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LOWER BOUND FOR THE NORM OF LOWER TRIANGULAR
MATRICES ON BLOCK WEIGHTED SEQUENCE SPACES

R. LASHKARIPOUR AND G. TALEBI

(Communicated by R. Oinarov)

Abstract. Let 1 < p <o and A = (ayx)nk>1 be a non-negative matrix. Denote by ||A|

w,p,F >
the infimum of those U satisfying the following inequality:

Axlly,pr < U Xl s

where x > 0 and x € [,(w,]) and also w = (w,);_, is a decreasing, non-negative sequence
of real numbers. The purpose of this paper is to give a lower bound for [|Al|,, , r, where A is
a lower triangular matrix. In particular, we apply our results to Weighted mean matrices and
Norlund matrices which recently considered in [2,3,6] on the usual sequence spaces. Our results
generalize some work of Jameson, Lashkaripour, Frotannia and Chen in [4,7,8].

1. Introduction

Let p > 1 and (wy),_; be a decreasing, non-negative sequence of real numbers.
We define the weighted sequence space [,(w) as

Lp(w)=q x=(w) : Y wilal” <eo
k=1

with a norm ||.,, , which is defined in the following way:

1

o P
¥llyp == | X wilxel?
k=1

Next, assume that F is a partition of positive integers. If F = (F,), where each (F;) is
a finite interval of positive integers and

max F, <minF,; (n=1,2,3,...),

we define the weighted sequence space [,(w, F') as

LwF) =< x=(xq): Y wil(x,F)[F <o b,
k=1
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where (x,F;) = Y x; (see [1] for more details). The norm on I,(w,F), denoted by
JEF
[-Ilys, .7 » is defined as follows:

Hx”w,pf = (2 Wi ‘<x7Fk> P)
k=1

For a certain I, such as I, = {n}, I = (I,), is a partition of positive integers, [,(w,I) =
1p() and 150 [1x],,, = el

It is known that any bounded linear operator T from [,(w,I) into I,(w,F) is
uniquely determine by a matrix A = (@, x)nk>1 Which satisfies Tx = Ax for all x €
I,(w,I). On the other hand, given any real matrix A = (a, 4),4>1, define Tx by Tx =
Ax. For suitable A, T may define a bounded linear operator.

We consider the upper bounds U of the form

7%l p e <UL 0 (1.1)

for all non-negative sequence x. The constant U not depending on x. We seek the
smallest possible value of U, and denote the best upper bound by ||T|| for operators
from I,(w,I) into [,(w,F).

In this paper, we shall relax the conditions on A (e.g., A is a lower triangular
matrix) such that (1.1) can be investigated for all real sequence x. Note that for such A,
U may be infinite and ||7'|| may not be defined. Due to these facts, we write [|A[,, , p
in the place of [|T||; also we write [|Al|,,,; or [|A]|,,, when T define from /,(w) to
itself.

We give a lower bound for ||Al[,, , », where A is a lower triangular matrix (see
Theorem 2.1). Also, we apply our results to Weighted mean matrices , M, = (mn7k)n7k>1 s
and Norlund matrices, N, = (bnk)nk>1, Where the Weighted mean matrices and the
Norlund matrices are define as below:

E1<k<n
= A CSES 12
ink { 0 otherwise, (12)

and
Skl 1 <k<n
bn.k = ! .
’ 0 otherwise.

(1.3)

Here A, =Y}_, ax and a = (a,);,_, is a non negative sequence with a; > 0.
Throughout this paper, for the lower triangular matrix A = (@ x)ni>1 We set

n

n —
my :=sup inf { na,y + ——— n—k+1) (anr— anp— ,
=g i s iy, B ke D))

where 17 =min(n,0) and a,o =0 forall n > 1.
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2. Main result

THEOREM 2.1. Suppose that p > 1 and A = (a, ) is a lower triangular matrix
with non-negative entries. Let w = (wy,) be a decreasing, non-negative sequence such

that 'Y, =t is divergent and (%) is decreasing, then

w;
n=1 n

p
Al = (525

Theorem 2.1, generalizes ([5], Theorem 5.2.5(ii)). For other applications, we refer
the readers to the next two sections.
Note that in the following two sections, we assume w = (w,,) is a decreasing
sequence with non-negative entries and <ww—i.> is decreasing and also ¥ "2 = oo,
" n=1
These conditions are satisfied by wy, = 1/(10g(n+1))® Where 0 < 8 < 1, so that we have
at least one example of w = (w,,) before all the results depending on it.

3. Matrices with increasing rows

For A> 0 and a,, x < a, i+ for 0 <k <n, we know that my = <sup 155 nan,N> .
Nz112>
Applying Theorem 2.1, we have the following corollaries.

COROLLARY 3.1. Supposethat p > 1 and A= (a,y) is alower triangular matrix
with non-negative entries. If anx < ap 41 for 0 <k <n, then

. p
cor > (s o) (515).

COROLLARY 3.2. Suppose that p > 1 and A = (a,x) is a lower triangular ma-
trix with non-negative entries. If a,; < aypt1 for 0 < k <n and also (nayy) is an
increasing sequence for each k, then

P
A = — .
Al > (sup nasn ) (27

1A

In particular, ||Cyl|,, , p > (#) , where Cy = (CV,), the generalized Cesaro matrix,
defined as
! >k
- >
CYy={ n+N-1 (3.1)

0 n<k.
(Here N > 1.)

We apply the above corollary to the following two special cases.
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COROLLARY 3.3. Suppose that p > 1 and N, = (b, ) is the Norlund matrix
defined by (1.3). If a, | o, where o > 0, then

p
Wallopr > (527 )-

COROLLARY 3.4. Suppose that p > 1 and M, = (my ) is the Weighted mean
matrix defined by (1.2). If If a,, T o, where o < oo, then

p
Il > (525

4. Matrices with decreasing rows

For A >0 and a, ; = a,+1 for 0 <k <n, we know that my > (113 ) anﬁk) .
n=1 k=1
Applying Theorem 2.1, we have the following corollaries.

COROLLARY 4.1. Supposethat p>1 and A= (a,x) is a lower triangular matrix
with non-negative entries. If ap; 2 ay j4+1 for 0 < k <n, then

n
' 14
A S PR A
I Hw,p,F (rglkz::la 7k> <p_ 1>

We apply the above Corollary to the following two special cases.

COROLLARY 4.2. Suppose that p > 1 and N, = (b, ) is the Norlund matrix
defined by (1.3). If (ay) is an increasing non-negative sequence, then

P
[Nally,p.r = (ﬁ) ~

COROLLARY 4.3. Suppose that p > 1 and My, = (m, ) be defined by (1.2). If
(an) is a decreasing non-negative sequence, then

p
[Mall,,p = (F) :

5. Proof of Theorem 2.1

To prove Theorem 2.1 we need the following statements.

LEMMA 5.1. ([4], Lemma 2.2) Suppose that N > 1 and a, x are non-negative
sequences with xy = xy+1 = ... 2 0 and also x, =0 for n <N. Then

Zam? <1§nlxj>{na1v+n_nT+l zn: (n—k-l-l)(ak—akl)_}.

Ly k=N+1
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LEMMA 5.2. ([9], Lemma 2.3) Let p > 1, and let w = (w,) be a decreasing

sequence with non-negative entries and 'y, =" is divergent. Then

n=

p
1CN v =

-1
where Cy is defined by (3.1).

Proof of Theorem 2.1. We have my = supy- Sy where

. n L _
oy = nlglg{nan,]v-i- ToNTD k:%lﬂ (n—k+1) (an.,k —an.’k_l) } )

Let N > 1, so that 8y > 0. Suppose that y = (y,) is a decreasing sequence with non-
negative entries such that ||y||,,, = 1. We set x; =x, = ... =xy_; =0 and

1
Wy 4
Xn4N—-1 = Yn,
Wn+N-1

forall n> 1. Clearly ||x||,.p = ||y||w,, = 1. Applying Lemma 5.1, we have

HAx”pr - an|<Ax F >‘17

._.

=

Il
DMs

1

3
I

jEF k=1

w3 (Loen)

M(zi%my

JEF \k=1

(S
2 (350)

r
oo 1 n
= 516 2 WNtn—1\ 7 7 ZXN+j—1
= N+n—1

=1

1 p
oo l n E
=84 D, WN+n—1 ( ) Vi
Nn;l * N—|—n—11:2‘1 WN+j—1 !

> 616 ||CNyH§',p’

b48ibﬂ

3
Il

Applying Lemma 5.2, we conclude that [|A[,, , » = Oy (L> and so

p—1
p
Mg = ma (525).
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This completes the proof of statement. [J
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