SOME NEW IMPROVEMENTS OF YOUNG’S INEQUALITIES

CHANGSEN YANG AND ZHENQUAN WANG

(Communicated by J. Pečarić)

Abstract. In this paper, we obtain some improvements and generalizations of Young’s inequalities as the following:

(1) If $b \geq a$, we can get

$$\frac{(a\nabla b)^m - (a^{\tau}b)^m}{(a\nabla^\tau b)^m - (a^{\tau}b)^m} \leq \frac{v(1-v)}{\tau(1-\tau)};$$

(2) If $b \leq a$, we can get

$$\frac{(a\nabla b)^m - (a^{\tau}b)^m}{(a\nabla^\tau b)^m - (a^{\tau}b)^m} \geq \frac{v(1-v)}{\tau(1-\tau)}$$

for $m \in \mathbb{N}_+$. In addition, we obtain new result of Young’s inequality by using the expansions of the functions $(1-v) + vx - x^v$ with $0 < x < 2$.

1. Introduction

The Young’s inequality [8] is well known as the following: If $a, b > 0$ and $0 \leq v \leq 1$, then

$$a\nabla b = a^{1-v}b^v \leq (1-v)a + vb = a\nabla^\prime b$$

where equality holds if and only if $a = b$. Let $\frac{b}{a} = x$ in inequality (1.1), then we can obtain the equivalent inequality

$$0 \leq (1-v) + vx - x^v.$$

Liao, Wu and Zhao [7] showed the reverse inequality of the above Young’s inequality with Kantorovich constant

$$(1-v)a + vb \leq K(h, 2)R a^{1-v}b^v$$

where $a, b \geq 0$, $R = \max\{v, 1-v\}$ and $K(h, 2) = \frac{(h+1)^2}{4h}$ with $h = \frac{b}{a}$. He [2] and Hirzallah [3] refined Young’s inequality so that

$$r^2(a-b)^2 \leq [(1-v)a + vb]^2 - (a^{1-v}b^v)^2 \leq R^2(a-b)^2$$

Keywords and phrases: Young’s inequalities, Kantorovich constant, Newton’s binomial expansion.
where \(a, b \geq 0, r = \min\{v, 1 - v\} \) and \(R = \max\{v, 1 - v\} \).

Alzer, Fonseca and Kovačec [1] presented the following Young’s inequalities

\[
\frac{v^m}{\tau^m} \leq \frac{(a \nabla_v b)^m - (a \nabla_\tau b)^m}{(a \nabla_\tau b)^m - (a \nabla_\tau_b)^m} \leq \frac{(1 - v)^m}{(1 - \tau)^m}
\] (1.5)

for \(0 < v \leq \tau < 1 \) and \(m \in N_+ \).

Liao and Wu [5] replicated the above result as follows:

\[
\frac{v^m}{\tau^m} \leq \frac{(a \nabla_v b)^m - (a \nabla_\tau b)^m}{(a \nabla_\tau b)^m - (a \nabla_\tau_b)^m} \leq \frac{(1 - v)^m}{(1 - \tau)^m}
\] (1.6)

for \(0 < v \leq \tau < 1 \) and \(m \in N_+ \).

Sababheh [10] obtained by convexity of function \(f \)

\[
\frac{v^m}{\tau^m} \leq \frac{(1 - v)f(\tau) + \tau f(0))^m - f^m(v)}{(1 - \tau)f(\tau) + \tau f(0))^m - f^m(\tau)} \leq \frac{(1 - v)^m}{(1 - \tau)^m}
\] (1.7)

for \(0 < v \leq \tau < 1 \) and \(m \in N_+ \).

Ren [9] obtained the following inequalities:

\[
\begin{align*}
\frac{a \nabla_v b - a \nabla_\tau b}{a \nabla_\tau b - a \nabla_\tau b} &\leq \frac{v(1 - v)}{\tau(1 - \tau)}, & b - a &\geq 0 \\
\frac{a \nabla_v b - a \nabla_\tau b}{a \nabla_\tau b - a \nabla_\tau b} &\geq \frac{v(1 - v)}{\tau(1 - \tau)}, & b - a &\leq 0
\end{align*}
\] (1.8)

and

\[
\begin{align*}
\frac{(a \nabla_v b)^2 - (a \nabla_\tau b)^2}{(a \nabla_\tau b)^2 - (a \nabla_\tau b)^2} &\leq \frac{v(1 - v)}{\tau(1 - \tau)}, & b - a &\geq 0 \\
\frac{(a \nabla_v b)^2 - (a \nabla_\tau b)^2}{(a \nabla_\tau b)^2 - (a \nabla_\tau b)^2} &\geq \frac{v(1 - v)}{\tau(1 - \tau)}, & b - a &\leq 0
\end{align*}
\] (1.9)

for \(0 < v \leq \tau < 1 \) and \(a, b > 0 \).

In addition, Zhu [11] obtained new Young’s inequalities by using the expansions of the functions \(\frac{(1 - v) + vx - x^v}{x^v} \).

In this paper, we generalize a part of above results in section 2. In section 3 we obtain following results through using the expansions of the functions \((1 - v) + vx - x^v \)

\[
\begin{align*}
(1 - v) + vx - x^v &\geq \sum_{k=2}^{2m} \alpha_k(v)(x-1)^k, & x \in (0, 1] \\
(1 - v) + vx - x^v &\leq \sum_{k=2}^{2m} \alpha_k(v)(x-1)^k, & x \in [1, \infty)
\end{align*}
\]

and

\[
(1 - v) + vx - x^v \geq \sum_{k=2}^{2m+1} \alpha_k(v)(x-1)^k
\]
for $0 \leq v \leq 1$, $m \in N_+$ and $x > 0$ where $\alpha_\ell(v) = \frac{(-1)^\ell v(1-v)(2-v)\cdots(k-1-v)}{k!}$. And our result is the improvement of [11, Corollary 1] when $m = 1$. Finally, we present trace norm, Hilbert-Schmidt norm and determinant version of results in section 2.

2. Generalized improvements of Young’s inequalities

We firstly show the generalization of Young’s inequality [9] for scalars under some conditions.

Theorem 2.1. Let $0 < v \leq \tau < 1$, $m \in N_+$ and a, b are real positive numbers. Then

1. If $b \geq a$, we can get

\[
\frac{(a\sqrt{v}, b)^m - (a^\tau v, b)^m}{(a\sqrt{v}, b)^m - (a^\tau v, b)^m} \leq \frac{v(1-v)}{\tau(1-\tau)};
\]

(2.1)

2. If $b \leq a$, we can get

\[
\frac{(a\sqrt{v}, b)^m - (a^\tau v, b)^m}{(a\sqrt{v}, b)^m - (a^\tau v, b)^m} \geq \frac{v(1-v)}{\tau(1-\tau)}.
\]

(2.2)

Proof. Firstly, we have

\[
(1 - v + vx)^m - x^{m\nu} = (1 - v + vx - x^\nu)[(1 - v + vx)^{m-1} + (1 - v + vx)^{m-2}x^\nu + \cdots + (1 - v + vx)x^{(m-2)v} + x^{(m-1)v}].
\]

Then let $f(v) = (1 - v + vx)^{m-1} + (1 - v + vx)^{m-2}x^\nu + \cdots + (1 - v + vx)x^{(m-2)v} + x^{(m-1)v}$, we can get

\[
f'(v) = (m-1)(x-1)(1-v+vx)^{m-2} + (m-2)(x-1)(1-v+vx)^{m-3}x^\nu
\]

\[
+ (1 - v + vx)^{m-2}x^\nu \ln x + \cdots + (x-1)x^{(m-2)v} + (1 - v + vx)(m-2)x^{(m-2)v} \ln x
\]

\[
+ (m-1)x^{(m-1)v} \ln x
\]

\[
= (x-1)[(m-1)(1-v+vx)^{m-2} + (m-2)(1-v+vx)^{m-3}x^\nu + \cdots + x^{(m-2)v}] + \ln x[(1 - v + vx)^{m-2}x^\nu + (1 - v + vx)^{m-3}2x^{2v} + \cdots + (1 - v + vx)^{(m-2)v} + (m-1)x^{(m-1)v}] + \ln x
\]

(1) If $x \geq 1$, we have $1 - v + vx - (x-1)v \geq 1$. So it’s obvious that $f'(v) \geq 0$, it means that $f(v)$ is increasing on $[1, \infty)$, that is to say $\frac{f(v)}{f(\tau)} \leq 1$. Therefore

\[
\frac{(1 - v + vx)^m - x^{m\nu}}{(1 - \tau + \tau x)^m - x^{m\tau}} = \frac{(1 - v + vx)^m f(v)}{(1 - \tau + \tau x - \tau^\tau)^m f(\tau)} \leq \frac{(1 - v + vx - x^\nu)}{(1 - \tau + \tau x - \tau^\tau - x^\tau)} \leq \frac{v(1-v)}{\tau(1-\tau)} \quad \text{(by 1.8)}.
\]
(2) If $0 < x \leq 1$, we have $1 - v + vx = 1 + (x - 1)v \geq 0$ and $\ln x \leq 0$. So it’s obvious that $f'(v) \leq 0$, it means that $f(v)$ is decreasing on $(0, 1]$, that is to say $\frac{f(v)}{\tau} \geq 1$. Therefore

$$
\frac{(1 - v + vx)^m - x^{m\tau}}{(1 - \tau + \tau x)^m - x^{m\tau}} = \frac{((1 - v + vx) - x^v)f(v)}{((1 - \tau + \tau x) - x^\tau)f(\tau)}
\geq \frac{(1 - v + vx) - x^v}{(1 - \tau + \tau x) - x^\tau} \geq \frac{v(1 - v)}{\tau(1 - \tau)} \quad \text{(by } 1.8).\n$$

Taking $x = \frac{b}{a}$, we can get our desired results directly. □

REMARK 2.1. (1) Let $m = 2$, we can get [9, Theorem 2.3].

(2) Let $a = b$, $b = a, v = 1 - \tau, \tau = 1 - v$ in inequality (2.1), we can also get inequality (2.2) directly.

(3) Let $0 < v \leq \tau < 1$, so $\frac{1 - v}{\tau} \geq 1$, therefore

(i) If $b \geq a$, we can get

$$
\frac{(a\nabla_v b)^m - (a^a_v b)^m}{(a\nabla_{\tau} b)^m - (a^a_{\tau} b)^m} \leq \frac{v(1 - v)}{\tau(1 - \tau)} \leq \frac{v(1 - v)^m}{\tau(1 - \tau)^m} \leq \frac{(1 - v)^m}{(1 - \tau)^m}.
$$

(ii) If $b \leq a$, we can get

$$
\frac{(a\nabla_v b)^m - (a^a_v b)^m}{(a\nabla_{\tau} b)^m - (a^a_{\tau} b)^m} \geq \frac{v(1 - v)}{\tau(1 - \tau)} \geq \frac{v^m(1 - v)}{\tau^m(1 - \tau)} \geq \frac{v^m}{\tau^m}.
$$

It is not difficult to see that Theorem 2.1 is the improvements of [1].

THEOREM 2.2. Let $\frac{1}{2} < v \leq \tau \leq 1$ and a, b are real positive numbers. Then

$$
\frac{K(h, 2)^v a^a_v b - a\nabla_v b}{K(h, 2)^\tau a^a_{\tau} b - a\nabla_{\tau} b} \leq \frac{v}{\tau}
$$

(2.3)

where $K(h, 2) = \frac{(h+1)^2}{4h}$ and $h = \frac{b}{a}$.

Proof. Firstly, we let

$$
f(v) = \frac{K^v(x, 2)(x^v) - (1 - v + vx)}{v} = \frac{(\frac{x+1}{2})^{2v} - (1 - v + vx)}{v}.
$$

Then we can get

$$
f'(v) = \frac{v \left[2 \left(\frac{x+1}{2}\right)^{2v} \ln \left(\frac{x+1}{2}\right) - (x - 1)\right] - \left[(\frac{x+1}{2})^{2v} - (1 - v + vx)\right]}{v^2}
= \frac{(\frac{x+1}{2})^{2v} \left[2v \ln \left(\frac{x+1}{2}\right) - 1\right] + 1}{v^2}
= \frac{h(x)}{v^2}
$$
It means that \(x \in (0,1], \ h'(x) \leq 0; \ x \in [1,\infty), \ h'(x) \geq 0. \) So \(h(x) \geq h(1) = 0 \) and \(f'(v) \geq 0. \) Therefore \(f(v) \) is increasing on \((0, +\infty)\).

Taking \(x = \frac{b}{a}, \) we can get our desired results directly. \(\Box \)

Theorem 2.3. Let \(0 < v \leq \tau \leq \frac{1}{2} \) and \(a, \ b \) are real positive numbers. Then

\[
\frac{(a\nabla_v b)^2 - (a\nabla_v b)^2 - v^2(a-b)^2}{(a\nabla_v b)^2 - (a\nabla_v b)^2 - \tau^2(a-b)^2} \geq \frac{v}{\tau}.
\] (2.4)

Proof. Firstly, we let \(f(v) = \frac{(1-v+vx)^2-x^2v^2(x-1)^2}{v^2}. \) Then

\[
f'(v) = v \left[2(x-1)(1-v+vx) - 2x^2v \ln x - 2v(x-1)^2 \right] - \left[(1-v+vx)^2 - x^2v - v^2(x-1)^2 \right] \]

\[
= \frac{(1-v+vx)(vx - v - 1) + x^2v - 2vx^2v \ln x - v^2(x-1)^2}{v^2}
\]

and

\[
h'(x) = v(vx - v - 1) + v(1 - v + vx) + 2vx^2v - 4v^2x^{2v-1} \ln x - 2vx^{2v-1} - 2v^2(x-1)
\]

\[
= -4v^2x^{2v-1} \ln x
\]

It means that \(x \in (0,1], \ h'(x) \geq 0; \ x \in [1,\infty), \ h'(x) \leq 0. \) So \(h(x) \leq h(1) = 0 \) and \(f'(v) \leq 0. \) Therefore \(f(v) \) is decreasing on \((0, +\infty)\).

Taking \(x = \frac{b}{a}, \) we can get our desired results directly. \(\Box \)

Theorem 2.4. Let \(\frac{1}{2} < v \leq \tau \leq 1 \) and \(a, \ b \) are real positive numbers. Then

\[
\frac{(a\nabla_v b)^2 + v^2(a-b)^2 - (a\nabla_v b)^2}{(a\nabla_v b)^2 + \tau^2(a-b)^2 - (a\nabla_v b)^2} \leq \frac{v}{\tau}.
\] (2.5)
Proof. Firstly, we let \(f(v) = \frac{x^{2v} + v^2(x-1)^2 - (1-v+vx)^2}{v^2} \). Then

\[
f'(v) = \frac{v \left[2x^{2v} \ln x + 2v(x-1)^2 - 2(x-1)(1-v+vx) \right]}{v^2} - \frac{\left[x^{2v} + v^2(x-1)^2 - (1-v+vx)^2 \right]}{v^2}
= \frac{2x^{2v} \ln x + v^2(x-1)^2 - x^{2v} - (1-v+vx)(vx-v-1)}{v^2}
= \frac{h(x)}{v^2}
\]

and

\[
h'(x) = 4v^2x^{2v-1} \ln x + 2v^2(x-1) - [v(vx-v-1) + v(1-v+vx)]
= 4v^2x^{2v-1} \ln x.
\]

It means that \(x \in (0,1], \ h'(x) \leq 0; \ x \in [1,\infty), \ h'(x) \geq 0. \) So \(h(x) \geq h(1) = 0 \) and \(f''(v) \geq 0. \) Therefore \(f(v) \) is increasing on \((0,\infty)\).

Taking \(x = \frac{b}{a} \), we can get our desired results directly. \(\)

3. Some new results of Young-type inequalities

According to Newton’s binomial expansion for \(x \in (-1,1) \),

\[
(1+x)^v = 1 + vx + \frac{v(v-1)}{2!}x^2 + \frac{v(v-1)(v-2)}{3!}x^3 + \ldots + \frac{v(v-1)(v-2)\ldots[v-(k-1)]}{k!}x^k + \ldots.
\]

We can have if \(0 \leq v \leq 1 \) and \(0 < x < 2 \),

\[
(1-v) + vx - x^v = \sum_{k=2}^{\infty} \alpha_k(v)(x-1)^k \tag{3.1}
\]

where \(\alpha_k(v) = \frac{(-1)^k v(1-v)(2-v)\ldots[(k-1)-v]}{k!} \). And then we can get some new results of inequality \((1-v) + vx - x^v\) based on (3.1).

Theorem 3.1. Let \(0 \leq v \leq 1, \ m \in \mathbb{N}_+ \) and \(x > 0. \) Then

\[
\begin{cases}
(1-v) + vx - x^v \geq \sum_{k=2}^{2m} \alpha_k(v)(x-1)^k, & x \in (0,1], \\
(1-v) + vx - x^v \leq \sum_{k=2}^{2m} \alpha_k(v)(x-1)^k, & x \in [1,\infty).
\end{cases} \tag{3.2}
\]
Proof. Suppose

$$f(x) = (1 - v) + vx - x^v - \sum_{k=2}^{2m} \alpha_k(v)(x - 1)^k.$$

Then

$$f'(x) = v - vx^{v-1} - \sum_{k=2}^{2m} k\alpha_k(v)(x - 1)^{k-1},$$

$$f''(x) = v(1 - v)x^{v-2} - v(1 - v) - \sum_{k=3}^{2m} k(k - 1)\alpha_k(v)(x - 1)^{k-2},$$

and so on.

Finally, we can get

$$f(2m)(x) = (-1)^{2m}v(1 - v)(2 - v)\cdots(2m - 1 - v)x^{v-2m} - (2m)!\alpha_{2m}(v).$$

It means that $f(2m)(x) \geq 0$ on $(0, 1]$ and $f(2m)(x) \leq 0$ on $[1, +\infty)$, so that $f(2m-1)(x) \leq f(2m-2)(1) = 0$. Therefore $f(2m-2)(x)$ is decreasing on $(0, +\infty)$, $f(2m-2)(x) \geq 0$ on $(0, 1]$ and $f(2m-2)(x) \leq 0$ on $[1, +\infty)$ obviously. By that analogy, $f''(x)$ is decreasing on $(0, +\infty)$. It means that $f''(x) \geq 0$ on $(0, 1]$ and $f''(x) \leq 0$ on $[1, +\infty)$. So $f'(x) \leq f'(1) = 0$, that is, $f(x)$ is decreasing on $(0, +\infty)$. According to $f(1) = 0$, we can get desired results. \square

Theorem 3.2. Let $0 \leq v \leq 1$, $m \in \mathbb{N}_+$ and $x > 0$. Then

$$(1 - v) + vx - x^v \geq \sum_{k=2}^{2m+1} \alpha_k(v)(x - 1)^k. \quad (3.3)$$

Proof. Suppose

$$f(x) = (1 - v) + vx - x^v - \sum_{k=2}^{2m+1} \alpha_k(v)(x - 1)^k.$$

Then

$$f'(x) = v - vx^{v-1} - \sum_{k=2}^{2m+1} k\alpha_k(v)(x - 1)^{k-1},$$

$$f''(x) = v(1 - v)x^{v-2} - v(1 - v) - \sum_{k=3}^{2m+1} k(k - 1)\alpha_k(v)(x - 1)^{k-2},$$

and so on.
It's obvious that \(f(0) = f_0 \), and \(f(\infty) = f_\infty \). Therefore \(f(x) \) is increasing on \((0, \infty)\). By that analogy, \(f'(x) \) is increasing on \((0, \infty)\). It means that \(f'(x) \leq 0 \) on \((0, 1]\) and \(f'(x) \geq 0 \) on \([1, \infty)\). So \(f(x) \geq f(1) = 0 \). By simple shift, we can get final result. \(\square \)

COROLLARY 3.1. Let \(0 \leq v \leq 1 \) and \(x > 0 \). Then

\[
\begin{cases}
(1 - v) + vx - x^v \geq \frac{v(1 - v)}{2} (x - 1)^2, & x \in (0, 1], \\
(1 - v) + vx - x^v \leq \frac{v(1 - v)}{2} (x - 1)^2, & x \in [1, \infty).
\end{cases}
\] (3.4)

Proof. Let \(m = 1 \) in Theorem 3.2, we can get desired results. \(\square \)

REMARK 3.1. Because \(x^v \geq 1 \) on \([1, \infty)\) and \(0 < x^v \leq 1 \) on \((0, 1]\), so

\[
(1 - v) + vx - x^v \geq \frac{v(1 - v)}{2} (x - 1)^2 \geq x^v \frac{v(1 - v)}{2} (x - 1)^2, \quad x \in (0, 1],
\]

\[
(1 - v) + vx - x^v \leq \frac{v(1 - v)}{2} (x - 1)^2 \leq x^v \frac{v(1 - v)}{2} (x - 1)^2, \quad x \in [1, \infty).
\]

It’s not hard to see that the inequality 3.4 is the improvement of [11, Corollary 1].

REMARK 3.2. Let \(x = \frac{b}{a} \) in Theorem 3.1 and Theorem 3.2, we can get

\[
\begin{cases}
(1 - v)a + vb - a^{-v}b^v \geq \sum_{k=2}^{2m} \alpha_k(v)a^{1-k}(b-a)^k, & a \geq b > 0 \\
(1 - v)a + vb - a^{-v}b^v \leq \sum_{k=2}^{2m} \alpha_k(v)a^{1-k}(b-a)^k, & a \geq b > 0
\end{cases}
\]

and

\[
(1 - v)a + vb - a^{-v}b^v \geq \sum_{k=2}^{2m+1} \alpha_k(v)a^{1-k}(b-a)^k.
\]

It’s obvious that \(\sum_{k=2}^{n} \alpha_k(v)a^{1-k}(b-a)^k \) is greater than 0 where \(a \geq b > 0 \).
Corollary 3.2. Let $0 \leq v \leq \tau \leq 1$ and $a \geq b > 0$. Then
\[
\frac{(a\nabla,b) - (a\nabla^*b) - \sum_{k=2}^{n} \alpha_k(v)a_1^{-k}(b-a)^k}{(a\nabla_\tau b) - (a\nabla^*_\tau b) - \sum_{k=2}^{n} \alpha_k(\tau)a_1^{-k}(b-a)^k} \geq \frac{v(1-v)(2-v)\cdots(n-v)}{\tau(1-\tau)(2-\tau)\cdots(n-\tau)}.
\] (3.5)

Proof. Firstly, we let $x \in (0,2)$ and
\[
f(v) = (1-v) + vx - x^v - \sum_{k=2}^{n} \alpha_k(v)(x-1)^k.
\]
According to (3.1), we have
\[
f(v) = \sum_{k=n+1}^{\infty} \alpha_k(v)(x-1)^k,
\]
so
\[
\frac{(1-v) + vx - x^v - \sum_{k=2}^{n} \alpha_k(v)(x-1)^k}{(1-\tau) + \tau x - x^\tau - \sum_{k=2}^{n} \alpha_k(\tau)(x-1)^k} = \frac{\sum_{k=n+1}^{\infty}(-1)^k \alpha_k(v)(1-x)^k}{\sum_{k=n+1}^{\infty}(-1)^k \alpha_k(\tau)(1-x)^k}.
\]
Let
\[
\beta_k(v) = (-1)^k \alpha_k(v) = \frac{v(1-v)(2-v)\cdots(k-1-v)}{k}.
\]
When $k \geq n+1$, we can get
\[
\frac{\beta_k(v)}{\beta_k(\tau)} = \frac{v(1-v)(2-v)\cdots(k-1-v)}{\tau(1-\tau)(2-\tau)\cdots(k-1-\tau)} \geq \frac{v(1-v)(2-v)\cdots(n-v)}{\tau(1-\tau)(2-\tau)\cdots(n-\tau)}.
\]
Therefore
\[
\frac{(1-v) + vx - x^v - \sum_{k=2}^{n} \alpha_k(v)(x-1)^k}{(1-\tau) + \tau x - x^\tau - \sum_{k=2}^{n} \alpha_k(\tau)(x-1)^k} = \frac{\sum_{k=n+1}^{\infty} \beta_k(v)(1-x)^k}{\sum_{k=n+1}^{\infty} \beta_k(\tau)(1-x)^k} \geq \frac{v(1-v)(2-v)\cdots(n-v)}{\tau(1-\tau)(2-\tau)\cdots(n-\tau)}.
\]
Taking $x = \frac{k}{a}$, we can get our desired results directly. \qed

4. Applications

Let $M_n(\mathbb{C})$ denotes the space of all $n \times n$ complex matrices and $M_n^+(\mathbb{C})$ denotes the space of all $n \times n$ positive semidefinite matrices in $M_n(\mathbb{C})$. A norm $|||\cdot|||$ is called unitarily invariant norm if $|||UAV||| = |||A|||$ for all $A \in M_n(\mathbb{C})$ and for all unitary matrices $U, V \in M_n(\mathbb{C})$. For $A = [a_{ij}] \in M_n(\mathbb{C})$, the trace norm and Hilbert-Schmidt norm of A are defined by
\[
||A||_1 = tr|A| = \sum_{i=1}^{n} s_i(A), \quad ||A||_2 = \sqrt{\sum_{i=1}^{n} s_i^2(A)} = \sqrt{\sum_{i,j=1}^{n} |a_{ij}|^2}
\]
where $s_1(A) \geq s_2(A) \geq \cdots \geq s_n(A)$ are the singular values of A, that is, the eigenvalues of the positive matrix $|A| = (A^*A)^{1/2}$, arranged in decreasing order and repeated according to multiplicity and tr is the usual trace function. As is known to all, the Hilbert-Schmidt norm is unitarily invariant.

Lemma 4.1. Let $A, B \in M_n^+(\mathbb{C})$, then

$$\det(A + B)^{1/2} \geq \det A^{1/2} + \det B^{1/2}.$$

Lemma 4.2. ([5]) Let $A, B, X \in M_n(\mathbb{C})$ and $A, B \in M_n^+(\mathbb{C})$. If $0 \leq v \leq 1$, then for any unitarily invariant norm $||| \cdot |||$

$$|||A'XB^{1-v}||| \leq |||AX|||v|||XB|||1-v.$$

Theorem 4.1. Let $A, B \in M_n^+(\mathbb{C})$, $m \in N_+$ and $0 < v \leq \tau < 1$. Then

1. If $B \geq A \geq 0$, we can get

$$\frac{||(1 - v)A + vB||^m_1 - (||A||_1^{1-v}||B||_1^v)^m}{v(1 - v)} \leq \frac{||(1 - \tau)A + \tau B||^m_1 - (||A||_1^{1-\tau}||B||_1^\tau)^m}{\tau(1 - \tau)};$$

2. If $A \geq B \geq 0$, we can get

$$\frac{||(1 - v)A + vB||^m_1 - (||A||_1^{1-v}||B||_1^v)^m}{v(1 - v)} \geq \frac{||(1 - \tau)A + \tau B||^m_1 - (||A||_1^{1-\tau}||B||_1^\tau)^m}{\tau(1 - \tau)}.$$

Proof. Suppose $B \geq A$ and by Theorem 2.1, we have

$$\frac{||(1 - v)A + vB||^m_1}{v(1 - v)} = \frac{(\text{tr}((1 - v)A + vB))^m}{v(1 - v)}$$

$$\leq \frac{(\text{tr}(A)^{1-v} \text{tr}(B)^v)^m + \frac{v(1 - v)}{\tau(1 - \tau)}[(\text{tr}(A)^{1-v} \text{tr}(B)^v)^m - (\text{tr}(A)^{1-\tau} \text{tr}(B)^\tau)^m]}{\tau(1 - \tau)}$$

$$\leq \frac{||(1 - v)A + vB||^m_1}{v(1 - v)} \geq \frac{(||A||_1^{1-v}||B||_1^v)^m + \frac{v(1 - v)}{\tau(1 - \tau)}[(||A||_1^{1-\tau}||B||_1^\tau)^m]}{\tau(1 - \tau)}.$$

Using the same method we can get (2) similarly, so we omit it.

Theorem 4.2. Let $A, B \in M_n^+(\mathbb{C})$, $m \in N_+$ and $0 < v \leq \tau < 1$. Then

1. If $B \geq A \geq 0$, we can get

$$\det((1 - \tau)A + \tau B)^m$$

$$\geq \frac{\tau(1 - \tau)}{v(1 - v)} [((1 - v)\det A^{1/2} + v\det B^{1/2})^{mn} - \det(A^{1-v}B^v)^m] + \det(A^{1-\tau}B^\tau)^m;$$
(2) If \(A \geq B \geq 0 \), we can get

\[
\det((1 - \nu)A + \nu B)^m \geq \det(A^{1-\nu}B^\nu)^m + \frac{\nu(1 - \nu)}{\tau(1 - \tau)} \left[(1 - \tau)\det A^{\frac{1}{\tau}} + \tau \det B^{\frac{1}{\tau}} \right]^{mn} - \det(A^{1-\tau}B^\tau)^m.
\]

Proof. Suppose \(B \geq A \) and by Theorem 2.1 and Lemma 4.1, we have

\[
\det((1 - \tau)A + \tau B)^m = \left[\det((1 - \tau)A + \tau B)^{\frac{1}{\tau}} \right]^{mn} \geq \left[(1 - \tau)\det A^{\frac{1}{\tau}} + \tau \det B^{\frac{1}{\tau}} \right]^{mn} \geq \frac{\tau(1 - \tau)}{\nu(1 - \nu)} \left[(1 - \nu)\det A^{\frac{1}{\nu}} + \nu \det B^{\frac{1}{\nu}} \right]^{mn} - \det(A^{1-\tau}B^\tau)^m.
\]

Using the same method we can get (2) similarly, so we omit it. \(\square \)

Theorem 4.3. Let \(A, B, X \in M_n(\mathbb{C}) \) with \(A, B \in M_n^+(\mathbb{C}) \), \(m \in N_+ \) and \(0 < \nu \leq \tau < 1 \), then for any unitarily invariant norm \(||| \cdot ||| \), we have

(1) If \(B \geq A \geq 0 \), we can get

\[
[(1 - \tau)|||AX||| + \tau|||XB|||]^{mn} \geq \frac{\tau(1 - \tau)}{\nu(1 - \nu)} \left[(1 - \nu)|||AX||| + \nu|||XB||| \right]^{mn} - (|||AX|||^{1-\nu}|||XB|||^{\nu})^m + |||A^{1-\tau}XB^\tau|||^{mn};
\]

(2) If \(A \geq B \geq 0 \), we can get

\[
[(1 - \nu)|||AX||| + \nu|||XB|||]^{mn} \geq \frac{\nu(1 - \nu)}{\tau(1 - \tau)} \left[(1 - \tau)|||AX||| + \tau|||XB||| \right]^{mn} - (|||AX|||^{1-\tau}|||XB|||^{\tau})^m + |||A^{1-\nu}XB^\nu|||^{mn}.
\]

Proof. Suppose \(B \geq A \) and by Theorem 2.1 and Lemma 4.2, we have

\[
[(1 - \tau)|||AX||| + \tau|||XB|||]^{mn} - |||A^{1-\tau}XB^\tau|||^{mn} \geq \left[(1 - \tau)|||AX||| + \tau|||XB||| \right]^{mn} - (|||AX|||^{1-\tau}|||XB|||^{\tau})^m \geq \frac{\tau(1 - \tau)}{\nu(1 - \nu)} \left[(1 - \nu)|||AX||| + \nu|||XB||| \right]^{mn} - (|||AX|||^{1-\nu}|||XB|||^{\nu})^m.
\]

Using the same method we can get (2) similarly, so we omit it. \(\square \)
\textbf{Theorem 4.4.} Let $A, B \in M_n^{+}(\mathbb{C})$ and $\frac{1}{2} < v \leq \tau \leq 1$. Then

$$K(h, 2)^v ||A||^{1-v}_1 ||B||^{1-v}_1 - ||(1-v)A + vB||_1 \leq \frac{K(h, 2)^\tau ||A||^{1-\tau}_1 ||B||^{1-\tau}_1 - ||(1-\tau)A + \tau B||_1}{\tau}$$

where $K(h, 2) = \frac{(h+1)^2}{4h}$ and $h = \frac{tr(B)}{tr(A)}$.

\textbf{Proof.} According to Theorem 2.4, we have

$$||(1-v)A + vB||_1 = (1-v)tr(A) + vtr(B)$$

$$\geq K(h, 2)^v tr(A)^{1-v} tr(B)^v - v\frac{K(h, 2)^\tau tr(A)^{1-\tau} tr(B)^\tau - ((1-\tau)tr(A) + \tau tr(B))}{\tau}$$

$$= K(h, 2)^v ||A||^{1-v}_1 ||B||^{1-v}_1 - v\frac{K(h, 2)^\tau ||A||^{1-\tau}_1 ||B||^{1-\tau}_1 - ||(1-\tau)A + \tau B||_1}{\tau}.$$

This completes the proof. \qed

\textbf{Theorem 4.5.} Suppose $A, B, X \in M_n(\mathbb{C})$ such that $A, B \in M_n^{+}(\mathbb{C})$. Then

(1) if $0 < v \leq \tau \leq \frac{1}{2}$, we have

$$\sqrt{v} \left(||(1-v)AX + vXB||_2^2 - ||A^{1-v}XB^v||_2^2 - v^2 ||AX - BX||_2^2 \right)$$

$$\geq \frac{\sqrt{v} \left(||(1-\tau)AX + \tau XB||_2^2 - ||A^{1-\tau}XB^\tau||_2^2 - \tau^2 ||AX - XB||_2^2 \right)}{\tau}.$$

(2) if $\frac{1}{2} < v \leq \tau \leq 1$, we have

$$\sqrt{v} \left(||(1-v)AX + vXB||_2^2 - ||A^{1-v}XB^v||_2^2 - v^2 ||AX - XB||_2^2 \right)$$

$$\leq \frac{\sqrt{v} \left(||(1-\tau)AX + \tau XB||_2^2 - ||A^{1-\tau}XB^\tau||_2^2 - \tau^2 ||AX - XB||_2^2 \right)}{\tau}.$$

\textbf{Proof.} Since A and B are positive semidefinite, it follows by spectral theorem that there exist unitary matrices $U, V \in M_n(\mathbb{C})$, such that $A = U\Lambda_1 U^*, \ B = V\Lambda_2 V^*$, where $\Lambda_1 = \text{diag}(\lambda_1, \lambda_2, \ldots, \lambda_n)$, $\Lambda_2 = \text{diag}(\mu_1, \mu_2, \ldots, \mu_n)$ for λ_i, μ_i are eigenvalues of A and B respectively, $i, l = 1, 2, \ldots, n$.

For our computations, let $Y = U^* XV = [y_{il}]$. Then we have

$$(1-v)AX + vXB = U[(1-v)\Lambda_1 Y + v\Lambda_2 Y]V^* = U[(1-v)\lambda_i + v\mu_i]y_{il}]V^*,$$

$$A^{1-v}XB^v = U[\lambda_i^{1-v} \mu_i^v]y_{il}]V^*, \ AX - XB = U[(\lambda_i - \mu_i)y_{il}]V^*,$$

So

$$\sqrt{v} \left(||(1-v)AX + vXB||_2^2 - ||A^{1-v}XB^v||_2^2 - v^2 ||AX - XB||_2^2 \right)$$

$$\leq \frac{\sqrt{v} \left(||(1-\tau)AX + \tau XB||_2^2 - ||A^{1-\tau}XB^\tau||_2^2 - \tau^2 ||AX - XB||_2^2 \right)}{\tau}.$$
\[
= \sum_{i,l}^{n} [(1-v) \lambda_i + v \mu_l] |y_{il}|^2 - \sum_{i,l}^{n} (\lambda_i^{1-v} \mu_l^v) |y_{il}|^2 - v^2 \sum_{i,l}^{n} (\lambda_i - \mu_l)^2 |y_{il}|^2
\]

\[
= \sum_{i,l}^{n} [(1-v) \lambda_i + v \mu_l] |y_{il}|^2 - (\lambda_1^{1-v} \mu_1^v) |y_{il}|^2 - v^2 (\lambda_i - \mu_l)^2 |y_{il}|^2
\]

\[
\geq \frac{v}{\tau} \sum_{i,l}^{n} [(1-\tau) \lambda_i + \tau \mu_l] |y_{il}|^2 - (\lambda_1^{1-\tau} \mu_1^\tau)^2 |y_{il}|^2 - \tau^2 (\lambda_i - \mu_l)^2 |y_{il}|^2
\]

\[
= \frac{v}{\tau} \left(\sum_{i,l}^{n} [(1-\tau) \lambda_i + \tau \mu_l] |y_{il}|^2 - \sum_{i,l}^{n} (\lambda_i^{1-\tau} \mu_l^\tau) |y_{il}|^2 - \tau^2 \sum_{i,l}^{n} (\lambda_i - \mu_l)^2 |y_{il}|^2 \right)
\]

\[
= \frac{v}{\tau} \left[||(1-\tau)AX + \tau XB||_2^2 - ||A^{1-\tau}XB^\tau||_2^2 - \tau^2 ||AX - XB||_2^2 \right].
\]

Using the same method we can get (2) similarly, so we omit it. \[\square\]

REFERENCES

(Received June 21, 2022)

Changsen Yang
College of Mathematics and Information Science
Henan Normal University
Xinxiang, Henan, 453007, P. R. China
e-mail: yangchangsen0991@sina.com

Zhengquan Wang
College of Mathematics and Information Science
Henan Normal University
Xinxiang, Henan, 453007, P. R. China
e-mail: wangzhenquan1997@163.com