

LOWER BOUND FOR THE NORM OF LOWER TRIANGULAR MATRICES ON BLOCK WEIGHTED SEQUENCE SPACES

R. Lashkaripour and G. Talebi

(Communicated by R. Oinarov)

Abstract. Let $1 and <math>A = (a_{n,k})_{n,k \ge 1}$ be a non-negative matrix. Denote by $\|A\|_{w,p,F}$, the infimum of those U satisfying the following inequality:

$$||Ax||_{w,p,F} \leqslant U ||x||_{w,p,I}$$

where $x \ge 0$ and $x \in l_p(w, I)$ and also $w = (w_n)_{n=1}^{\infty}$ is a decreasing, non-negative sequence of real numbers. The purpose of this paper is to give a lower bound for $||A||_{w,p,F}$, where A is a lower triangular matrix. In particular, we apply our results to Weighted mean matrices and Nörlund matrices which recently considered in [2,3,6] on the usual sequence spaces. Our results generalize some work of Jameson, Lashkaripour, Frotannia and Chen in [4,7,8].

1. Introduction

Let $p \ge 1$ and $(w_n)_{n=1}^{\infty}$ be a decreasing, non-negative sequence of real numbers. We define the weighted sequence space $l_p(w)$ as

$$l_p(w) = \left\{ x = (x_k) : \sum_{k=1}^{\infty} w_k |x_k|^p < \infty \right\},$$

with a norm $\|.\|_{w,p}$ which is defined in the following way:

$$||x||_{w,p} := \left(\sum_{k=1}^{\infty} w_k |x_k|^p\right)^{\frac{1}{p}}.$$

Next, assume that F is a partition of positive integers. If $F = (F_n)$, where each (F_n) is a finite interval of positive integers and

$$\max F_n < \min F_{n+1}$$
 $(n = 1, 2, 3, ...),$

we define the weighted sequence space $l_p(w,F)$ as

$$l_p(w,F) = \left\{ x = (x_k) : \sum_{k=1}^{\infty} w_k |\langle x, F_k \rangle|^p < \infty \right\},\,$$

Keywords and phrases: Norm, upper bound, lower triangular matrix, Nörlund matrices, weighted mean matrices, block weighted sequence space.

Mathematics subject classification (2010): 26D15, 47A30, 40G05, 47D37, 46A45, 54D55.

where $\langle x, F_k \rangle = \sum_{j \in F_k} x_j$ (see [1] for more details). The norm on $l_p(w, F)$, denoted by $\|.\|_{w,p,F}$, is defined as follows:

$$||x||_{w,p,F} = \left(\sum_{k=1}^{\infty} w_k |\langle x, F_k \rangle|^p\right)^{\frac{1}{p}}.$$

For a certain I_n such as $I_n = \{n\}$, $I = (I_n)$, is a partition of positive integers, $l_p(w, I) = l_p(w)$ and also $||x||_{w,p,F} = ||x||_{w,p}$.

It is known that any bounded linear operator T from $l_p(w,I)$ into $l_p(w,F)$ is uniquely determine by a matrix $A=(a_{n,k})_{n,k\geqslant 1}$ which satisfies Tx=Ax for all $x\in l_p(w,I)$. On the other hand, given any real matrix $A=(a_{n,k})_{n,k\geqslant 1}$, define Tx by Tx=Ax. For suitable A, T may define a bounded linear operator.

We consider the upper bounds U of the form

$$||Tx||_{w,p,F} \le U ||x||_{w,p,I},$$
 (1.1)

for all non-negative sequence x. The constant U not depending on x. We seek the smallest possible value of U, and denote the best upper bound by ||T|| for operators from $l_p(w,I)$ into $l_p(w,F)$.

In this paper, we shall relax the conditions on A (e.g., A is a lower triangular matrix) such that (1.1) can be investigated for all real sequence x. Note that for such A, U may be infinite and ||T|| may not be defined. Due to these facts, we write $||A||_{w,p,F}$ in the place of ||T||; also we write $||A||_{w,p,I}$ or $||A||_{w,p}$ when T define from $l_p(w)$ to itself.

We give a lower bound for $\|A\|_{w,p,F}$, where A is a lower triangular matrix (see Theorem 2.1). Also, we apply our results to Weighted mean matrices, $M_a = (m_{n,k})_{n,k\geqslant 1}$, and Nörlund matrices, $N_a = (b_{n,k})_{n,k\geqslant 1}$, where the Weighted mean matrices and the Nörlund matrices are define as below:

$$m_{n,k} = \begin{cases} \frac{a_k}{A_n} & 1 \leqslant k \leqslant n \\ 0 & \text{otherwise,} \end{cases}$$
 (1.2)

and

$$b_{n,k} = \begin{cases} \frac{a_{n-k+1}}{A_n} & 1 \leqslant k \leqslant n \\ 0 & \text{otherwise.} \end{cases}$$
 (1.3)

Here $A_n = \sum_{k=1}^n a_k$ and $a = (a_n)_{n=1}^{\infty}$ is a non negative sequence with $a_1 > 0$. Throughout this paper, for the lower triangular matrix $A = (a_{n,k})_{n,k \ge 1}$ we set

$$m_A := \sup_{N \geqslant 1} \inf_{n \geqslant N} \left\{ na_{n,N} + \frac{n}{n-N+1} \sum_{k=N+1}^{n} (n-k+1) \left(a_{n,k} - a_{n,k-1} \right)^{-} \right\},$$

where $\eta^- = \min(\eta, 0)$ and $a_{n,0} = 0$ for all $n \ge 1$.

2. Main result

THEOREM 2.1. Suppose that p > 1 and $A = (a_{n,k})$ is a lower triangular matrix with non-negative entries. Let $w = (w_n)$ be a decreasing, non-negative sequence such that $\sum_{n=1}^{\infty} \frac{w_n}{n}$ is divergent and $\left(\frac{w_n}{w_{n+1}}\right)$ is decreasing, then

$$||A||_{w,p,F} \geqslant m_A \left(\frac{p}{p-1}\right).$$

Theorem 2.1, generalizes ([5], Theorem 5.2.5(ii)). For other applications, we refer the readers to the next two sections.

Note that in the following two sections, we assume $w=(w_n)$ is a decreasing sequence with non-negative entries and $\left(\frac{w_n}{w_{n+1}}\right)$ is decreasing and also $\sum\limits_{n=1}^{\infty}\frac{w_n}{n}=\infty$. These conditions are satisfied by $w_n=\frac{1}{(\log(n+1))^{\theta}}$ where $0<\theta\leqslant 1$, so that we have at least one example of $w=(w_n)$ before all the results depending on it.

3. Matrices with increasing rows

For $A \ge 0$ and $a_{n,k} \le a_{n,k+1}$ for $0 \le k < n$, we know that $m_A = \left(\sup_{N \ge 1} \inf_{n \ge N} n a_{n,N} \right)$. Applying Theorem 2.1, we have the following corollaries.

COROLLARY 3.1. Suppose that p > 1 and $A = (a_{n,k})$ is a lower triangular matrix with non-negative entries. If $a_{n,k} \le a_{n,k+1}$ for $0 \le k < n$, then

$$||A||_{w,p,F} \geqslant \left(\sup_{N\geqslant 1}\inf_{n\geqslant N}na_{n,N}\right)\left(\frac{p}{p-1}\right).$$

COROLLARY 3.2. Suppose that p > 1 and $A = (a_{n,k})$ is a lower triangular matrix with non-negative entries. If $a_{n,k} \le a_{n,k+1}$ for $0 \le k < n$ and also $(na_{n,k})$ is an increasing sequence for each k, then

$$||A||_{w,p,F} \geqslant \left(\sup_{n\geqslant 1} na_{n,n}\right) \left(\frac{p}{p-1}\right).$$

In particular, $||C_N||_{w,p,F} \ge \left(\frac{p}{p-1}\right)$, where $C_N = (C_{n,k}^N)$, the generalized Cesaro matrix, defined as

$$C_{n,k}^{N} = \begin{cases} \frac{1}{n+N-1} & n \geqslant k \\ 0 & n < k. \end{cases}$$
 (3.1)

(Here $N \geqslant 1$.)

We apply the above corollary to the following two special cases.

COROLLARY 3.3. Suppose that p > 1 and $N_a = (b_{n,k})$ is the Nörlund matrix defined by (1.3). If $a_n \downarrow \alpha$, where $\alpha > 0$, then

$$||N_a||_{w,p,F} \geqslant \left(\frac{p}{p-1}\right).$$

COROLLARY 3.4. Suppose that p > 1 and $M_a = (m_{n,k})$ is the Weighted mean matrix defined by (1.2). If If $a_n \uparrow \alpha$, where $\alpha < \infty$, then

$$||M_a||_{w,p,F} \geqslant \left(\frac{p}{p-1}\right).$$

4. Matrices with decreasing rows

For $A \ge 0$ and $a_{n,k} \ge a_{n,k+1}$ for $0 \le k < n$, we know that $m_A \ge \left(\inf_{n \ge 1} \sum_{k=1}^n a_{n,k}\right)$. Applying Theorem 2.1, we have the following corollaries.

COROLLARY 4.1. Suppose that p > 1 and $A = (a_{n,k})$ is a lower triangular matrix with non-negative entries. If $a_{n,k} \ge a_{n,k+1}$ for $0 \le k < n$, then

$$||A||_{w,p,F} \geqslant \left(\inf_{n\geqslant 1} \sum_{k=1}^{n} a_{n,k}\right) \left(\frac{p}{p-1}\right)$$

We apply the above Corollary to the following two special cases.

COROLLARY 4.2. Suppose that p > 1 and $N_a = (b_{n,k})$ is the Nörlund matrix defined by (1.3). If (a_n) is an increasing non-negative sequence, then

$$||N_a||_{w,p,F} \geqslant \left(\frac{p}{p-1}\right).$$

COROLLARY 4.3. Suppose that p > 1 and $M_a = (m_{n,k})$ be defined by (1.2). If (a_n) is a decreasing non-negative sequence, then

$$||M_a||_{w,p,F} \geqslant \left(\frac{p}{p-1}\right).$$

5. Proof of Theorem 2.1

To prove Theorem 2.1 we need the following statements.

LEMMA 5.1. ([4], Lemma 2.2) Suppose that $N \ge 1$ and a, x are non-negative sequences with $x_N \ge x_{N+1} \ge ... \ge 0$ and also $x_n = 0$ for n < N. Then

$$\sum_{k=1}^{n} a_k x_k \geqslant \left(\frac{1}{n} \sum_{j=1}^{n} x_j\right) \left\{ n a_N + \frac{n}{n-N+1} \sum_{k=N+1}^{n} (n-k+1) \left(a_k - a_{k-1}\right)^{-} \right\}.$$

LEMMA 5.2. ([9], Lemma 2.3) Let p > 1, and let $w = (w_n)$ be a decreasing sequence with non-negative entries and $\sum_{n=1}^{\infty} \frac{w_n}{n}$ is divergent. Then

$$||C_N||_{w,p} = \frac{p}{p-1},$$

where C_N is defined by (3.1).

Proof of Theorem 2.1. We have $m_A = \sup_{N \ge 1} \delta_N$ where

$$\delta_{N} = \inf_{n \geqslant N} \left\{ n a_{n,N} + \frac{n}{n - N + 1} \sum_{k=N+1}^{n} (n - k + 1) \left(a_{n,k} - a_{n,k-1} \right)^{-} \right\}.$$

Let $N \ge 1$, so that $\delta_N \ge 0$. Suppose that $y = (y_n)$ is a decreasing sequence with non-negative entries such that $||y||_{w,p} = 1$. We set $x_1 = x_2 = \dots = x_{N-1} = 0$ and

$$x_{n+N-1} = \left(\frac{w_n}{w_{n+N-1}}\right)^{\frac{1}{p}} y_n,$$

for all $n \ge 1$. Clearly $||x||_{w,p} = ||y||_{w,p} = 1$. Applying Lemma 5.1, we have

$$||Ax||_{w,p,F}^{p} = \sum_{n=1}^{\infty} w_{n} | \langle Ax, F_{n} \rangle |^{p}$$

$$= \sum_{n=1}^{\infty} w_{n} \left(\sum_{j \in F_{n}} \sum_{k=1}^{j} a_{j,k} x_{k} \right)^{p}$$

$$\geqslant \sum_{n=1}^{\infty} w_{n} \sum_{j \in F_{n}} \left(\sum_{k=1}^{j} a_{j,k} x_{k} \right)^{p}$$

$$\geqslant \sum_{n=1}^{\infty} w_{n} \left(\sum_{k=1}^{n} a_{n,k} x_{k} \right)^{p}$$

$$\geqslant \delta_{N}^{p} \sum_{n=1}^{\infty} w_{n} \left(\frac{1}{n} \sum_{j=1}^{n} x_{j} \right)^{p}$$

$$= \delta_{N}^{p} \sum_{n=1}^{\infty} w_{N+n-1} \left(\frac{1}{N+n-1} \sum_{j=1}^{n} x_{N+j-1} \right)^{p}$$

$$= \delta_{N}^{p} \sum_{n=1}^{\infty} w_{N+n-1} \left(\frac{1}{N+n-1} \sum_{j=1}^{n} \left(\frac{w_{j}}{w_{N+j-1}} \right)^{\frac{1}{p}} y_{j} \right)^{p}$$

$$\geqslant \delta_{N}^{p} ||C^{N}y||_{w,p}^{p},$$

Applying Lemma 5.2, we conclude that $||A||_{w,p,F} \geqslant \delta_N\left(\frac{p}{p-1}\right)$ and so

$$||A||_{w,p,F} \geqslant m_A \left(\frac{p}{p-1}\right).$$

This completes the proof of statement. \Box

Acknowledgment

The second author would like to record his pleasure to Dr. Davood Foroutannia [Department of Mathematics, Faculty of Sciences, Vali-E-Asr University of Rafsanjan] for his valuable conversations during the preparation of the present paper.

REFERENCES

- P. AZIMI, A new class of Banach sequence spaces, Bulletin of the Iranian Math. Soc., 28, 2 (2002), 57–68.
- [2] D. BORWEIN AND F. B. CASS, Nörlund matrices as bounded operators on 1p, Arch. Math., 49 (1984), 464–469.
- [3] F. B. CASS AND W. KRATS, Nörlund and weighted mean matrices as bounded operators on 1p, Rocky Mountain J. Math., 29 (1990), 59–74.
- [4] CHANG-PAO CHEN, DAH-CHIN LUOR, AND ZONG-YIN OU, Extensions of Hardy inequality, J. Math. Anal. Appl., 273 (2002), 160–171.
- [5] D. FOROUTANNIA, Upper bound and lower bound for matrix operators on weighted sequence space, Doctoral Dissertation, Zahedan, 2007.
- [6] P. D. JOHNSON JR., R. N. MOHAPATRA AND DAVID RASS, Bounds for the operator norms of some Nörlund matrices, Proc. of the Amer. Math. Soc., 124, 2 (February 1996), 543–547.
- [7] G. J. O. JAMESON AND R. LASHKARIPOUR, Norm of certain operators on weighted 1_p spaces and Lorents sequence spaces, J. Inequalities in Pure Appl. Math., 3, 1 (2002), Article 6.
- [8] R. LASHKARIPOUR, D. FOROUTANNIA, Inequality involving upper bounds for certain matrix operators, Proc. Indian Acad. Sci. (Math. Sci.), 116 (August 2006), 325–336.
- [9] R. LASHKARIPOUR, D. FOROUTANNIA, Computation of Matrix Operators Bounds with Applying New Extension of Hardy Inequality on Weighted Sequence Spaces I, Lobachevskii Journal of Math., 30, 1 (2009), 40–45.

(Received September 1, 2009)

R. Lashkaripour
Department of Mathematics
Faculty of Mathematics
University of Sistan and Baluchestan
e-mail: lashkari@hamoon.usb.ac.ir
G. Talebi
University of Sistan and Baluchestan
Zahedan, Iran

e-mail: qh11talebi@qmail.com