INTEGRAL MEAN ESTIMATES FOR POLYNOMIALS WITH RESTRICTED ZEROS

ABDUL AZIZ AND WALI MOHAMMAD SHAH

(communicated by N. Govil)

Abstract. Let \(P(z) \) be a polynomial of degree \(n \) which does not vanish in the disk \(|z| < K \). For \(K = 1 \), it is known that for \(0 < q < \infty \),

\[
\left\{ \frac{1}{2\pi} \int_{0}^{2\pi} |P(Re^{i\theta})|^q \, d\theta \right\}^{1/q} \leq B_q \left\{ \frac{1}{2\pi} \int_{0}^{2\pi} |P(e^{i\theta})|^q \, d\theta \right\}^{1/q},
\]

where

\[
B_q = \left\{ \frac{1}{2\pi} \int_{0}^{2\pi} \left| 1 + R^n e^{i\alpha} \right|^q \, d\alpha \right\}^{1/q} \left/ \left\{ \frac{1}{2\pi} \int_{0}^{2\pi} \left| 1 + e^{i\alpha} \right|^q \, d\alpha \right\}^{1/q} \right..
\]

In this paper we present a generalization of this result by considering the case \(K \geq 1 \). We shall also prove a similar result for polynomials having all their zeros in \(|z| \leq K \), where \(K \geq 1 \).

1. Introduction and statement of results

Let \(P(z) \) be a polynomial of degree at most \(n \), then for each \(R \geq 1 \) and \(q > 0 \),

\[
\max_{|z|=R} |P(z)| \leq R^n \max_{|z|=1} |P(z)| \tag{1}
\]

and

\[
\left\{ \frac{1}{2\pi} \int_{0}^{2\pi} |P(Re^{i\theta})|^q \, d\theta \right\}^{1/q} \leq R^n \left\{ \frac{1}{2\pi} \int_{0}^{2\pi} |P(e^{i\theta})|^q \, d\theta \right\}^{1/q}. \tag{2}
\]

Inequality (1) is a simple deduction from the maximum modulus principle (see [11, p. 346], or [8, Vol. 1, p. 137, prob. III 269]) and inequality (2) is a simple consequence of a classical result of Hardy [6] (see for example [9, Theorem 5.5]).

In both (1) and (2) equality holds only for \(P(z) = cz^n \), \(c \neq 0 \), i.e., when all the zeros of \(P(z) \) lie at the origin. Inequality (1) can be obtained by letting \(q \to \infty \) in inequality (2). The inequalities (1) and (2) can be sharpened if we restrict ourselves to...
a class of polynomials having no zeros in \(|z| < 1\). In fact, if \(P(z) \neq 0\) for \(|z| < 1\), then it was shown by Ankeny and Rivlin [1] that (1) can be replaced by

\[
\max_{|z|=R>1} |P(z)| \leq \frac{R^n + 1}{2}\max_{|z|=1} |P(z)|,
\]

(3)

where the corresponding refinement of (2) namely

\[
\left\{ \frac{1}{2\pi} \int_0^{2\pi} |P(Re^{i\theta})|^q d\theta \right\}^{1/q} \leq c_q \left\{ \frac{1}{2\pi} \int_0^{2\pi} |P(e^{i\theta})|^q d\theta \right\}^{1/q},
\]

(4)

where

\[
c_q = \left\{ \frac{1}{2\pi} \int_0^{2\pi} \left| 1 + R^n e^{i\alpha} \right|^q d\alpha \right\}^{1/q} \bigg/ \left\{ \frac{1}{2\pi} \int_0^{2\pi} \left| 1 + e^{i\alpha} \right|^q d\alpha \right\}^{1/q},
\]

was proved by Boas and Rahman [5] for \(1 < q < \infty\). Recently Rahman and Schmeisser [10] have shown that (4) remains true for \(0 < q < 1\) as well. It can be easily seen that if we let \(q \to \infty\) in (4), we get inequality (3).

Here we consider a class of polynomials having no zeros in \(|z| < K\), where \(K \geq 1\) and prove the following generalization of (4).

THEOREM 1. If \(P(z)\) is a polynomial of degree \(n\) having all its zeros in \(|z| \geq K\), then for every \(R > 1\) and \(q > 0\),

\[
\left\{ \frac{1}{2\pi} \int_0^{2\pi} |P(Re^{i\theta})|^q d\theta \right\}^{1/q} \leq B_q \left\{ \frac{1}{2\pi} \int_0^{2\pi} |P(e^{i\theta})|^q d\theta \right\}^{1/q},
\]

(5)

where

\[
B_q = \left\{ \frac{1}{2\pi} \int_0^{2\pi} \left| 1 + R^n e^{i\alpha} \right|^q d\alpha \right\}^{1/q} \bigg/ \left\{ \frac{1}{2\pi} \int_0^{2\pi} \left| 1 + tKe^{i\alpha} \right|^q d\alpha \right\}^{1/q}
\]

with \(t_K = \left(\frac{1+RK}{R+K}\right)^n\).

Inequality (5) reduces to (4) for \(0 < q < \infty\) when \(K = 1\).

REMARK 1. Letting \(q \to \infty\) in (5), it follows that if \(P(z)\) is a polynomial of degree \(n\) having all its zeros in \(|z| \geq K\), then for \(R > 1\),

\[
\max_{|z|=R} |P(z)| \leq \frac{(R+K)^n(R^n+1)}{(1+RK)^n+(R+K)^n}\max_{|z|=1} |P(z)|.
\]

(6)

Inequality (6) is a generalization of a result of Ankeny and Rivlin [1], proved by Aziz [4].

If \(P(z)\) has all its zeros in \(|z| \leq 1\), then for each \(q > 0\),

\[
n \left\{ \int_0^{2\pi} |P(e^{i\theta})|^q d\theta \right\}^{1/q} \leq \left\{ \int_0^{2\pi} |1 + e^{i\theta}|^q d\theta \right\}^{1/q} \max_{|z|=1} |P'(z)|.
\]

(7)
Inequality (7) is due to Malik [7]. As an extension of (7) Aziz [3] proved that if $P(z)$ has all zeros in $|z| \leq K$, where $K \geq 1$, then for each $q > 1$,

$$ n \left\{ \int_0^{2\pi} |P(e^{i\theta})|^q d\theta \right\}^{1/q} \leq \left\{ \int_0^{2\pi} |1 + K^q e^{i\theta}|^q d\theta \right\}^{1/q} \max_{|z|=1} |P'(z)|. \tag{8} $$

Since in the proof of the inequality (8), the inequality (4) proved by Boas and Rahman for $1 \leq q < \infty$ was used, it was not clear, whether the restriction on q was indeed essential. Here we use Theorem 1 to show that the restriction on q is not needed. In fact we establish the following generalization of (7) which shows that (8) remains true for $0 < q < 1$ also. We prove

Theorem 2. If $P(z)$ is a polynomial of degree n having all its zeros in $|z| \leq K$, where $K \geq 1$, then for each $q > 0$,

$$ n \left\{ \int_0^{2\pi} |P(e^{i\theta})|^q d\theta \right\}^{1/q} \leq \left\{ \int_0^{2\pi} |1 + K^q e^{i\theta}|^q d\theta \right\}^{1/q} \max_{|z|=1} |P'(z)|. \tag{9} $$

The result is best possible and equality holds for the polynomial $P(z) = \alpha z^n + \beta K^n$, where $|\alpha| = |\beta|$.

2. Lemmas

The proof of Theorem 1 is based on a result of Arestov which we shall describe first.

For $\delta = (\delta_0, \delta_1, \ldots, \delta_n) \in \mathbb{C}^{n+1}$ and

$$ P(z) = \sum_{j=0}^{n} a_j z^j, $$

we define

$$ \Lambda_\delta P(z) = \sum_{j=0}^{n} \delta_j a_j z^j. $$

The operator Λ_δ is said to be admissible, if it preserves one of the following properties:

(i) $P(z)$ has all its zeros in $\{z \in \mathbb{C} : |z| \leq 1\}$

(ii) $P(z)$ has all its zeros in $\{z \in \mathbb{C} : |z| \geq 1\}$.

The result of Arestov may now be stated as follows:

Lemma 1. [2. Theorem 4]. Let $\phi(x) = \psi(\log x)$, where ψ is a convex nondecreasing function on \mathbb{R}. Then for all polynomials $P(z)$ of degree at most n and each admissible operator Λ_δ

$$ \int_0^{2\pi} \phi\left(|\Lambda_\delta P(e^{i\theta})| \right) d\theta \leq \int_0^{2\pi} \phi(c(\delta, n)|P(e^{i\theta})|) d\theta, \tag{10} $$
where
\[c(\delta, n) = \max(|\delta_0|, |\delta_n|). \]

In particular, Lemma 1 applies with \(\phi : x \to x^q \) for every \(q \in (0, \infty) \) and \(\phi : x \to \log x \) as well. Therefore, we have
\[
\left\{ \frac{1}{2\pi} \int_0^{2\pi} |\Lambda_0P(e^{i\theta})|^q d\theta \right\}^{1/q} \leq c(\delta, n) \left\{ \frac{1}{2\pi} \int_0^{2\pi} |P(e^{i\theta})|^q d\theta \right\}^{1/q}, \quad 0 < q < \infty. \tag{11}
\]

We also need

Lemma 2. If \(P(z) \) is a polynomial of degree \(n \), which does not vanish for \(|z| \leq K \), \(K \geq 1 \). Then for all \(R \geq 1 \), \(r \leq 1 \), and for every \(\theta \), \(0 \leq \theta < 2\pi \),
\[
|P(Rr e^{i\theta})| \leq \left(\frac{Rr + K}{r + RK} \right)^n |R^n P\left(\frac{re^{i\theta}}{R} \right)|. \tag{12}
\]

Proof. Since all the zeros of \(P(z) \) lie in \(|z| \geq K \), \(K \geq 1 \), we write
\[
P(z) = c \prod_{j=1}^{n} (z - R_j e^{i\theta_j}) \quad \text{where} \quad R_j \geq K, \quad j = 1, 2, \ldots, n.
\]

Therefore, for all \(R \geq 1 \), \(r \leq 1 \), and for every \(\theta \) with \(0 \leq \theta < 2\pi \), we have
\[
\left| \frac{P(Rr e^{i\theta})}{R^n P\left(\frac{re^{i\theta}}{R} \right)} \right| = \prod_{j=1}^{n} \left| \frac{Rr e^{i\theta} - R_j e^{i\theta_j}}{re^{i\theta} - RR_j e^{i\theta_j}} \right|
\]
\[
= \prod_{j=1}^{n} \left| \frac{Rr e^{(\theta - \theta_j)} - R_j}{re^{(\theta - \theta_j)} - RR_j} \right|
\]
\[
= \prod_{j=1}^{n} \left(\frac{R^2 r^2 + R_j^2 - 2RR_j e^{i\theta} \cos(\theta - \theta_j)}{r^2 + R^2 R_j^2 - 2RR_j e^{i\theta} \cos(\theta - \theta_j)} \right)^{1/2}. \tag{13}
\]

Now, after a short calculation one can easily verify that for every \(r \leq 1 \) and \(R \geq 1 \),
\[
\frac{R^2 r^2 + R_j^2 - 2RR_j \cos(\theta - \theta_j)}{r^2 + R^2 R_j^2 - 2RR_j \cos(\theta - \theta_j)} \leq \left(\frac{Rr + R_j}{r + RR_j} \right)^2. \tag{14}
\]

Since \(R_j \geq K \), we see that
\[
\frac{Rr + R_j}{r + RR_j} \leq \frac{Rr + K}{r + KR}. \tag{15}
\]

From (13), (14) and (15), it follows that
\[
\left| \frac{P(Rr e^{i\theta})}{R^n P\left(\frac{re^{i\theta}}{R} \right)} \right| \leq \left(\frac{Rr + K}{r + KR} \right)^n,
\]
for all \(r \leq 1 \leq R \) and for every \(\theta \), \(0 \leq \theta < 2\pi \), from which the desired result follows immediately.
3. Proofs of the theorems

Proof of Theorem 1. Since the polynomial $P(z)$ has all its zeros in $|z| \geq K \geq 1$, it follows from Lemma 2 that for every $R \geq 1$ and for $|z| = r < 1$

$$|P(Rz)| \leq \left(\frac{R|z| + K}{|z| + RK} \right)^n |R^n P(z/R)|. \quad (16)$$

If $R = 1$, then Theorem 1 is trivial, so we assume that $R > 1$. Now, it can be easily verified that

$$\frac{R|z| + K}{|z| + RK} < 1, \quad \text{for } |z| = r < 1 \text{ and } R > 1.$$

Using this in (16), we get

$$|P(Rz)| < |R^n P(z/R)| \quad \text{for } |z| < 1 \text{ and } R > 1. \quad (17)$$

Let $F(z) = P(Rz) + e^{i\alpha R^n P(z/R)}$. We show for every α, $0 \leq \alpha < 2\pi$ and $R > 1$, that polynomial $F(z)$ does not vanish in $|z| < 1$. If this is not true, then there is a point $z = z_0$ with $|z_0| < 1$, such that $F(z_0) = 0$. This gives

$$0 = F(z_0) = P(Rz_0) + e^{i\alpha R^n P(z_0/R)} \quad \text{where } |z_0| < 1.$$

This implies

$$|P(Rz_0)| = |R^n P(z_0/R)| \quad \text{where } |z_0| < 1,$$

which clearly contradicts (17). Hence all zeros of $F(z) = P(Rz) + e^{i\alpha R^n P(z/R)}$ lie in $|z| \geq 1$, for every α, $0 \leq \alpha < 2\pi$ and $R > 1$. This shows that the operator Λ_{δ} defined by

$$\Lambda_{\delta} P(z) = (1 + e^{i\alpha R^n})a_0 + (R + e^{i\alpha R^{n-1}})a_1 z + \cdots + (R^n + e^{i\alpha})a_n z^n = P(Rz) + e^{i\alpha R^n P(z/R)} \quad (18)$$

is an admissible operator. Applying (11), we obtain for $0 < q < \infty$

$$\int_0^{2\pi} |P(R e^{i\theta}) + e^{i\alpha R^n P(e^{i\theta}/R)}|^q d\theta \leq |R^n e^{i\alpha} + 1|^q \int_0^{2\pi} |P(e^{i\theta})|^q d\theta. \quad (19)$$

Integrating both sides of (19) with respect to α from 0 to 2π, we get for $0 < q < \infty$,

$$\int_0^{2\pi} \int_0^{2\pi} |P(R e^{i\theta}) + e^{i\alpha R^n P(e^{i\theta}/R)}|^q d\alpha d\theta \leq \int_0^{2\pi} |R^n e^{i\alpha} + 1|^q d\alpha \int_0^{2\pi} |P(e^{i\theta})|^q d\theta. \quad (20)$$

Now for every real α and $t \geq s \geq 1$, it can be easily verified that $|t + e^{i\alpha}| \geq |S + e^{i\alpha}|$, which implies for every $q > 0$,

$$\int_0^{2\pi} |t + e^{i\alpha}|^q d\alpha \geq \int_0^{2\pi} |S + e^{i\alpha}|^q d\alpha. \quad (21)$$
Taking \(r = 1 \) in Lemma 2, it follows from (12) that
\[
\left| \frac{R^n P(e^{i\theta}/R)}{P(Re^{i\theta})} \right| \geq \left(\frac{1 + RK}{R + K} \right)^n = t_K \geq 1,
\]
for every \(\theta \), \(0 \leq \theta < 2\pi \) and \(R > 1 \).

We take \(t = \frac{R^n P(e^{i\theta}/R)}{P(Re^{i\theta})} \) and \(S = t_K \), then from (22), \(t \geq t_K \geq 1 \) and we get with the help of (21),
\[
\int_0^{2\pi} |P(Re^{i\theta}) + e^{i\alpha} R^n P(e^{i\theta}/R)|^q d\alpha = |P(Re^{i\theta})|^q \int_0^{2\pi} \left| 1 + \frac{e^{i\alpha} R^n P(e^{i\theta}/R)}{P(Re^{i\theta})} \right|^q d\alpha \\
= |P(Re^{i\theta})|^q \int_0^{2\pi} e^{i\alpha} \left| R^n P(e^{i\theta}/R) \right| + 1|^q d\alpha \\
\geq |P(Re^{i\theta})|^q \int_0^{2\pi} t_K e^{i\alpha} + 1|^q d\alpha.
\]

Using this in (20), we conclude that for \(0 < q < \infty \),
\[
\int_0^{2\pi} t_K e^{i\alpha} + 1|^q d\alpha \int_0^{2\pi} |P(Re^{i\theta})|^q d\theta \leq \int_0^{2\pi} R^n e^{i\alpha} + 1|^q d\alpha \int_0^{2\pi} |P(e^{i\theta})|^q d\theta,
\]
which immediately leads to (5) and this completes the proof of Theorem 1.

Proof of Theorem 2. The proof of Theorem 2 is identical with the proof of Theorem 1 of [3], except instead of using result of Boas and Rahman (inequality (4)) for \(1 \leq q < \infty \), we use Theorem 1 with \(K = 1 \) for \(0 < q < \infty \). We omit the details.

REFERENCES

(Received July 12, 2000)