITH FUNCTIONS OF BOUNDED RADIUS ROTATION WITH RESPECT TO SYMMETRICAL POINTS

KHALIDA INAYAT NOOR AND SAIMA MUSTAFA

(Communicated by J. Pečarić)

Abstract. In this paper, we introduce a class $R_k^s(\gamma)$ of analytic functions of bounded radius rotation with respect to symmetrical points and study some of its basic properties. Using this concept, two other classes $T_k^s(\delta,\gamma)$, $K_k^s(\delta,\gamma)$ are also defined. We study coefficient results, arc-length and radius problems for these classes.

1. Introduction

Let $\mathscr A$ be the class of analytic functions f defined on the unit disc $E = \{z : |z| < 1\}$, normalized by f(0) = f'(0) - 1 = 0 and of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n, \quad (z \in E).$$
 (1.1)

Let S, K, S^* and C denote the subclasses of \mathscr{A} which are univalent, close-to-convex, starlike and convex in E respectively. Let $P_k(\gamma)$ be the class of functions p(z) analytic in the unit disc E satisfying the properties p(0) = 1 and, for $z = re^{i\theta}$, $k \ge 2$,

$$\int_0^{2\pi} \left| \operatorname{Re} \frac{p(z) - \gamma}{(1 - \gamma)} \right| d\theta \leqslant k\pi, \quad (0 \leqslant \gamma < 1).$$
 (1.2)

This class has been introduced in [6]. We note that $P_k(0) \equiv P_k$, see [14] and $P_2(\gamma) \equiv P(\gamma)$ is the class of analytic function with positive real part greater than γ . With k = 2, $\gamma = 0$, we have the class P of functions with positive real part.

We can write (1.2) as

$$p(z) = \frac{1}{2} \int_0^{2\pi} \frac{1 + (1 - 2\gamma)ze^{-it}}{1 - ze^{-it}} d\mu(t), \tag{1.3}$$

where $\mu(t)$ is a function with bounded variation on $[0,2\pi]$ such that

$$\int_{0}^{2\pi} d\mu(t) = 2 \quad \text{and} \quad \int_{0}^{2\pi} |d\mu(t)| \leqslant k. \tag{1.4}$$

Keywords and phrases: starlike, bounded radius rotation, symmetrical points, arc-length, coefficient problems.

Mathematics subject classification (2000): 30C45, 30C50.

Also, for $p \in P_k(\gamma)$, we can write from (1.2)

$$p(z) = \left(\frac{k}{4} + \frac{1}{2}\right)p_1(z) - \left(\frac{k}{4} - \frac{1}{2}\right)p_2(z), \quad p_1, \ p_2 \in P_2(\gamma), \ z \in E.$$
 (1.5)

It is known [5] that $P_k(\gamma)$ is a convex set. Also $p \in P_k(\gamma)$ is in $P_2(\gamma) \equiv P(\gamma)$ for $|z| < r_1$, where

$$r_1 = \frac{1}{2} \left[k - \sqrt{k^2 - 4} \right]. \tag{1.6}$$

The classes $V_k(\gamma)$ of functions of bounded boundary rotation of order γ and $R_k(\gamma)$ of functions of bounded radius rotation of order γ are closely related with $P_k(\gamma)$. A function $f: f(z) = z + \sum_{n=2}^{\infty} a_n z^n$, analytic in E, is in $V_k(\gamma)$ if and only if $\left\{\frac{(zf'(z))'}{f'(z)}\right\} \in P_k(\gamma)$. Also

$$f \in R_k(\gamma) \iff \left\{ \frac{zf'(z)}{f(z)} \right\} \in P_k(\gamma).$$

It is clear that

$$f \in V_k(\gamma) \iff zf'(z) \in R_k(\gamma)$$
 (1.7)

When k = 2, $\gamma = 0$, $V_2(0)$ coincides with the class C and $R_2(0) \equiv S^*$. We now define the following.

DEFINITION 1.1. Let $f \in \mathcal{A}$ and be given by (1.1). Then f is said to be of bounded radius rotation of order γ with respect to symmetrical points if and only if, for $|z| = r < 1 \quad (r \to 1)$,

$$\left\{\frac{2zf'(z)}{f(z)-f(-z)}\right\} \in P_k(\gamma), \quad \text{for} \quad z \in E.$$

We shall denote the class of such functions as $R_k^s(\gamma)$. We note that $R_2^s(0)$ is the class S_s^* of univalent functions starlike with respect to symmetrical points defined by Sakaguchi [7]. Also $R_k^s(\gamma) \equiv R_k(\gamma)$.

We define the class $V_k^s(\gamma)$ as follows.

DEFINITION 1.2.

$$f \in V_k^s(\gamma) \iff zf' \in R_k^s(\gamma), \text{ in } E.$$

2. Basic Properties of $R_k^s(\gamma)$

THEOREM 2.1. Let $f \in \mathcal{A}$. Then a necessary and sufficient condition for f to belong to $R_k^s(\gamma)$ is that $\left\{\frac{2zf'(z)}{f(z)-f(-z)}\right\} \in P_k(\gamma)$ for $z \in E$.

Proof. Its proof is immediate when we follow essentially the same method given in [7]. \Box

THEOREM 2.2. Let $f \in R_k^s(\gamma)$. Then the odd function

$$\psi(z) = \frac{1}{2} [f(z) - f(-z)] \tag{2.1}$$

belongs to $R_k(\gamma)$ in E.

Proof. Differentiating (2.1) logarithmically, we have

$$\begin{split} \frac{z\psi'(z)}{\psi(z)} &= \frac{zf'(z)}{f(z) - f(-z)} + \frac{-zf'(-z)}{f(-z) - f(z)} \\ &= \frac{1}{2} \left[p_1(z) + p_2(z) \right], \quad p_1, p_2 \in P_k(\gamma). \end{split}$$

Since $P_k(\gamma)$ is a convex set, we have $\frac{z\psi'(z)}{\psi(z)} \in P_k(\gamma)$ for $z \in E$ and hence $\psi \in R_k(\gamma)$ in E. \square

We note that $f \in R_k^s(\gamma)$ is close-to-convex for $|z| < r_1$, where r_1 is given by (1.6).

REMARK 2.1. Since ψ , defined in Theorem 2.2, is in $R_k(\gamma)$ and is odd, we can write

$$\psi(z) = \frac{\left(s_1(z)\right)^{\left(\frac{k}{4} + \frac{1}{2}\right)(1-\gamma)}}{\left(s_2(z)\right)^{\left(\frac{k}{4} - \frac{1}{2}\right)(1-\gamma)}},\tag{2.2}$$

where s_1 and s_2 are odd starlike functions, see [1,5].

From relation (2.1) and Remark 2.1, we can easily derive the following.

THEOREM 2.3. Let $f \in R_k^s(0) \equiv R_k^s$. Then with $z = re^{i\theta}$ and $\theta_1 < \theta_2$,

$$\int_{\theta_1}^{\theta_2} \operatorname{Re} \left\{ \frac{(zf'(z))'}{f'(z)} \right\} d\theta > -(k-1)\pi.$$

This is a necessary condition for a function f to belong to R_k^s . For k=2, R_2^s is a proper subclass of S and for k>2, $f\in R_k^s$ need not even be finite-valent, see [2].

REMARK 2.2. Let $f \in R_k^s(\gamma)$, and be given by (1.1). It is known [5] that for $p \in P_k(\gamma)$ with $p(z) = 1 + \sum_{n=1}^\infty c_n z^n$, we have $|c_n| \leqslant k(1-\gamma)$ for all n. Using this together with the fact that $\psi(z) = \frac{1}{2} \left[f(z) - f(-z) \right]$ is an odd function, we easily obtain $|a_2| \leqslant \frac{k}{2}(1-\gamma)$. Since, for $f \in R_k^\gamma \subset R_k^s$, the function $\frac{w_0 f(z)}{w_0 - f(z)}$, $f(z) \neq w_0$ is univalent in E. For k = 2, we see that $f \in R_2^s(\gamma)$ maps E onto a domain that contains the schlicht disc $|w| < \frac{1}{3-\gamma}$.

3. The Classes
$$T_k^s(\gamma)$$
 and $K_k^s(\gamma)$

DEFINITION 3.1. Let $f \in \mathcal{A}$. Then $f \in T_k^s(\gamma, \delta)$, $0 \le \gamma, \delta < 1$, $k \ge 2$, if and only if, there exists a $g \in R_k^s(\gamma)$ such that

$$\left\{\frac{2zf'(z)}{g(z)-g(-z)}\right\}\in P(\delta),\quad \text{for}\quad z\in E.$$

DEFINITION 3.2. Let $f \in \mathcal{A}$. Then $f \in K_k^s(\gamma, \delta)$, $0 \le \gamma, \delta < 1$, $k \ge 2$, if and only if, there exists a $\phi \in R_2^s(\gamma)$ such that

$$\left\{\frac{2zf'(z)}{\phi(z)-\phi(-z)}\right\} \in P_k(\delta), \quad \text{for} \quad z \in E.$$

We note that the classes $T_k^s(\gamma)$ and $K_k^s(\gamma)$ have same class of functions as a special case when k=2.

Let L(r, f) denote the length of the image of the circle |z| = r under f and $M(r) = \max_{\theta} |f(re^{i\theta})|$. We prove the following.

THEOREM 3.1. Let $f \in T_k^s(0, \gamma)$. Then, for 0 < r < 1,

$$L(r, f) \le c(k)M(r)\log\frac{1}{1-r}$$

where c(k) is a constant.

Proof. With $z = re^{i\theta}$,

$$L(r,f) = \int_0^{2\pi} |zf'(z)| d\theta$$

$$= \int_0^{2\pi} |\psi(z)h(z)| d\theta, \quad \psi(z) = \frac{1}{2} [g(z) - g(-z)] \in R_k(\gamma), \quad h \in P(0) \equiv P$$

$$\leq \int_0^r \int_0^{2\pi} |\psi'(\rho e^{i\theta})h(\rho e^{i\theta})| d\theta d\rho + \int_0^r \int_0^{2\pi} |\psi(\rho e^{i\theta})h'(\rho e^{i\theta})| d\theta d\rho$$

$$= J_1(r) + J_2(r). \tag{3.1}$$

Now

$$J_1(r) = \int_0^r \int_0^{2\pi} \left| f'(\rho e^{i\theta}) H(\rho e^{i\theta}) \right| d\theta d\rho, \quad H = \frac{z\psi'}{\psi} \in P_k(\gamma)$$

$$\leq 2\pi \int_0^r \left[\left(\frac{1}{2\pi} \int_0^{2\pi} \left| f'(\rho e^{i\theta}) \right|^2 d\theta \right)^{\frac{1}{2}} \left(\frac{1}{2} \int_0^{2\pi} \left| H(\rho e^{i\theta}) \right|^2 d\theta \right)^{\frac{1}{2}} \right] d\rho.$$

Thus, with f(z) given by (1.1), $H(z) = 1 + \sum_{n=1}^{\infty} c_n z^n$, $|c_n| \le k(1-\gamma)$ and $n \ge 1$, we have

$$J_1(r) \leq 2\pi \int_0^r \left[\left(\sum_{n=1}^\infty n^2 |a_n|^2 \rho^{2n-2} \right)^{\frac{1}{2}} \left(\sum_{n=0}^\infty |c_n|^2 \rho^{2n} \right)^{\frac{1}{2}} \right] d\rho$$

$$\leq \sqrt{2} k (1 - \gamma) \pi \left(\sum_{n=1}^\infty n (a_n|^2 r^{2n-1})^{\frac{1}{2}} \left(\log \frac{1+r}{1-r} \right)^{\frac{1}{2}}.$$

But $A(r) = \pi \sum_{n=1}^{\infty} n|a_n|^2 r^{2n}$ is the area of the image of |z| < r by w = f(z), and, since $A(r) \le \pi M^2(r)$, we have

$$J_1(r) \leqslant \sqrt{2k(1-\gamma)\pi}M(r)\left(\frac{1}{r}\log\frac{1+r}{1-r}\right)^{\frac{1}{2}}, \quad (r\to 1).$$
 (3.2)

Next we estimate $J_2(r)$.

With h given by (1.3) and (1.4), $\gamma = 0$, k = 2, we have

$$h'(z) = \frac{1}{\pi} \int_0^{2\pi} \frac{e^{-it}}{(1 - ze^{-it})^2} d\mu(t).$$

Since

$$\operatorname{Re} h(z) = \frac{1}{2\pi} \int_0^{2\pi} \frac{(1 - \rho^2)}{|1 - z^{-it}|^2} d\mu(t),$$

we have

$$\begin{split} J_2(r) &\leqslant 2 \int_0^r \int_0^{2\pi} \left| \psi(\rho e^{i\theta}) \operatorname{Re} h(\rho e^{i\theta}) \right| d\theta \frac{d\rho}{1 - \rho^2} \\ &= 2 \int_0^r \left(\int_0^{2\pi} \operatorname{Re} \left[(\rho e^{i\theta}) f'(\rho e^{i\theta}) e^{-i\operatorname{arg} \psi} \right] d\theta \right) \frac{d\rho}{1 - \rho^2}. \end{split}$$

Integration by parts gives

$$J_2(r) \leqslant 4\pi \int_0^r \frac{M(\rho)}{1 - \rho^2} d\rho. \tag{3.3}$$

from (3.1), (3.2) and (3.3), we obtain the required result. \square

We note that, following the techniques of Theorem 3.1, we can prove similar arc length problem for the class $K_k^s(0,\gamma)$.

THEOREM 3.2. Let $f \in T_k^s(\delta, \gamma)$ and be given by (1.1). Then

$$|a_n| \le b(k, \delta, \gamma) n^{\left\{ \left(\frac{k}{4} + \frac{1}{2}\right)(1 - \gamma) \right\} - 1} \quad (n \ge 1),$$

where $b(k, \delta, \gamma)$ is a constant depending only on k, δ , and γ . The function $f_0 \in T_k^s(\delta, \gamma)$ defined by

$$f_0'(z) = \frac{\left(1 + z^2\right)^{\left(\frac{k}{4} + \frac{1}{2}\right)(1 - \gamma)}}{\left(1 - z^2\right)^{\left(\frac{k}{4} - \frac{1}{2}\right)(1 - \gamma)}} \left\{ (1 - \delta) \frac{1 - z}{1 + z} + \delta \right\}$$
(3.4)

shows that the exponential $\left\{ \left(\frac{k}{4} + \frac{1}{2} \right) (1 - \gamma) - 1 \right\}$ is best possible.

Proof. We set

$$F(z) = (zf'(z))' = \psi(z) [H(z)h(z) + zH'(z)],$$

where $h = \frac{z\psi'}{\psi} \in P_k(\gamma)$, $H \in P(\delta)$ and $2\psi(z) = [g(z) - g(-z)]$, g is as defined in Definition 3.1. Thus, for $n \geqslant 1$, $z = re^{i\theta}$, Cauchy's Theorem gives us

$$n^{2}|a_{n}| = \frac{1}{2\pi r^{n}} \left| \int_{0}^{2\pi} F(z)e^{-in\theta} d\theta \right|$$

$$\leq \frac{1}{2\pi r^{n}} \int_{0}^{2\pi} |\psi(z)| |H(z)h(z) + zH'(z)| d\theta$$

$$\leq \frac{1}{2\pi r^{n}} \left(\frac{2}{r} \right)^{(\frac{k}{4} - \frac{1}{2})(1 - \gamma)} \left(\frac{r}{1 - r^{2}} \right)^{(\frac{k}{4} + \frac{1}{2})(1 - \gamma)} \int_{0}^{2\pi} |H(z)h(z) + zH'(z)| d\theta, (3.5)$$

where we have used (2.2) and the well-known distortion theorem for odd starlike functions.

Now

$$\int_{0}^{2\pi} |H(z)h(z) + zH'(z)| d\theta \leq \left(\int_{0}^{2\pi} |h(z)|^{2} d\theta \right)^{\frac{1}{2}} \left(\int_{0}^{2\pi} |H(z)|^{2} d\theta \right)^{\frac{1}{2}} + \int_{0}^{2\pi} |zH'(z)| d\theta
\leq \left(\frac{1 + \{k^{2}(1 - \gamma)^{2} - 1\}r^{2}}{1 - r^{2}} \right)^{\frac{1}{2}} \left(\frac{1 + \{4(1 - \delta)^{2} - 1\}r^{2}}{1 - r^{2}} \right)^{\frac{1}{2}} + \frac{2(1 - \delta)}{1 - r^{2}},$$
(3.6)

by using a modified version of a Lemma proved in [5] for $h, H \in P_k, k \ge 2$.

From (3.5) and (3.6), we obtain

$$n^2|a_n| \le b(k,\gamma,\delta) \left(\frac{1}{1-r}\right)^{\left\{\left(\frac{k}{4} + \frac{1}{2}(1-\gamma)\right\} + 1\right\}}, \quad (r \to 1).$$

Taking $r = 1 - \frac{1}{n}$, we have the required result. \square

We note, as a special cases, that for k = 2, $a_n = O(1)n^{-\gamma}$.

Using the similar techniques, we can prove the following coefficient result for the class $K_{\nu}^{s}(\delta, \gamma)$.

THEOREM 3.3. Let $f \in K_{\nu}^{s}(\delta, \gamma)$ and be given by (1.1). Then

$$|a_n| \leq B(k, \delta, \gamma) n^{2-\gamma}, \quad (n \geqslant 1)$$

and $B(k, \delta, \gamma)$ is a constant which depends only on k, δ and γ . The function $f_1 \in K_k^s(\delta, \gamma)$ and defined by

$$f_1'(z) = \frac{1}{(1-z^2)^{(1-\gamma)}} \left\{ \left(\frac{k}{4} + \frac{1}{2} \right) \left[(1-\delta) \frac{1-z}{1+z} + \delta \right] - \left(\frac{k}{4} - \frac{1}{2} \right) \left[(1-\delta) \frac{1+z}{1-z} + \delta \right] \right\}$$
(3.7)

shows that the exponent $(2 - \gamma)$ is best possible.

For our next result, we need the following lemmas.

LEMMA 3.1. Let $g \in R_2^s(\gamma)$ and for m = 1, 2, 3, ..., let G be defined by

$$G(z) = \frac{m+1}{2z^m} \int_0^z t^{m-1} \left\{ g(t) - g(-t) \right\} dt.$$
 (3.8)

Then G is starlike for $z \in E$.

Proof. Let

$$J(z) = \int_0^z t^{m-1} \frac{[g(t) - g(-t)]}{2} dt.$$

Now, since $\frac{g(z)-g(-z)}{2}$ is starlike in E, J(z) is (m+1)-valently starlike in E. We can write (3.8) as

$$z^m G(z) = (m+1)J(z),$$

and differentiating logarithmically, we have

$$\frac{zG'(z)}{G(z)} = \frac{zJ'(z) - mJ(z)}{J(z)}.$$

Setting N(z) = zJ'(z) - mJ(z) and D(z) = J(z), we see that N(0) = D(0) = 0. Also

$$\frac{N'(z)}{D'(z)} = \frac{1}{2} \left[\frac{2zg'(z)}{g(z) - g(-z)} + \frac{2zg'(-z)}{g(z) - g(-z)} \right] = p(z), \quad p \in P(\gamma)$$

in E, since $P(\gamma)$ is a convex set. Therefore, using a result from Libera [3], $\frac{N(z)}{D(z)} \in P(\gamma)$ for $z \in E$. \square

LEMMA 3.2. Let N and D be analytic functions in E with N(0) = D(0) = 0, D maps E onto a many sheeted region which is starlike of order γ with respect to origin and let $\frac{N'}{D'} \in P(\delta)$. Then $\frac{N}{D} \in P_k(\delta)$. in E.

Proof. Let

$$\frac{N(z)}{D(z)} = H(z) = \left(\frac{k}{4} + \frac{1}{2}\right)h_1(z) - \left(\frac{k}{4} - \frac{1}{2}\right)h_2(z),$$

where H is analytic in E, with H(0) = 1. Then

$$\begin{split} \frac{N'(z)}{D'(z)} &= H(z) + \frac{zH'(z)}{H_0(z)}, \quad \text{where} \quad H_0(z) = \frac{zD'(z)}{D(z)} \in P(\gamma) \quad \text{in} \quad E \\ &= \left(\frac{k}{4} + \frac{1}{2}\right) \left[h_1(z) + \frac{zh_1'(z)}{H_0(z)}\right] - \left(\frac{k}{4} - \frac{1}{2}\right) \left[h_2(z) + \frac{zh_2'(z)}{H_0(z)}\right]. \end{split}$$

Since $\frac{N'(z)}{D'(z)} \in P_k(\gamma)$, it follows that

$$\left\{h_i(z) = \frac{zh'(z)}{H_0(z)}\right\} \in P(\delta), \quad H_o \in P(\gamma), \quad i = 1, 2.$$

With $h_i(z) = (1 - \delta)p_i(z) + \delta$, we have

$$\left[(1 - \delta) p_i(z) + \frac{(1 - \delta) z p_i'(z)}{H_0(z)} \right] \in P \quad \text{in} \quad E.$$

We form the functional $\Psi(u,v)$ by taking $u=p_i(z)$, $v=zp_i'(z)$ with $u=u_1+iu_2$, $v=v_1+iv_2$, and use a well-known Lemma due to Miller [4] to conclude that $p_i \in P$, i=1,2 and therefore $h_i \in P(\delta)$, i=1,2 for $z \in E$. Consequently $H \in P_k(\delta)$ in E and the proof is complete. \square

THEOREM 3.4. Let $f \in K_k^s(\delta, \gamma)$. Then the function F defined by

$$F(z) = \frac{m+1}{2z^m} \int_0^z t^{m-1} \left[f(t) - f(-t) \right] dt \tag{3.9}$$

also belongs to $K_k^s(\delta, \gamma)$ for $z \in E$ and m = 1, 2, 3, ...

Proof. Since $f \in K_2^s(\delta, \gamma)$, there is a function $g \in R_2^s(\gamma)$ such that $\left\{\frac{2zf'(z)}{g(z)-g(-z)}\right\} \in P_k(\delta)$ in E. Now, by Lemma 3.1, G defined by (3.8) belongs to $R_k^s(\gamma)$ in E, and by definition it follows that there exists $G_1 \in V_2^s(\gamma)$ such that $G = zG_1'$ in E. Thus, from (3.9), we have with $g = zg_1'$

$$\begin{split} \frac{2F'(z)}{(G_1(z)-g_1(-z))'} &= \frac{z^m \left[f(z)-f(-z) \right] - m \int_0^z t^{m-1} \left[f(t)-f(-t) \right] dt}{z^m \left[g_1(z)-g_1(-z) \right] - m \int_0^z t^{m-1} \left[g_1(t)-g_1(-t) \right] dt} \\ &= \frac{N(z)}{D(z)}, \quad \text{say}. \end{split}$$

We note that N(0) = D(0) = 0 and for $g_1 \in V_2^s(\gamma)$,

$$\frac{(zD'(z))'}{D'(z)} = m + \frac{[z[g_1(z) - g_1(-z)]']'}{[g_1(z) - g_1(-z)]'} \in P(\gamma_1) \subset P(\gamma) \quad \text{in} \quad E.$$

This implies g_1 is convex and hence starlike in E. Since

$$\frac{N'(z)}{D'(z)} = \frac{1}{2} \left[\frac{2zf'(z)}{(g_1(z) - g_1(-z))'} + \frac{2zf'(-z)}{(g_1(z) - g_1(-z))'} \right] \in P_k(\delta), \quad \text{for} \quad z \in E,$$

we use Lemma 3.2 to have $\frac{N(z)}{D(z)} \in P_k(\delta)$ in E. This completes the proof. \square

THEOREM 3.5. Let $f \in K_k^s(0,0) \equiv K_k^s$ and let

$$F_1(z) = \frac{1}{1+m} z^{1-m} [z^m f(z)]', \quad m = 1, 2, \dots$$
 (3.10)

Then $F_1 \in K_k^s$ for

$$|z| < r_1 = \frac{1+m}{2+\sqrt{3+m^2}}. (3.11)$$

Proof. Let

$$F_1(z) = \frac{1}{1+m} \left[mf(z) + zf'(z) \right]. \tag{3.12}$$

Since, $f \in K_k^s$, there exists $g \in R_2^s(0) \equiv R_2^s$ such that

$$\left\{\frac{2zf'(z)}{g(z)-g(-z)}\right\} \in P_k, \quad z \in E.$$

Therefore, from (3.12), we can write

$$\begin{split} \frac{2zF_1'(z)}{g(z)-g(-z)} &= \frac{1}{1+m} \left[\frac{2mzf'(z)}{g(z)-g(-z)} + \frac{2z(zf'(z))'}{g(z)-g(-z)} \right] \\ &= \frac{1}{1+m} \left[mp(z) + zp'(z) + p(z)h(z) \right], \end{split}$$

where $p \in P_k$, $h(z) = \frac{z\psi'(z)}{\psi(z)} \in P$. with $\psi = \frac{1}{2}[g(z) - g(-z)]$. Since $p \in P_k$, we use (1.5) with $\gamma = 0$ to have

$$\begin{split} \frac{2zF_1'(z)}{g(z)-g(-z)} &= \left(\frac{k}{4}+\frac{1}{2}\right)\left\{\frac{1}{1+m}\left[mp_1(z)+zp_1'(z)+p_1(z)h(z)\right]\right\} \\ &-\left(\frac{k}{4}-\frac{1}{2}\right)\left\{\frac{1}{1+m}\left[mp_2(z)+zp_2'(z)+p_2(z)h(z)\right]\right\}, \quad p_1,p_2,h\in P. \end{split}$$

Now

$$\operatorname{Re}\left\{\frac{1}{1+m}\left[mp_{i}(z)+zp_{i}'(z)+p_{i}(z)h(z)\right]\right\} \geqslant \frac{\operatorname{Re}p_{i}(z)}{1+m}\left[m+\frac{1-r}{1+r}-\frac{2r}{1-r^{2}}\right]$$

$$=\frac{\operatorname{Re}p_{i}(z)}{1+m}\left[\frac{(1-m)r^{2}-4r+(1+m)}{1-r^{2}}\right],$$

and the right hand side is positive for $|z| < r_1$ and consequently $F_1 \in K_k^s$ for $|z| < r_1$, where r_1 is given by (3.11). This completes the proof. \square

THEOREM 3.6. Let $f \in T_k^s(0,0) \equiv T_k^s$ and let F_1 be defined by (3.10). Then $F_1 \in T_k^s$ for $|z| < r_1$, where r_1 is given by (3.11).

Proof. Since $f \in T_k^s$, there exists $g \in R_k^s(0) = R_k^s$ such that $\left\{\frac{2zf'(z)}{g(z)-g(-z)}\right\} = p \in P$, $z \in E$. Now, from (3.12), we have

$$\frac{2zF_1'(z)}{g(z) - g(-z)} = \frac{1}{1+m} \left[mp(z) + zp'(z) + p(z)h(z) \right],$$

where $p \in P$ and $h = \frac{z\psi'(z)}{\psi(z)} \in P_k$ with $\psi(z) = \frac{1}{2} [g(z) - g(-z)]$. We use (1.5) to have

$$\frac{2zF_{1}'(z)}{g(z)-g(-z)} = \left(\frac{k}{4} + \frac{1}{2}\right) \left[\frac{1}{1+m} \left\{ mp(z) + zp'(z) + p(z)h_{1}(z) \right\} \right] - \left(\frac{k}{4} + \frac{1}{2}\right) \left[\frac{1}{1+m} \left\{ mp(z) + zp'(z) + p(z)h_{2}(z) \right\} \right],$$

$$h_{1}, h_{2} \in P \quad \text{for} \quad z \in E.$$

We note that

$$\operatorname{Re}\left[\frac{1}{1+m}\left\{mp(z) + zp'(z) + p(z)h_i(z)\right\}\right] \geqslant \frac{\operatorname{Re}p(z)}{1+m}\left[m + \frac{1-r}{1+r} - \frac{2r}{1-r^2}\right], \quad i = 1, 2$$

and the right hand side is positive for $|z| < r_1$, where r_1 is given by (3.11),

Acknowledgement. The authors would like to express their gratitude to the referee for his/her constructive comments and to Dr. M. Junaid Zaidi, Rector, CIIT, for providing excellent research facilities.

REFERENCES

- [1] D. A. Brannan, On functions of bounded boundary rotation 1, Proc. Edingburgh Math. Soc., 16 (1968/69), 339–347.
- [2] A. W. GOODMAN, On close-to-convex functions of higher order, Ann. Univ. Sci. Buda Eotous Sect. Math., 25 (1972), 17–30.
- [3] R. J. LIBERA, Some classes of regular univalent functions, Proc. Amer. Math. Soc., 16 (1965), 755–758.
- [4] S. S. MILLER, Differential inequalities and Caratheodory functions, Bull. Amer. Math. Soc., 81 (1975), 79–81.
- [5] K. INAYAT NOOR, On subclasses of close-to-convex functions of higher order, Inter. J. Math. Math. Sci., 15 (1992), 279–290.
- [6] B. PINCHUK, Functions with bounded boundary rotation, Isr. J. Math., 10 (1971), 7-16.
- [7] K. SAKAGUCHI, ON A CERTAIN UNIVALENT MAPPING, J. Math. Soc. Japan, 11 (1959), 72–75.

(Received May 17, 2007)

Khalida Inayat Noor Mathematics Department COMSATS Institute of Information Technology Islamabad Pakistan

e-mail: khalidanoor@hotmail.com

Saima Mustafa Mathematics Department COMSATS Institute of Information Technology

> Islamabad Pakistan

e-mail: saimanauman@hotmail.com