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EXPONENTIAL CONVEXITY AND JENSEN’S
INEQUALITY FOR DIVIDED DIFFERENCES

Z. PAVIC, J. PECARIC AND A. VUKELIC

Abstract. In this paper we obtain means which involve divided differences for n-convex func-
tions. We examine their monotonicity property using exponentially convex functions.

1. Introduction

Let f be a real-valued function defined on the segment [a,b]. The divided dif-
ference of order n of the function f at distinct points x,...,x, € [a,b], is defined
recursively (see [3], [10] and [12]) by

flxi] = f(x;) for i=0,...,n

and

flx0,- -y x0] = f[xl,...,xnin—_ffgo,...,xnfd '

The value flxo,...,x,] is independent of the order of the points xo, ..., x,.
The definition may be extended to include the case that some (or all) of the points
coincide. Assuming that fU~1(x) exists, we define

B FU=D(x)
f[x,,x} = W
J times

For divided difference, in the case of distinct points, the following holds:

J(xi) -

, where w(x) = [J(x—x)),

o’ (x;) j=0

f[wa"vxn} :2
i=0

so we have that (=)
n f X;
flxo,ox] =) =——"——.
Zf) H?:I,jyéi(xi — X))

A function f: [a,b] — R is said to be n-convex if the n-th order divided difference of
f satisfies

flxo0y--xn] =0 forall a<xp<...<x,<bh.
The following theorem is proved (see [5]):
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THEOREM 1. Let f be an (n+ 2)-convex function on (a,b) and x € (a,b)"*!.
Then

G(x) = fl¥o,.-. %]

is a convex function of the vector X = (xo, ... ,x,). Consequently,

m m m
f lZaixf),...,Za,-x;] <Y aiflxg, ..., x) (1.1)
i=0 i=0 i=0

holds for all a; > 0 such that ¥ qa; =1.

Schur polynomial in n+ 1 variables xg,...,x, of degree d =do+...+d, (dy >
... >dy) is defined as

dp—j+Jj n
det {xl. } N
i,j=0

n

i,j=0

S(d07...,dn) ()C()7 ce 7xn) =

The numerator consists of alternating polynomials (they change the sign under any
transposition of the variables) and so they are all divisible by the denominator which is
Vandermonde determinant. Schur polynomial is also symmetric because the numerator
and denominator are both alternating.

For n > 1 using Schur polinomial and Vandermonde determinant (extended with
logarithmic function)

1 xo sz e )C()"_1 xo? In? x

1 xy X12 X1"71 x171In? x;

n—1

2
V(x:p,q) = det 1x2 07 ... 2" xPInx,
1 xp X2 ... x, L x,P In9 x,
we obtain:

PROPOSITION 1. For monomial function h(x) = X'k where k> 1 is an integer,

holds
V(x;n+k,0)

hlxg,...,xy] =S (X055 %0) =
%0,...,0) V(X;}LO)

n times

For potential function f(x) =xP = x"TP~" where p is a real number, holds

V(x;p,0)

flxo,- . yxn] = Vim0’

Further, for a partition 7 the Schur polynomial can be expressed by a sum

Sa(X0,. - Xn) = 2. xT =¥ x0...xl
T T
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The summation is over all semistandard Young tableaux 7 of shape 7 where the ex-
ponents fg,...t, give the weight of T in which each ¢; counts the occurences of the
number j in T (see [2] and [7]). So, we have the next proposition:

PROPOSITION 2. For monomial function h(x) = X'k where k> 1 is an integer,
holds

Ik—1

n
h[xo,...,xn] :S(k,O,...,O) X0y -5 X 2 2 Zx,lxlz--- Xij «
N—— i1=0i,=0 ip=
n times

The goal of this paper is to define means using the inequality (1.1). We will ex-
amine their monotonicity property using exponential convex functions. Also, we will
consider some special cases.

2. Jensen means for divided differences

THEOREM 2. Let f € C"*2([a,b]) and X' € (a,b)"™! for i=0,....m. If a; >
0 such that ¥;" ya; =1 and 2?:0 Ei:o (2:‘”:0 aixf',»x}'{ DY a,-x; Yito apci) #0, then
there exists & € (a,b) such that

m X
Z aif (s, [Z aixly,. .., Y, aixL]
i=0

(n+2 g’ g‘ <2a’x X Za,x 2“%) (2.1)

Proof. Let us denote o = min f"*2) and B = max f"*2). We first consider the
n+2

following function ¢ (x) = % — f(x). Then ¢1"+2 (x) =B —fr(x) > 0,x
[a,b], so ¢ is an (n+2)-convex function. Applying Theorem 1 on an (n+ 2)-convex
function ¢; with ¢ (x) = - 2, we have

(n+2)!

m m
B- Za,-(p[xb,...,xi,} - Za,-f[xb,...,xn]
i=0 i=0

m m m m
>B-¢ [Zaix&...,z‘laix’n] —f lZaixb,...,Zaix;] ,
i=0 i=0 i=0 i=0

i.e.

m .
Z aif[xg, ... ,x lZ aixfy, -y Y, aix;]
i=0
m X
(Z a;¢ xo, X lz alxo, Z a,-x’n] ) .
i=0
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Similarly, a function ¢,(x) = f(x) — - ¢(x) is an (n+2)-convex function. Inequality
from the Theorem 1 with (n+ 2)-convex function ¢, becomes

m m
zaif[xé)r"axi,}_a'za[(P[xE),...,xil]
i=0 i=0
m . m ) m ' m '
> f| Y aixg, ... Y ax, | —a-¢ | Y axy,. .., Y ax,|
i=0 i=0 i=0 i=0

ie.
m .
Zalf X0 - - Zalxo, Zaix;
i=0
ol Y aidlxg,....x]—0 | Y axp,.... > ax,| |-
i=0 i=0 i=0

From Proposition 2 with k = 2 and the fact that the function ¢(x) is (n+ 2)-convex
we have

2“’ Ot lzaz%» ﬁa,-x;]
zz(zatxx,{ St St 0

j=0k=0

(n+ 2
We can now conclude that there exists & € (a,b) that we are looking for in (2.1). O

REMARK 1. Let us note that the left-hand side in equation (2.1) is greater than or
equal to zero if f (n+2) > 0 which is the statement of Theorem 1.

COROLLARY 1. Let f,g € C""2([a,b]) and x' € (a,b)""'. If a; > 0 and 31" ya; =
1, then there exists & € (a,b) such that

S oaif (s 5] —f [Shoainh. Shoaivy] _ [ ()

. . ( LU 2.2)
Yo aigl, - X — g [Shoaixy, .. Sioaixy]  gm2(E)

provided that both denominators not equal zero.

Proof. We use the following standard technique: Let us define the linear functional
L(h) = Sgaihx,...,.x] — h[Slgaix, ..., S gaixi] . Next, we define y(t) =
F()L(g) — g(¢)L(f). According to Theorem 2, applied on y, there exists & € (a,b) so

that
n+2

nJ
n+2 ,2()];16(20)6)6]( Za,xJZalxk>

L(y) =
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From L(y) =0, it follows f("*2)(£)L(g) —g"*?)(£)L(f) =0 and (2.2) is proved. [

The above corollary enables us to define various types of means, because if the
function f"+2) /g("+2) has inverse, from (2.2) we can get

. (f(n+2)>_l (zgoaif[xg,...,x;} —f[Z;’;Oaix67...,E;’1=0aix£,]> |

g(n+2) A a,-g[xf), X —g [Zlm:o a,-xf), U a,-xi,]

Specially, if we take substitutions f(z) =t”, g(t) =t¢ with r > 0 in the above iden-
tity and use the method of continuous extensions, we get Jensen means for divided
differences. Let us use the following notation:

0,0 .0 0
Xo X] Xy .o Xy X

xl Xl Xl ...xl !
0 1 2 n—1
X= L . . y a:(ao,...,am),

m m
xp XXy X X,

Vxpg=V(x;p,q) and N={0,1,...,n+1}
The Jensen means for divided differences is defined as

1

m . ijpO _ VaXp0 \ P—q
ntl g—i Zj=0") yxjng VaXr0 .
Hl OP i sm _Vx-qu VaXq0 forp;éq,pgéNﬂng
J=0% yxino  VaXn0
1
1( i) "o a; Vx/kl ‘\;a;((k(l) k—q
”+ j=0"J yxino _ VaXn L
m Vx/q() VaXq0 for p#qv P—kENafI§éN
l7ék j=0 aj Vxino VaXn0

1
moa. Vx/p0  VaXp0 =1
n+l 1—i J=0%J yxing _ VaXn0 . .
H —1)(p—i) ym Vx/I1 _ vaXil for p;éq, p ¢N7q—l EN
z;él =01 Yxino ~ VaXnO

EJen (X7 a;p7 5]) -

m Vx/kl _ VaXkl

k=1
(H",*é = S ) ’5’;?;?32?7?) for p#q; p=keN,g=lEN

ik, =04 Vyino ~ VaXnO
m . vx/ pl  VvaXpl

j=0 aXn
exp<2”+1%+—,; oo ) for p=q; p¢N,g ¢ N

j=0 va/,,() VaXn0

m VaXkl
j=0"J yxino VaXn0

L1 m Vxik2 YaXia
n+ 1 == VxJn0 aan — — g —
exp El 2 — —kz—‘/ﬂk1 for p=¢q; p=qgq=keN

(2.3)
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A mapping Ej., : R xR — R is a continuous function in two variables p and g. The
skeleton of all expressions for this means is a fraction

i i i i m Vx'pO VaXp0
Sroaifxl, .. xi] = f[Srhoaid, ..., 3, a,-xi,] 2040 ~ VaXn0

m i i1 _ m m Vxiq0  VaXq0
Sitoaiglxg, .., xt] g[ZiZOa,xO,...,Zizoa,x’n] " oa ’VzZO V:XZO

which follows from Proposition 1. The most parts of expressions proceed from

Zm lVXlPO VaXp0 moyxikl VaXkl
lim 0% yxin0 — VaXn0 — 2 X a forke N. (2.4)

p—k p—k "Vxin0  VaXn0

The quotient under limit becomes an indeterminate form when p — k € N because

VX0 =0 for k=0,1,...,n—1 and 3} a; X80 _VaXk0 1 | — 0 for k =n. When
p—k=n+1:

moVxik0  VaXk0

m n n
- — . l
Zg)a’ VXin0  VaXn0 Zg)a’ Z@ j §

So, we can apply L’'Hospital’s rule and also the formula %prq =Vx pg+1 to get

|| M§
\||~

result (2.4). If n = 0 the expressions for means Ej.,(X,a;p,q) proceed from the con-
tinuous extensions of function
. e
o (qz, " ai(xh)” = <z;';oaixz_)>l’>
p g ai(xp)? — (o aixy )

3. Monotonicity of Jensen means for divided differences

Now we can introduce exponentially convex functions that will play an important
role in this section. First, we give here a definition of exponentially convex function as
it was done originally by Bernstein in [4] (see also [1],[8], [9]).

DEFINITION 1. A function ¢ : (a,b) — R is exponentially convex if it is contin-

n
uous and Y, &&; ¢ (x;+x;) >0 for every n € N and all choices &i,...,&, € R and
ij=1
all choices x1,...,x, € (a,b) so that x; +x; € (a,b).

In the rest of the paper we will rely on the following proposition and its corollaries.

PROPOSITION 3. Let @ : (a,b) — R. Then the following statements are equiva-
lent:

(i) @ is exponentially convex.

(ii) @ is continuous and

Z &&io (x’+x’> >0 (3.1)

i,j=1
forevery n € N and all choices &i,...,&, € R and all choices xy,...,x, € (a,b).
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Using basic calculus, we have these two corollaries.

COROLLARY 2. If ¢ is exponentially convex, then

det [(p (x—";x"ﬂ >0
ij=1

for every n € N and all choices xy,...,x, € (a,b).

COROLLARY 3. Exponentially convex function @ : (a,b) — (0,0) is log-convex:

o(52) < Vote0) foraitxye o)

Using exponential convexity we will prove monotonicity of Jensen means E (X, a; p,q)
in both parameters p and q.

THEOREM 3. Let xf),x‘i v X for i=0,...,m be mutually different positive real
numbers so that 2'}:0 Zizo (Ef”zo aix;x}; -3 aixf',» Yito ale{> # 0 for all a; >0 and
Yiroai=1. Also let

P(A) =Y aifs [xG, -5 — fo lzaixév"'vzaixil :
i=0 i=0 i=0

where f) is defined with

A’ .
ooy U AE{0 L. a1},
fi(t) = . . 3.2)
WM if A=ke{0,1,...,n+1}.

(i) The function @ is exponentially convex.

PR T
(ii) For every n € N and all choices ty,...,t, € R the matrix {q) (%)] - isa
ij=

positive semi-definite matrix. Particularly
i+t \ 1"
deto (2)]" >0, (3.3)

=
i,j=1

Proof. (i) First, the expression

m o V(x50 V(@XA0 .
" T | Soaivas — Ve | if A¢{0. L. nt 1},
(p —

V(x':k,1 V(aXk,1 .
m {E?ioaivgzi;mog — VE:X;VI,Og] lf A, = k S {07 17 e ,n+ 1},
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shows that ¢ is a continuous function. Further, let us consider the function f(z) =

2 é,&,ft,ﬂ, (t), where & € R and t; € R for i =1,...,n. Since f (n+2) (t) = A2,
ij=1
it follows

i,j=1

2
fn+2 2 5151 77" 2 <2§l n 2)

This is equivalent to inequality ¥ oa;f[xi,...,x\] — f [Srgaixh, ..., X gaixi] >0,
i.e.

Y &o(") >0 (3.4)

ij=1

We now conclude that ¢ is an exponentially convex function.
(i) This follows from nonnegativity of quadratic form (3.4). O

LEMMA 1. If ¢ : (a,b) — (0,00) is log-convex and s,t,u,v € (a,b) so that s #
tau#vs<u,t <u(ors<vt<v); then

(3= ()

COROLLARY 4. Let p<u and g <v. Then

EJen(X,a;P,q) g EJen(Xaa;uaV) (35)

forall xf),x‘i -, Xt mutually different positive real numbers so that
"0 Xi—o (Ef”zo aixx; — Xl aix; ¥l apci) #0 forall a; >0 and ¥} qa; = 1.

Proof. Let us first observe that for p # ¢ holds

1

Ejen(X,a;p,q) = (%) o (3.6)

According to Theorem 3 ¢ is a positive exponentially convex function and therefore,
according to Corollary 3, a log-convex function. So, we can apply Lemma 1 on ¢ and

get
1

1
o) \i=s o(v) | v—u
(o) < (&) 3-7)
for s,t,u,v € R sothat s # t,u # v,s < u,t < u (or s < vt <v). Using continuous
extensions of (3.6) and (3.7) we finally conclude that, p < u and g < v implies

EJen(X7a;p7CI) < EJen(X7a;u7v)' U
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4. Special cases

If in (2.3) we put xj = ', x; = x'+h; and a; = £, where i = 0,...,m, P, =

Sopis j=1,...,n and x' +hj € (a,b), we get means related to inequality (see [16]):

1 - , - B
P_zpif[xl7xl+hla~~~7xl+hn] >f[xax+hla'~~7x+hn]a
m =0
where X = z- ¥, pix’.
If weput n =1, h=x| —x} and x; = x{}, y; = x| for i=0,...,m in above case
we get means related to inequality (see [13]):

1 m 1 m 1 m 1 m
azapif(Xi) —f (E %Piﬂ) < B zapif(yz') -f (E %Pi%‘) :

Ifin (2.3) we put n =1, x}) =2a —x;, x}, = x;, where i =0,...,m and x; € [0,2a],
we get means related to inequality (see [15] and [12]):
i a,-f(xi) —fQa—x) _ [(Eoani) — f(2a— 3o aixi)
i=0 X

= m
i—a Yloaixi—a

4.1. Shur means

Let x = (xg,...,Xx,) and y = (yo,...,ys) denote two real (n+ 1)-tuples. We say
that X majorizes y and put x >y if

k k
%X[i] = Z:‘)y[i] for k=0,1,...,n—1

and
n n
Y%= Vi
i=0 i=0

where
Xjo) Z X[1] = - 2 X and yjo) =y = 2 Yy

are the nonincreasing ordered components of x and y.

An important tool in the study of majorization is a theorem (see [6]) which says
that for x,y € R”, x >y if and only if y = xP for some double stohastic matrix P. A
square matrix P is said to be stochastic if its elements are all nonnegative and all row
sums are one. If in addition to being stochastic, all column sums are one, the matrix is
said to be double stochastic.

If we put m =n,

ap a, dap—1 ... dz Ay
aq ao a, ...d4d3ap

ap—1 dp—2 Ap-3 ... do dp
a, dy—1 an—2 ... dj Qo
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and
0
X = (X0,X1,- -, Xn—1,%n),
1
X = (xl,x27...,xn,x0),
-
n—1
X = (xn—l7xn7"'?xn—3axn—2)7
no_
X - (xn7x07"‘7xn727xn71)
we have

y= (y07y17'”7yn)
a a, dap—1 ...d Al
ay a a, ...daszdap

= (X0,X1, -+, Xn) -

ap—1 Ap—-2 Ap-3 -.. 4o dp
ap dp—1 Ap—2 ... A1 Qo

m . m 3
= Za,-xb,...,Za,-x; =aX.
i=0 i=0
Now, using Theorem 1 we get inequality (see [14]):

f[x07'”7x71] >f[y07'”7yn}a

i.e. function G defined in Theorem 1 is Schur-convex. So, (2.3) in this case are Schur
means (see [11]).

The following result (see [5]) is a consequence of the previous result:

THEOREM 4. Let f(") be convex in (a,b), a < xp < -+ < x, < b, and define
X=—3" xi. Then
n+1 «~i=0

) (¥
fn!(x):f[f,...,ﬂgf[x,...,xn}. @.1)
n+1 times

If xo # x,, then equality in (4.1) holds iff f € 11,11 where 11, denotes the class of
polynomials of degree at most n+ 1.

For the Schur means related with above inequality we have the following:
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Esen(X5p,q) =

1

1 Vxp0 H?;()I(P*i)fp pP—q
n+1 g—i Vxn0 — — i3t )
Hizopfv’f;)n—;’( for p#q: p¢N,q¢ N
Vxn0 l,ﬂi 1
o (I)H, 0( —DF TS () Fg
1 (q—k)(g—i) Vxkl i#] -
Hn+ Vxn0 ninll.x — fOr p 7é g p= k c N’q ¢ N
i;k k i Vxq0 Hi:O (g—i)%4
1 T —
1
p—1
1 / Vxp0 H:l;ol (P*i))?p
nt —i Vxn0 i . B
Hii;(l) (p=D)(p—i) SIS (=) 7+ ()5 n¥ for p#q;:p¢N,g=1eN
Vxll _ i#j
Vxn0 nlx’ .
iz él‘[" 1( —) TR (k=) T\ BT
+1 1 ‘\‘;Xk(l)_ l?éj T
n L=t Vxn nl-x . _ _
Mico, = ™ gmmedmeene | for P74 p=keN.g=IeN
' VxIl i#]
Vxnl - ,(n
IO T (p=i) P+ (p=) ¥ In
+1 1 pr17 i#]
n b Vxn0 Al xl _ .
P 2 17 Vxp0 HIYHOI( —i)xP for p q; p ¢ N7q ¢ N
Vxn0 — = plx®
=) 20", Lo Mg ()T 422 Iy (=) T In T+ (k=) T 1”7
i #h i#]
NUNNT. = D :
n X7l IS
ex AP S . ;
P 2;;2 ik 2 Sh o T (k= )"+l‘[7:01(k—i);klnf
Vxkl _ i#j
Vxn0 P
for p=gq; p=q=keN

Acknowledgement. The research of the authors was supported by the Croatian
Ministry of Science, Education and Sports, under the Research Grant 117 — 1170889 —
0888.

REFERENCES

[1] N.I. AKHIEZER, The Classical Moment Problem and Some Related Questions in Analysis, Oliver and
Boyd, Edinburgh, 1965.

[2] G. ANDREWS, The Theory of Partitions, Encyclopedia Math. Appl. 12, Addison-Wesley, Reading, MA,
1976.

[3] K. E. ATKINSON, An Introduction to Numerical Analysis, 2nd ed., Wiley, New York, 1989.

[4] S. N. BERNSTEIN, Sur les fonctions absolument monotones, Acta Math. 52 (1929), 1-66.

[5] R. FARWIG, D. ZWICK, Some divided difference inequalities for n-convex functions, J. Math. Anal.
Appl. 108 (1985), 430-437.

[6] G.H.HARDY,J. E. LITTLEWOOD, G. POLYA, Some simple inequalities satisfied by convex functions,
Messenger of Math 58 (1929), 145-152.



168 Z. PAVIC, J. PECARIC AND A. VUKELIC

[7] P. A. MACMAHON, Combinatory Analysis, I, II, Chelsea, New York, 1960.

[8] D.S.MITRINOVIC, J. E. PECARIC, On Some Inequalities for Monotone Functions, Boll. Unione. Mat.
Ital. (7) 5-13 (1991), 407-416.

[9] D.S.MITRINOVIC,J. PECARIC AND A. M. FINK, Classical and new inequalities in analysis, Kluwer
Academic Publishers, The Netherlands, 1993.

[10] A. DE MORGAN, The Differential and Integral Calculus (Chapter XVIII, On Interpolation and Sum-
mation, page 550), Baldwin and Cradock, London, 1842.

[11] Z. PAVIC, J. PECARIC, A. VUKELIC, Means for divided differences and exponential convexity, to
appear in Mediterranean Journal of Mathematics.

[12] J. E. PECARIC, F. PROSCHAN AND Y. L. TONG, Convex functions, partial orderings, and statistical
applications, Mathematics in science and engineering, Vol. 187 Academic Press, 1992.

[13] J. E. PECARIC, An inequality for 3 -convex function, J. Math. Anal. Appl. 90 (1982), 213-218.

[14] J. E. PECARIC, D. ZWICK, n-Convexity and Majorization, Rocky Mountain J. Math 19 (1989), 303—
311.

[15] P. M. VASIC, Li. R. STANKOVIC, On some inequalities for convex and g-convex functions, Univ.
Beograd. Publ. Elektrotehn. Fak. Se. Mat. Fiz. 412460 (1973), 11-16.

[16] D. ZWICK, A divided difference inequality for n-convex functions, J. Math. Anal. Appl. 104 (1984),
435-436.

(Received February 24, 2011) Z. Pavi¢
Mechanical Engineering Faculty

University of Osijek

Trg Ivane Brli¢ MaZurani¢ 2

35000 Slavonski Brod

Croatia

e-mail: zlatko.Pavic@sfsb.hr

J. Pecari¢

Faculty of Textile Technology
University of Zagreb
Pierottijeva 6

10000 Zagreb, Croatia

and

Abdus Salam School of Mathematical Sciences
GC University

Lahore Gulberg 54660
Pakistan

e-mail: pecaric@element .hr

A. Vukeli¢

Faculty of Food Technology and Biotechnology
Mathematics department

University of Zagreb

Pierottijeva 6

10000 Zagreb

Croatia

e-mail: avukelic@pbf.hr

Journal of Mathematical Inequalities
www.ele-math.com

jmi@ele-math.com



